
Lab problem 9/7/2005

Problem. In most solids, the internal stresses (forces) σ increase linearly with
the displacement x if you stretch them, i.e. σ = Ax. It is therefore relatively
simple to determine the maximum displacement x∗ at which the break stress
σ∗ is exceeded: if x > x∗ = σ∗/A, then the body breaks.

However, this linear relationship does not hold for plastic materials like
rubber. Assume that for this material, σ =

√
x + 0.2 + x

10 −
√

0.2. Determine
the maximum deflection if the breaking stress is σ∗ = 1 using Newton’s method.

Solution. We need to find that value of x for which
√

x + 0.2 + x
10 −

√
0.2 =

σ∗ = 1, i.e. we need to find a zero for the function

f(x) =
√

x + 0.2 +
x

10
−
√

0.2− 1.

If we plot this function, we see that the zero lies somewhere in the range between
x = 1 and x = 2, so we start a Newton iteration at x0 = 1. The iteration formula
then reads

xk+1 = xk −
f(xk)
f ′(xk)

= xk −
√

xk + 0.2 + x
10 −

√
0.2− 1

1
2
√

x+0.2
+ 1

10

.

We implement this in the following program:

#include <iostream>
#include <iomanip>
#include <cmath>

// define f(x)
double f(double x)
{
return std::sqrt(x+0.2) + x/10 - std::sqrt(0.2) - 1;

}

// also define f’(x)
double f_prime (double x)
{
return 1./(2*std::sqrt(x+0.2)) + 1./10;

}

int main ()
{

1

// set output precision to all 16 valid
// digits of double precision floating
// point numbers

std::cout << std::setprecision(16);

// now define the iteration; start at
// x_0=1

double x = 1;
std::cout << "x_0 = " << x << std::endl;

// do 10 iterations and output the result
for (int i=1; i<=10; ++i)
{
x = x - f(x)/f_prime(x);
std::cout << "x_" << i << " = " << x << std::endl;

}
}

Running this program yields the following output:

x0 = 1
x1 = 1.452466631824421
x2 = 1.486178871522092
x3 = 1.48631536197905
x4 = 1.486315364171695
x5 = 1.486315364171695
x6 = 1.486315364171695
x7 = 1.486315364171695
x8 = 1.486315364171695
x9 = 1.486315364171695

x10 = 1.486315364171695

If we accept the last number as exact up to machine precision, then x1 has
2 correct digits, x2 has 4, x3 has 9, and x4 already all digits correct. This
corresponds with theory that predicts that the number of correct digits doubles
in each iteration if the constant C in the convergence formula ek+1 = Ce2

k is
approximately or less than 1. Indeed, let us use the definition

C =
1
2
|f ′′(ξ)|
|f ′(x∗)|

=
1
2

1

4
√

(ξ+0.2)3

1
2
√

x∗+0.2
+ 1

10

for some point ξ in the vicinity of the starting point x0 and the solution x∗. We

2

know that x∗ ≈ 1.5, and use ξ = 1.5 to get an approximation for C:

C ≈ 1
2

1

4
√

(1.5+0.2)3

1
2
√

1.5+0.2
+ 1

10

≈ 0.11.

I.e., the error in iteration k + 1 is not the square of the error in the previous
iteration, and this multiplied by 0.11.

Also discuss what happens when we start from x0 = 10. In that case, the
output is

x0 = 10
x1 = −0.7053801508832727
x2 = nan

x3 = nan

This is due to the fact that in the second iteration, we need to evaluate f(x1)
and f ′(x1), but this isn’t defined for x1 due to the square root.

3

