MATH 609-602: Numerical Methods

Lecturer:
Prof. Wolfgang Bangerth
Blocker Bldg., Room 507D
(979) 8456393
bangerth@math.tamu.edu
Teaching Assistant: Seungil Kim
Blocker Bldg., Room 507A
(979) 8623259
sgkim@math.tamu.edu

Homework assignment 6 - due Tuesday 10/18/2005

Problem 1 (Power method for extremal eigenvalue). Let N be the size of the matrix defined by

$$
A_{i j}= \begin{cases}2+\frac{1}{N^{2}} & \text { if } i=j \\ -1 & \text { if } i=j \pm 1 \\ 0 & \text { otherwise }\end{cases}
$$

This is a typical matrix in the numerical solution of partial differential equations and we can learn a great deal from it by looking at its eigenvalues.

Implement the power method for finding the largest eigenvalue of a matrix. Apply it to above matrix for the cases where $N=10,50,100,200,500,1000$.

Next implement the inverse power method for finding the smallest eigenvalue. (For the inverse power method, you need to multiply repeatedly with A^{-1}, i.e. compute $x_{k+1}=A^{-1} x_{k}$; you may use Matlab to actually compute A^{-1}, or use any of the methods we have learned in class to solve the linear system $A x_{k+1}=x_{k}$ for x_{k+1}.) Apply it to the same set of matrices as above.

Generate a table that shows, for above values of N :

- the maximum eigenvalue of A
- the minimum eigenvalue of A
- the condition number of A in the l_{2} norm (if you recall the formula for the condition number, you will see how to compute it from the maximum and minimum eigenvalues)
- the number of Steepest Descent iterations that would be required to solve for an accuracy of $\varepsilon=10^{-8}$ (we had a formula that expressed this number in terms of the condition number)
- the number of Conjugate Gradient (CG) iterations that would be required to solve for an accuracy of $\varepsilon=10^{-8}$ (same here).

What do we learn from this prototypical example concerning the behavior of matrices as they become larger and larger?
(7 points)

Problem 2 (Polynomial interpolation). Consider the four points $\left(x_{1}, y_{1}\right)=$ $(0,0),\left(x_{2}, y_{2}\right)=(1,1),\left(x_{3}, y_{3}\right)=(2,2),\left(x_{4}, y_{4}\right)=(3,0)$. Compute, by hand, both the Lagrange and Newton form of the polynomial that exactly interpolates these points.
(4 points)
Problem 3 (Polynomial interpolation). Write a program that computes the polynomial of order $N-1$ that exactly interpolates N given points $\left(x_{i}, y_{i}\right)$.

Define the following set of N points:

- for $1 \leq i<N$ let $x_{i}=\frac{i-1}{N-1}, y_{i}=0$
- for $i=N$ let $x_{N}=1, y_{i}=1$
(For example, for $N=4$, the four points are $\{(0,0),(1 / 3,0),(2 / 3,0),(1,1)\}$.) Apply your program to find the polynomials that interpolate these points for $N=4,8,12,20$. Plot the four polynomials you have found for the four choices of N on the interval $0 \leq x \leq 1$, verify that they indeed interpolate the given points, and describe their behavior between the interpolation points.

