MATH 609-602: Numerical Methods

Lecturer:
Prof. Wolfgang Bangerth
Blocker Bldg., Room 507D
(979) 8456393
bangerth@math.tamu.edu
Teaching Assistant: Seungil Kim
Blocker Bldg., Room 507A
(979) 8623259
sgkim@math.tamu.edu

Homework assignment 1

All problems are discussed in the lab on Wednesday. You do not need to hand anything in.

Problem 1 (Continuous vs. discrete). Functions $f(x)$ are usually defined over an entire domain $x \in I=(a, b) \subset \mathbb{R}$ and - if interesting - take values in an image $f(I) \subset \mathbb{R}$. Both domain and image are sets with infinitely many elements. On the other hand, computers can only represent numbers using a finite number of bits, most often as 32 -bit (float, or REAL*4) or 64 -bit (double, or REAL*8) IEEE floating point numbers, which store numbers in the form $\pm m 2^{e}$, where $0 \leq m<1$ is the mantissa

$$
\begin{equation*}
m=b_{1} 2^{-1}+b_{2} 2^{-2}+b_{3} 2^{-3}+\cdots+b_{M} 2^{-M} \tag{1}
\end{equation*}
$$

and e is the exponent and has the form

$$
\begin{equation*}
e= \pm\left(u_{1} 2^{1}+u_{2} 2^{2}+u_{3} 2^{3}+\cdots+u_{E} 2^{E}\right) \tag{2}
\end{equation*}
$$

The coefficients b_{i}, e_{i} are single-bit numbers, i.e. either 0 or 1 . In the binary system, floating point numbers can therefore be written as $\pm 0 . b_{1} b_{2} b_{3} \ldots \times$ $2^{ \pm u_{1} u_{2} u_{3} \ldots u_{E}}$. The total number of bits needed for the representation are M bits for the mantissa, $E+1$ bits for the exponent, and 2 bits for the two signs.

Obviously, not all elements of I and $f(I)$ can be represented. Write a short program to find
a) an approximation to the smallest and largest positive numbers that can be represented in float and double precision;
b) the smallest float and double floating point number you can add to 1 such that the result is different from 1.
c) In exact arithmetic, the system of linear equations

$$
\begin{aligned}
x_{1}+x_{2} & =2 \\
x_{1}+10^{20} x_{2} & =1+10^{20}
\end{aligned}
$$

has the solution $x_{1}=x_{2}=1$. Are there corresponding floating point numbers for x_{1}, x_{2} that when plugged into the left hand side of the equations yields the exact values on the right hand side? If so, which? If not, is this a problem?

Problem 2 (Floating point vs real numbers). Let ε be the smallest floating point number in double precision such that in computer arithmetic $1+\varepsilon \neq 1$ (you determined ε in Problem 1b). What are the floating point values of $\left(1+\frac{\varepsilon}{2}\right)-1,1+\left(\frac{\varepsilon}{2}-1\right)$, and $(1-1)+\frac{\varepsilon}{2}$? In what important way do exact and floating point arithmetic therefore differ?

Problem 3 (Taylor series). Derive the first four terms and integral remainder term of the Taylor series of
a) $f(x)=\sin x$ when expanded around $x_{0}=0$;
b) $f(x)=x \sin x$ when expanded around $x_{0}=\pi / 2$;
c) $f(x)=4(x-3)^{2}(x+2)$ when expanded around $x_{0}=1$. What happened to the remainder term and what does this mean for the accuracy of the Taylor expansion with only four terms?
d) $f(x)=x^{x}$ when expanded around $x_{0}=1$. (Note: You will first have to figure out how to differentiate $f(x)$. Use the identity $a^{b}=e^{b \ln a}$.)

You may use a computer algebra system like Maple to compute derivatives of $f(x)$, but not to generate the entire Taylor series.

