MATH 609-602: Numerical Methods

Lecturer: Prof. Wolfgang Bangerth
Blocker Bldg., Room 507D
(979) 8456393
bangerth@math.tamu.edu
Teaching Assistant: Seungil Kim
Blocker Bldg., Room 507A
(979) 8623259
sgkim@math.tamu.edu

Homework assignment 3 - due Tuesday 9/20/2005

Problem 1 (Newton's method). For functions $f(x)$ of one variable x, Newton's method almost always converges very quickly (in a matter of a few iterations). This is not always the case for multidimensional problems - in fact, such fast convergence is very rare -, but we can find examples where even in 1d Newton's method converges rather slowly.

Consider finding the zero $x=1$ of the function

$$
f(x)=x^{30}-1
$$

a) Use Newton's method and start at $x_{0}=20$.
b) Use the secant method and start at $x_{0}=20, x_{1}=19$.

How many iterations do you need to achieve an accuracy of 10^{-8} with both methods? You will observe very slow convergence. Can you explain from the formulas that express the error e_{n} as a function of e_{n-1} why convergence is so slow? Does the convergence you observe numerically match the theoretical predictions? Plot the error as a function of the iteration number (i.e. plot e_{n} against n).

Can you give a geometric interpretation of why convergence is so slow? (Hint: think about the curvature of $f(x)$ and what it might have to do with convergence.)
(5 points)

Problem 2 (Newton's method). For certain functions, Newton's method will always converge in a single step, no matter where we start. What functions are these, and why is a single step enough? (Hint: think about the graphical interpretation of Newton's method, and when it will produce a new iteration that falls exactly onto the true root of the function. Think a second time about the effects of curvature of $f(x)$.)
(2 points)

Problem 3 (Gaussian elimination). Solve (on paper, showing the individual steps) the following system of linear equations using Gaussian elimination:

$$
\left(\begin{array}{cccc}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right)
$$

Verify that your result is correct.
(The matrix is the example is the so-called Hilbert matrix, with entries $H_{i j}=\frac{1}{i+j-1}$. It has a number of nasty properties that make it a good testcase for matrix algorithms.)
(4 points)
Problem 4 (Gaussian elimination). Write a computer function that takes a general $n \times n$ matrix A as input and computes its inverse A^{-1} as output. You may, for example, use the representation $A^{-1}=\prod E_{i}$ of the inverse as the product of elemental matrices, or a more efficient representation.

Apply this function to compute, numerically, the solution of Problem 3.

(4 points)

Problem 5 (Gaussian elimination). Using Gaussian elimination, it is simple to solve the following problem

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) .
$$

One would eliminate the occurrence of x_{1} in the second equation by subtracting the first from the second equation, arriving at a diagonal matrix.

Describe what happens if the system instead looked like this:

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

Does the algorithm still work? If not, propose a remedy.

Problem 6 (Multidimensional root finding). Use Newton's method and your function from Problem 4 to find the minimum of
a) $g(x, y)=e^{x}-\cos (x+y)-\cos (x-2 y)$,
b) $g(x, y)=e^{y-\sin (4 x)}+e^{-y+\sin (4 x)}$,
in both cases starting at $x_{0}=y_{0}=1$. Remember that finding the minimum of $g(x, y)$ amounts to finding a simultaneous root of the system

$$
\begin{aligned}
& f_{1}(x, y)=\frac{\partial g(x, y)}{\partial x}=0 \\
& f_{2}(x, y)=\frac{\partial g(x, y)}{\partial y}=0
\end{aligned}
$$

What happens if you start at $x_{0}=y_{0}=0$ in case b)?

