MATH 412: Theory of Partial Differential Equations

Lecturer: Prof. Wolfgang Bangerth
Blocker Bldg., Room 507D
(979) 8456393
bangerth@math.tamu.edu
http://www.math.tamu.edu/~ bangerth

Homework assignment 7 - due Thursday 10/26/2006

Problem 1 (Fourier series). Derive the Fourier series on $[-\pi, \pi]$ of the function $f(x)=x$. From this series, derive the Fourier series of $F(x)=x^{2} / 2$ without using the formulas $\frac{1}{L} \int_{-L}^{L} F(x) \cos n x d x$ (and similar for the sine terms) to compute the coefficients A_{0}, A_{n}, B_{n} of the second series.
(3 points)
Problem 2 (Wave equation). The wave equation with constant coefficients and zero right hand side reads in one space dimension

$$
\frac{\partial^{2} u(x, t)}{\partial t^{2}}-c^{2} \frac{\partial^{2} u(x, t)}{\partial x^{2}}=0
$$

where c is the so-called wave speed. Show that if u has the form $u(x, t)=$ $f(x-c t)$ for an arbitrary function $f(s)$, then $u(x, t)$ is a solution of the wave equation. Show that the same is true for $u(x, t)=g(x+c t)$. How about $u(x, t)=\alpha f(x-c t)+\beta g(x+c t)$?
(4 points)

Problem 3 (Wave equation). Solve problem 4.2.1 in the book.
(3 points)

