MATH 412: Theory of Partial Differential Equations

Lecturer: Prof. Wolfgang Bangerth
Blocker Bldg., Room 507D
(979) 8456393
bangerth@math.tamu.edu
http://www.math.tamu.edu/~ ${ }^{\text {bangerth }}$

Homework assignment 9 - due Thursday 11/9/2006

Problem 1 (Eigenfunctions of the Laplacian). In class, we have explicitly derived that the eigenfunctions of the Laplacian operator on a rectangle of length L and height H are

$$
\phi_{n}(x, y)=\sin \frac{k \pi x}{L} \sin \frac{l \pi y}{H}
$$

where n was a multi-index $n=(k, l)$ of two numbers. In the one-dimensional situation, we had the very convenient formula

$$
\frac{2}{L} \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x=\delta_{n m} .
$$

Noting that the sines here are the eigenfunctions of the Laplacian in 1-d, one could conjecture that the same holds also for 2-d:

$$
\frac{2}{L} \frac{2}{H} \int_{0}^{H} \int_{0}^{L} \phi_{n}(x, y) \phi_{m}(x, y) d x d y=\delta_{n m}
$$

Prove this formula. Note that n, m are both multi-indices, i.e. for example $n=(k, l), m=(p, q)$ and that $\delta_{n m}$ is one only if $n=m$, i.e. if $k=p, l=q$. In other words, $\delta_{n m}=\delta_{k p} \delta_{l q}$.
(4 points)

Problem 2 (Solutions of the 2d wave equation). Using the eigenfunctions of the Laplacian on the unit square $\Omega=[0,1]^{2}$, and the orthogonality formula of Problem 1, compute the solution to the wave equation of the wave equation

$$
\begin{aligned}
\frac{\partial^{2} u(x, y, t)}{\partial t^{2}}-c^{2} \Delta u(x, y, t) & =0, & & \text { in } \Omega \times[0, T] \\
u(x, y, t) & =0 & & \text { for } x \in \partial \Omega
\end{aligned}
$$

if we impose initial values

$$
\begin{aligned}
u(x, y, 0) & =0 \\
\frac{\partial u}{\partial t}(x, y, 0) & = \begin{cases}1 & \text { for } x<\frac{1}{2} \text { and } y<\frac{1}{2} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Problem 3 (Eigenvalues of the Laplacian in 3d). In class we derived the eigenfunctions and eigenvectors of the Laplacian on the two-dimensional rectangle of length L and height H. Use the same techniques to derive the eigenfunctions and eigenvalues of the Laplacian in the three-dimensional box of length L, height H, and width W.
(4 points)

Problem 4 (Eigenvalue distributions). For a string of length π, the eigenvalues of the Laplacian are $\lambda_{n}=n^{2}$ for $n=1,2, \ldots$. For a square of length and height π, they are $\lambda_{k, l}=k^{2}+l^{2}$ for $k=1,2, \ldots$ and $l=1,2, \ldots$. Finally, in three dimensions, for a box of dimensions π, the eigenvalues are $\lambda_{k, l, m}=k^{2}+l^{2}+m^{2}$.

For each of these three cases, do the following:

- Show the values of the 10 smallest eigenvalues.
- Write a program that calculates all eigenvalues that are smaller than 10,000 . Let the program count how many of those are in each of the intervals $0 \ldots 99,100 \ldots 199,200 \ldots 299$, etc. until 9900....9999. Generate a plot of the number of eigenvalues in each of these bins.
(4 points)

