MATH 412: Theory of Partial Differential Equations

Lecturer: Prof. Wolfgang Bangerth
Blocker Bldg., Room 507D
(979) 8456393
bangerth@math.tamu.edu
http://www.math.tamu.edu/~bangerth

Homework assignment 2 - due Thursday 9/14/2006

Problem 1 (Linear operators). Solve exercise 2.2.2 in the book.
(2 points)
Problem 2 (Linear operators). Solve exercise 2.2.5 in the book.

Problem 3 (Sign of eigenvalues). Consider the equation

$$
\frac{d^{2} \phi(x)}{d x^{2}}+\lambda \phi(x)=0
$$

Determine whether $\lambda>0, \lambda \geq 0, \lambda \leq 0$, or $\lambda<0$ based on the technique shown in class, for each of the following sets of boundary conditions:
a) $\quad \phi(0)=\phi(\pi)=0$,
b) $\quad \frac{\partial \phi}{\partial x}(0)=\frac{\partial \phi}{\partial x}(1)=0$.
(3 points)

Problem 4 (Solutions of the heat equation). Solve exercise 2.3.3 (a) and (b) in the book. Note that similar problems are solved in the main text.

Problem 5 (Orthogonality of trigonometric functions). Solve exercise 2.3.5 in the book.

Problem 6 (Some basics). Let $u(x, t)$ be a function of space and time. Prove the following identities by going back to the basics of multivariate calculus (definition of derivatives, definition of integrals, etc):
a) $\frac{d}{d t} \int_{0}^{L} u(x, t) d x=\int_{0}^{L} \frac{\partial u(x, t)}{\partial t} d x$,
b) $\frac{d}{d x} \int_{0}^{L} u(x, t) d x=0$,
c) $u(0, t)=u(L, t) \quad$ implies $\quad \int_{0}^{T} \int_{0}^{L} \frac{\partial u(x, t)}{\partial x} d x d t=0$,
d) $u(x, t)=x^{2} t^{2} \quad$ implies $\quad \int_{0}^{T} \int_{0}^{L} \frac{\partial u(x, t)}{\partial x} d x d t=\frac{L^{2} T^{3}}{3}$,
e) $\quad \int_{0}^{L} u(x, T) d x=\int_{0}^{L} u(x, 0) d x+\int_{0}^{T} \int_{0}^{L} \frac{\partial u(x, t)}{\partial t} d x d t$.
(5 points)

