Lab problem 9/7/2005

Problem. In most solids, the internal stresses (forces) σ increase linearly with the displacement x if you stretch them, i.e. $\sigma=A x$. It is therefore relatively simple to determine the maximum displacement x^{*} at which the break stress σ^{*} is exceeded: if $x>x^{*}=\sigma^{*} / A$, then the body breaks.

However, this linear relationship does not hold for plastic materials like rubber. Assume that for this material, $\sigma=\sqrt{x+0.2}+\frac{x}{10}-\sqrt{0.2}$. Determine the maximum deflection if the breaking stress is $\sigma^{*}=1$ using Newton's method.

Solution. We need to find that value of x for which $\sqrt{x+0.2}+\frac{x}{10}-\sqrt{0.2}=$ $\sigma^{*}=1$, i.e. we need to find a zero for the function

$$
f(x)=\sqrt{x+0.2}+\frac{x}{10}-\sqrt{0.2}-1 .
$$

If we plot this function, we see that the zero lies somewhere in the range between $x=1$ and $x=2$, so we start a Newton iteration at $x_{0}=1$. The iteration formula then reads

$$
\begin{aligned}
x_{k+1} & =x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} \\
& =x_{k}-\frac{\sqrt{x_{k}+0.2}+\frac{x}{10}-\sqrt{0.2}-1}{\frac{1}{2 \sqrt{x+0.2}}+\frac{1}{10}} .
\end{aligned}
$$

We implement this in the following program:

```
#include <iostream>
#include <iomanip>
#include <cmath>
// define f(x)
double f(double x)
{
    return std::sqrt(x+0.2) + x/10 - std::sqrt(0.2) - 1;
}
// also define f'(x)
double f_prime (double x)
{
    return 1./(2*std::sqrt(x+0.2)) + 1./10;
}
int main ()
{
```

```
                                    // set output precision to all 16 valid
                                    // digits of double precision floating
                                    // point numbers
    std::cout << std::setprecision(16);
                                    // now define the iteration; start at
                                    // x_0=1
    double x = 1;
    std::cout << "x_0 = " << x << std::endl;
                                // do 10 iterations and output the result
    for (int i=1; i<=10; ++i)
    {
        x = x - f(x)/f_prime(x);
        std::cout << "x_" << i << " = " << x << std::endl;
    }
}
```

Running this program yields the following output:

$$
\begin{aligned}
x_{0} & =1 \\
x_{1} & =1.452466631824421 \\
x_{2} & =1.486178871522092 \\
x_{3} & =1.48631536197905 \\
x_{4} & =1.486315364171695 \\
x_{5} & =1.486315364171695 \\
x_{6} & =1.486315364171695 \\
x_{7} & =1.486315364171695 \\
x_{8} & =1.486315364171695 \\
x_{9} & =1.486315364171695 \\
x_{10} & =1.486315364171695
\end{aligned}
$$

If we accept the last number as exact up to machine precision, then x_{1} has 2 correct digits, x_{2} has $4, x_{3}$ has 9 , and x_{4} already all digits correct. This corresponds with theory that predicts that the number of correct digits doubles in each iteration if the constant C in the convergence formula $e_{k+1}=C e_{k}^{2}$ is approximately or less than 1 . Indeed, let us use the definition

$$
C=\frac{1}{2} \frac{\left|f^{\prime \prime}(\xi)\right|}{\left|f^{\prime}\left(x^{*}\right)\right|}=\frac{1}{2} \frac{\frac{1}{4 \sqrt{(\xi+0.2)^{3}}}}{\frac{1}{2 \sqrt{x^{*}+0.2}}+\frac{1}{10}}
$$

for some point ξ in the vicinity of the starting point x_{0} and the solution x^{*}. We
know that $x^{*} \approx 1.5$, and use $\xi=1.5$ to get an approximation for C :

$$
C \approx \frac{1}{2} \frac{\frac{1}{4 \sqrt{(1.5+0.2)^{3}}}}{\frac{1}{2 \sqrt{1.5+0.2}}+\frac{1}{10}} \approx 0.11
$$

I.e., the error in iteration $k+1$ is not the square of the error in the previous iteration, and this multiplied by 0.11 .

Also discuss what happens when we start from $x_{0}=10$. In that case, the output is

$$
\begin{aligned}
& x_{0}=10 \\
& x_{1}=-0.7053801508832727 \\
& x_{2}=\text { nan } \\
& x_{3}=\text { nan }
\end{aligned}
$$

This is due to the fact that in the second iteration, we need to evaluate $f\left(x_{1}\right)$ and $f^{\prime}\left(x_{1}\right)$, but this isn't defined for x_{1} due to the square root.

