MATH 412: Theory of Partial Differential Equations

Lecturer: Prof. Wolfgang Bangerth
Blocker Bldg., Room 507D
(979) 8456393
bangerth@math.tamu.edu
http://www.math.tamu.edu/~ ${ }^{\text {bangerth }}$

Homework assignment 6 - due Thursday 10/12/2006

Problem 1 (Fourier series). The Fourier series on $[-L, L]$ of a function $f(x)$ that is piecewise smooth is given by

$$
A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}+\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}
$$

where

$$
\begin{gathered}
A_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x \\
A_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi x}{L} d x, \quad B_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{gathered}
$$

Calculate the Fourier series on $[-\pi, \pi]$ of the function

$$
f(x)=\left\{\begin{array}{c}
1 \text { for } x \geq 0 \\
-1 \text { for } x<0
\end{array}\right.
$$

(5 points)
Problem 2 (Gibbs phenomenon). Using a computer graphing program such as Maple, Matlab, or Mathematica (or whatever else you deem fit for the task), graph for the range $x \in[-\pi, \pi]$ the following:

- $f(x)$ and the first 3 terms of its Fourier series;
- $f(x)$ and the first 6 terms of its Fourier series;
- $f(x)$ and the first 15 terms of its Fourier series;
- $f(x)$ and the first 30 terms of its Fourier series.
(Give us a printout of the plot or plots.) You will see that the plots of the first terms of the Fourier series approximate $f(x)$ increasingly well, but that there are over- and undershoots around the location where $f(x)$ has a jump (i.e. at $x=0$). These oscillations are called Gibbs phenomenon.

Conjecture what the Fourier series converges to for points $x<0, x=0$, and $x>0$.
(5 points)
(please turn over)

Problem 3 (Periodic continuation). Repeat the plots you already generated for Problem 2, but this time show $f(x)$ and the first $3,6,15$, and 30 terms of its Fourier series in the interval $[-3 \pi, 3 \pi]$. Interpret what you see.
(3 points)

Problem 4 (Linearity of the Fourier transform). Solve Problem 3.2.3 in the book.
(2 points)

