MATH 609-602: Numerical Methods

Lecturer: Prof. Wolfgang Bangerth

Blocker Bldg., Room 507D

(979) 845 6393

 $\verb|bangerth@math.tamu.edu|$

Teaching Assistant: Seungil Kim

Blocker Bldg., Room 507A

(979) 862 3259

sgkim@math.tamu.edu

Homework assignment 2 – due Tuesday 9/13/2005

Problem 1 (Taylor series). Many important functions such as the sine cannot be computed in a simple way, i.e. with only the four basic operations plus, minus, multiplication and division. However, they can be approximated with these operations.

Graph the first eight Taylor approximations of $f(x) = \sin x$ when expanded around zero, i.e.

$$f_1(x) = f(0) + f'(0)x,$$

$$f_2(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2,$$

$$f_3(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2 + \frac{1}{3!}f'''(0)x^3,$$

etc. What do you observe? What does this mean for the approximation of $f(2\pi)$?

Write a program to experimentally determine the number of terms you need to approximate $f(2\pi) = 0$ to an accuracy of 10^{-4} and 10^{-12} . (6 points)

Problem 2 (Computing roots by primitive operations) In Problem 1, you saw how a Taylor series can be used to compute the value of a non-primitive function (i.e. a function that does not only require the four basic operations) can be approximated using only primitive operations.

Consider the non-primitive function $f(x) = \sqrt{x}$. Derive

- a) a Taylor series approximation around $x_0 = 1$ to compute f(x).
- b) a Newton iteration starting at 1. (Note: Numerically evaluating f(x) for a concrete value of x means finding a number y such that y = f(x). We can find it by finding the root y^* of the function g(y) = y f(x), using a Newton iteration for y_k starting at y_0 and converging to y^* . In the present case, it may be worthwhile to look for a root of the simpler function $g(y) = y^2 f(x)^2 = y^2 x$ instead.)
- c) Evaluate $f(2) = \sqrt{2}$ using your answers to parts a and b, by substituting x = 2 into your formulas and simplifying terms. (4 points)

Problem 3 (Solving nonlinear equations). Assume the height of a satellite over (or under) the horizon in degrees is described by the function

$$f(t) = 58\sin(2\pi(t-7)/24) + 17,$$

where $t \in [0, 24]$ is the time in hours after midnight. Write programs to compute the time(s) when the satellite crosses the horizon line, i.e. where f(t) = 0. Use:

- a) the bisection algorithm
- b) Newton's method
- c) the secant method

Give at least 8 digits of the result (an accuracy of roughly a millisecond).

How many iterations do each of the three algorithms require to evaluate the sunrise time to 4 correct digits? How many function and gradient evaluations? Plot the accuracy of the iterates x_k against the number of function evaluations.

(8 points)

Problem 4 (Solving nonlinear equations). Assuming that the Riemann Conjecture is true, it is known that the number $\pi(x)$ of primes in the range $1 \dots x$ can be approximated by

$$\pi(x) = \frac{x}{\log x} + \frac{x}{(\log x)^2}.$$

(See

http://en.wikipedia.org/wiki/Riemann_hypothesis

The formula above contains the first two terms of the Taylor expansion of the integral form of $\pi(x)$ given on that webpage.)

Write a program to compute, using Newton's method, the number x for which the approximate formula predicts that there are 10^4 prime numbers less than x, i.e. solve the equation

$$\pi(x) = 10^4$$
.

To what accuracy does it make sense to solve this problem? (4 points)