MATH 609-602: Numerical Methods

Lecturer: Prof. Wolfgang Bangerth
Blocker Bldg., Room 507D
(979) 8456393
bangerth@math.tamu.edu
Teaching Assistant: Seungil Kim
Blocker Bldg., Room 507A
(979) 8623259
sgkim@math.tamu.edu

Homework assignment 10 - due Tuesday 11/22/2005

Problem 1 (Numerical solution of a scalar ODE). Consider the following scalar ordinary differential equation (ODE):

$$
\begin{aligned}
x^{\prime}(t) & =\frac{1}{3 x(t)^{2}} \\
x(0) & =\frac{1}{10^{1 / 3}}
\end{aligned}
$$

The solution of this equation is $x(t)=\left(t+\frac{1}{10}\right)^{1 / 3}$.
Compute approximations to $x(4)$ using the

- first order Taylor expansion method,
- second order Taylor expansion method,
- implicit Euler method,
- trapezoidal method,
each with step sizes $h=2,1, \frac{1}{2}, \frac{1}{4}, \ldots, \frac{1}{32}$. Compute their respective errors $e=\left|x_{N}-x(4)\right|$ where x_{N} is the approximation to $x(4)$ at the end of the last time step, and compute the convergence rates. Compare the accuracy of all these methods for the same step size h.
(7 points)

Problem 2 (Numerical solution of a vector-valued ODE). A rocket that is shot up vertically experience upward acceleration from its engines, and downward acceleration due to gravity. Its height therefore satisfies Newton's law

$$
\begin{equation*}
d^{\prime \prime}(t)=\frac{F(t)}{m(t)}, \tag{1}
\end{equation*}
$$

where $d(t)$ denotes the distance from the earth's center. Assume that the rocket is initially at rest at $d(0)=6371000$. After ignition, the engines produce a
constant thrust for 10 minutes before shutting down:

$$
T(t)= \begin{cases}12 & \text { for } t<600 \\ 0 & \text { for } t \geq 600\end{cases}
$$

On the other hand, gravity generates the force

$$
G(t)=-(6371000)^{2} \frac{10 m(t)}{d(t)^{2}} .
$$

The total force is $F(t)=T(t)+G(t)$. The mass of the rocket decreases while fuel is burnt in the engines according to

$$
m(t)= \begin{cases}1-\frac{0.9 t}{600} & \text { for } t<600 \\ 0.1 & \text { for } t \geq 600\end{cases}
$$

Compute the altitude of the rocket for times between $t=0$ and $t=36000$ using the explicit Euler method. Try to determine the altitude up to an accuracy of 100 meters.
(5 points)
Problem 3 (Some parameter determination with ODEs). In skydiving, freefall is a balance between the force gravity exerts on the skydiver, and the counteracting air friction. At usual altitudes, gravity does not depend on the height of a person (and is approximately $10 \mathrm{~ms}^{-2}$, and air friction increases like the square of the velocity. We can therefore describe the falling velocity by the ODE

$$
\begin{aligned}
v^{\prime}(t) & =10-a v(t)^{2}, \\
v(0) & =0 .
\end{aligned}
$$

Using your own ODE solver, compute an approximate value for the coefficient a such that the speed of the skydiver after 10 seconds is $v(10)=50$ (that's a realistic free fall velocity in meters per second: approximately 115 mph).
(For this question, creativity in finding a way to approximate a is encouragedthe way counts, not the result up to 6 digits; in return, no ideas on how to achieve the goal will be provided.)
(3 points)

