MATH 417: Numerical Analysis

Instructors: Prof. Wolfgang Bangerth, Prof. Guido Kanschat bangerth@math.tamu.edu,
kanschat@math.tamu.edu
Teaching Assistants: Seungil Kim, Yan Li
sgkim@math.tamu.edu, yli@math.tamu.edu

Homework assignment 4 - due 9/28/06 and 10/2/06

Problem 1 (Secant method). This problem is an example of finding the root of a function f that is only given in form of a procedure, a likely case in applications, instead of as a closed form expression.

In order to define the function $g(x)$, consider the following iteration: set $a_{0}=1$ and compute the values a_{i} by the following iteration:

$$
a_{i}=a_{i-1}+\frac{x \sin a_{i-1}+x}{10}
$$

Clearly, we can compute a_{1} from a_{0} for each value of x. Similarly, we can compute a_{2} from a_{1}, and so on. Now, let $g(x)$ be the function whose value equals a_{10} for any given value of x.
a) Write a program function that given a value x returns $g(x)=a_{10}$ by computing the iteration above.
b) Assume we want to solve the equation $f(x)=0$ where $f(x)=g(x)-3$. State why Newton's method may be ill-suited for this task.
c) Write a program that finds a root of $f(x)=g(x)-3$ up to 6 digits accuracy using the secant method.
(6 points)

Problem 2 (Root finding methods). Compare, in words, the bisection method, Newton's method, and the secant method with respect to the following criteria: reliability of finding a root of a function, speed of convergence, complexity (i.e., a method is better if it needs fewer evaluations of $f(x)$ per iteration, or if it only needs function values rather than derivatives).

Problem 3 (Gaussian elimination). Solve (on paper, showing the individual steps) the following system of linear equations using Gaussian elimination:

$$
\left(\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right)
$$

Verify that your result is correct.
(The matrix is the example is the so-called Hilbert matrix, with entries $H_{i j}=\frac{1}{i+j-1}$. It has a number of nasty properties that make it a good testcase for matrix algorithms.)
(3 points)

Problem 4 (Gaussian elimination). Using Gaussian elimination, it is simple to solve the following problem

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) .
$$

One would eliminate the occurrence of x_{1} in the second equation by subtracting the first from the second equation, arriving at a diagonal matrix.

Describe what happens if the system instead looked like this:

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) .
$$

Does the algorithm still work? If not, propose a remedy.

