Computer Physics Communications 319 (2026) 109901

journal homepage: www.elsevier.com/locate/cpc

Computer Physics Communications

Contents lists available at ScienceDirect =
COMPUTER PHYSICS

Computational Physics

L))

Check for

A detailed guide to an open-source implementation of the hybrid phase | e
field method for 3D fracture modeling in deal.Il

Wasim Niyaz Munshi®", Marc Fehling¢, Wolfgang Bangerth ™, Chandrasekhar Annavarapu & %*

2 Department of Civil Engineering, IIT Madras, Chennai, 600036, Tamil Nadu, India
b Department of Mathematics, Colorado State University, Fort Collins, 80521, Colorado, USA

¢ Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovskd 49/83, Prague 8, 186 75, Czech Republic

d Department of Geosciences, Colorado State University, Fort Collins, 80521, Colorado, USA

ARTICLE INFO ABSTRACT

Prof. Andrew Hazel

Keywords:

Phase field method
Three-dimensional fractures
deal.II Implementation
Parallel framework
Adaptive mesh refinement

Phase-field models for fracture have demonstrated significant power in simulating realistic fractures, including
complex behaviors like crack branching, coalescing, and fragmentation. Despite this, these models have mostly
remained in the realm of proof-of-concept studies rather than being applied to practical problems. This paper
introduces a computationally efficient implementation of the phase-field method based on the open source fi-
nite element library deal.II, incorporating parallel computing and adaptive mesh refinement. We provide a
detailed outline of the steps required to implement the phase field model in deal.II. We then validate our
implementation through a benchmark 3D boundary value problem and finally demonstrate the computational

capabilities by running field scale problems involving complicated fracture patterns in 3D. This open-source code
offers a framework that enables engineers and researchers to simulate diffuse crack growth within a widely-used

computational environment.

1. Introduction

Modeling fracture and cracks in materials is difficult because it in-
volves describing lower-dimensional surfaces that cut through a higher-
dimensional material. Moreover, the complex geometry of the resulting
object changes over time as cracks grow (or perhaps heal), and resolv-
ing these phenomena by remeshing both the fracture surfaces and the
domain is not practically feasible for all but the simplest situations.

The phase-field method (PFM) for fracture mechanics addresses this
issue by modeling fractures not as discrete surfaces, but instead as ex-
tended volumetric regions that are weaker than the surrounding mate-
rial and that can accommodate crack opening via strain accumulation.
Phase field methods employ a continuous scalar field (the “damage”
field) to represent cracks as diffused surfaces. Crack evolution is gov-
erned by an additional equation for the damage field. Based on an en-
ergy minimization principle, the phase-field method allows cracks to
evolve naturally to minimize the system’s total energy, without requir-
ing explicit criteria for crack propagation. This makes PFMs particu-
larly effective for modeling complex fracture scenarios, including crack
branching, merging, and fragmentation, especially in 3D [1-3], where
meshing such complex and evolving scenarios is not reasonable.
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Despite its flexibility and recent popularity in research, there are
only few publicly available implementations of the phase-field method
for fracture models that researchers can base their own work on when
exploring alternative formulations, or to actually simulate concrete ap-
plications. The existing implementations of PFM typically fall into two
categories: commercial software and ones built on open-source finite
element libraries. Let us review what we have found in the available
literature:

e Commercial Software: PFMs for fracture have been implemented
in various commercial platforms like ABAQUS [4], ANSYS [5], and
COMSOL [6,7] as part of their extensive set of built-in tools for simulat-
ing fracture mechanics [3,7-11]. However, most commercial imple-
mentations are limited to 2D due to the high computational demands
of PFM, which requires fine meshing for an accurate crack repre-
sentation. 3D simulations are rare and typically restricted to simple
cases. As examples, Molnar and Gravouil model a 3D single-notched
plate under uniaxial tension, utilizing a prepared mesh that is fine
only in regions where crack growth is anticipated [4]. Similarly,
Navitehrani et al. leverage symmetry by modeling just one-eighth
of the 3D Brazilian test, applying appropriate boundary conditions
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[3]. While these simulations serve as valuable proof-of-concept ex-
amples, they fall short of showcasing the full capabilities of PFMs in
capturing complex fracture patterns in 3D. Additionally, while com-
mercial software simplifies PFM use, it also lacks the customization
required for advanced research or novel methodologies — for exam-
ple, it may be restricted to isotropic materials, or specific kinds of
anisotropic materials, excluding the simulation of layered fabrics.

e Codes built on Open-Source Finite Element Libraries: Open-source li-
braries like MOOSE [12], FEniCS [13], Gridap [14], Jive [15],
Nutils [16] and deal.II [17] provide greater flexibility, particu-
larly for custom implementations. MOOSE has been used for phase-
field fracture modeling due to its efficient implementation of non-
linear PDE solvers, adaptive mesh refinement (AMR), and parallel
computing capabilities [18,19]. Likewise, FEniCS, with its Python
interface, has seen PFM implementations from various researchers
[20-24]. FEniCS (and, to some extent, MOOSE) focus on simplicity
and automation and consequently make it very easy to create a first
version of a solver for a new model or formulation; at the same time,
the automation also sometimes makes it difficult to control details.
Gridap was designed to strike a balance between computational ef-
ficiency, ease of use, and streamlined workflow productivity and has
been successfully used to model phase-field fracture in research such
as [25-30]. Jive is another open-source FEM toolkit designed for
parallel and multi-core computing. It supports domain decomposi-
tion, allowing the full simulation process — including both assem-
bly and solution — to be executed in parallel. May et al. [31], Li
et al. [32], and Mandal et al. [33] used Jive [15] to assess phase-
field models for brittle and cohesive fracture; however, none of these
works seem to use MPI or adaptive mesh refinement. Nutils is an
open-source Python-based library for finite element computations,
offering efficient vectorization and built-in parallelism. It allows for
seamless transition from academic models to real-world applications.
Singh et al. [34] used Nutils to solve simplified 2D fracture problems
using predefined non-uniform meshes guided by the expected crack
path.

The deal.II library, which we use here, is a popular open-source
finite element library that emphasizes high-performance computing
(HPC) and strong parallel computing capabilities, making it ideal
for complex, large-scale models such as those necessary for three-
dimensional phase-field fracture simulations. The work of Heister et
al. [35] on pfm-cracks [36] is one of the earliest and pioneering pa-
pers of PEM in deal. II. Several other applications of the phase-field
fracture model in deal.II have followed and demonstrated multi-
physics coupling (for example, [37-44]). However, most of these pa-
pers focused on efficient numerical strategies to advance the phase-
field fracture model itself, and the authors consequently did not
provide a detailed guide for implementing the phase-field fracture
model in deal.II. More recently, Jin et al. [45,46] proposed two
novel phase-field formulations to address difficulties in solving non-
convex energy minimization problems. While both incorporate adap-
tive mesh refinement, their parallelization strategies remain limited
to using multi-threading via the Threading Building Blocks (TBB) li-
brary only during element-level operations, with the rest of the code
remaining sequential.

Our conclusion from this overview is that despite the growing pop-
ularity of the phase-field fracture method, a detailed implementation
guide tailored for early-career researchers using deal.II is still lack-
ing. While such comprehensive resources exist for commercial soft-
ware like ABAQUS, and for other open-source finite element libraries,
there remains a clear need for a similarly well-documented, open-source
reference based on deal.II. To address this gap, we herein provide
an implementation-focused guide to developing a phase-field fracture
model using deal.II. Specifically, we here discuss the steps necessary
to implement the hybrid PFM model, as described in Ambati et al. [47],
in deal.II. The hybrid PFM is an easily extendible framework for PFM
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solvers that integrates aspects of the early phase-field models — which ex-
hibit identical responses in compression and tension — with the more ad-
vanced approaches that later introduced tension-compression splitting
to reflect asymmetric fracture behavior. When solved using a staggered
solution approach, the hybrid PFM keeps the subproblems associated
with the various physical effects linear and enables the incorporation
of other physical effects (such as thermal or electromagnetic stresses) as
well. Having said that, we would like to acknowledge that while PFM of-
fers several advantages, it is not without its limitations. For instance, al-
though PFM excels at simulating complex crack behaviors such as propa-
gation, branching, and coalescence [48-54], predicting crack nucleation
remains a significant challenge [55,56]. In this paper, our primary ob-
jective is to provide a detailed guide for implementing PFM in deal.II.
We do not address any inherent limitations of the model. We choose
deal.II for its state-of-the-art numerical methods including adaptive
mesh refinement and parallel computing. Specifically, our goals for this
paper are:

e Describe a concrete implementation of a phase-field model, along with
the underlying algorithms;

e Demonstrate the versatility of the implementation using non-trivial
benchmarks;

e Illustrate the performance of our implementation using large-scale
parallel and adaptive simulations.

The code accompanying this paper, see [57], is available as part
of the deal.II “code gallery” (a collection of user-contributed codes
based on the deal.II library) and can be used as an open-source ba-
sis for further extension to more complex, physics-driven problems.
It is licensed under the Lesser GNU Public License (LGPL) version
2.1 or later, allowing for re-use in a wide range of scenarios. The
code can be found as a link in the list of code gallery programs
at https://dealii.org/developer/doxygen/deal.ll/CodeGallery.html, or
directly at https://dealii.org/developer/doxygen/deal.ll/code_gallery_
Phase_field_fracture_model_in_3D.html.

Outline. The remainder of this paper is structured as follows: In
Section 2 we describe the specific model our code solves, including the
governing equations, the overall algorithm structure, and our goals for
adaptive mesh refinement and parallel computing. Section 3 then dis-
cusses algorithmic and software-specific details of the implementation.
We illustrate our implementation with a sequence of numerical experi-
ments in Section 4 with which we validate the correctness of our imple-
mentation, show how adaptive mesh refinement helps us solve nontriv-
ial examples, and demonstrate parallel scalability. Finally, we conclude
in Section 5.

2. Methodology

Let us begin outlining the methodology that underlies our code by
describing the basic premises of our code. Namely, in the following, we
will discuss the mathematical model (Section 2.1), the staggered algo-
rithm to solve these equations (Section 2.2), the spatial discretization
and adaptive mesh refinement (Section 2.3), and finally our approach
to parallel computing (Section 2.4).

2.1. Governing equations

We use the hybrid phase-field method that combines the quasi-static
evolution of a displacement field as a result of load stepping, with the
accumulation of damage to the material due to tensile stress. We refer
to Ambati et al. [47] for a detailed discussion of this model, and provide
its outline below.

The elastic model. Phase-field models describe crack propagation via the
interplay of elastic (or perhaps plastic) deformation and the build-up
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of a “damage” field that describes the weakening of the elastic body.
Each of these two building blocks is represented by a partial differential
equation that form a coupled system. To fix notation, let us consider a
domain Q with an external boundary 0Q2, where n denotes the outward-
pointing normal vector to the boundary.

On this domain, we consider the deformation of an elastic solid in
quasi-static equilibrium, driven by external loading that is applied in
small steps. The equations for linear momentum balance in the absence
of external body forces are then defined as

V-o(e(u),d)=0 in Q, (1a)
u=up on FD’ (1b)
c-n=ty onTly. (10

Here, o is the Cauchy stress tensor, £(u) is the small-strain tensor and
u is the displacement vector. d is the spatially variable damage field we
will discuss below. Egs. (1b) and (1c) represent the standard Dirichlet
and Neumann boundary conditions, where u;, and ¢y refer to prescribed
displacements and tractions, respectively.

The Cauchy stress tensor, o, is defined as

o = g(d) w (2a)
e . _
o(d) = {(1 d)* if vy > vy, (2b)
1 otherwise.

Here, the “degradation function” g(d) describes the effect of damage
on the stiffness of the material. Specifically, the damage field d is a spa-
tially variable function with values between zero (undamaged material)
and one (completely destroyed material with no remaining internal co-
hesion); g(d) as defined in (2b) then describes a situation in which the
stress for a given strain is reduced by a factor (1 — d)? if the material is
under tension (if q/(;r >y ), corresponding to the notion that fractures
under tension do not provide the material with stiffness. In contrast, a
fracture under compression (if y/(;r <wy ) is assumed to be just as stiff
as undamaged material. This approach ensures that the hybrid model
prevents unphysical cracks in compression while keeping the equation
of momentum balance linear. In our code, we only implement the first
branch of Eq. (2b) since we only consider tensile cases; this is also the
approach taken in [2].

In our experiments, we use isotropic linear materials for which the
representative total, tensile, and compressive strain energy densities y,
s 1//0+ and w, are expressed in terms of the strain € and the Lamé param-
eters A and u as

wo(e) = %ﬂtr(e)2 +utr (€2), (3a)

wie) = %A(tr(e))i +putr(€1). (3b)

Here, we use a tension-compression split based on the spectral decompo-
sition of the strain tensor (see Miehe et al. [58]) to suppress nonphysical
crack growth in compression. It is defined via the Macaulay brackets
(), = %(- + | «|) that map a number to its positive/negative part, and
using this to define the positive/negative parts of a symmetric tensor
via its principal strain decomposition

Ngq
er=) (e).€,®e;. )
i=1

Here, ¢; are the principal strains, e; are the principal directions, and
ngy = 2,3 is the number of space dimensions.

Finally, note that while the equations above are all time-
independent, they do depend on the loading of the object as provided
by successive load steps applied through the boundary conditions. The
loading history is also reflected in the damage variable d we will discuss
next.

The damage model. In order to describe the damage the material incurs,
we compute a monotonically increasing “history field” H™* that at each
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point in the domain represents the irreversible damage (see Miehe et al.
[58]) and that is defined as

+ _ +
H™ = max ¥ (&(7)), %)

where we use the symbol ¢ to denote the loading history variable.
Using H*, we can define a damage field 4 that is, in essence, a
smoothed out and scaled version of H*:

G
-G, IV + de =2(1 —d)yH* in Q, (6a)

(G1)Vd-n=0 on 0Q, (6b)

Here, I denotes the phase-field length scale parameter, and G, rep-
resents the critical energy release rate that can be a spatially variable
function. Eq. (6b) defines flux-free boundary conditions over the entire
external boundary.

2.2. The staggered solution approach

The model described in the previous section consists of two partial
differential equations that are coupled and nonlinear. The nonlinearity
is also non-smooth through the tension-compression split as well as the
use of the maximum operation in the definition of H*. The nonlinear-
ity and non-smoothness pose difficulties for the numerical solution of
the coupled system. These difficulties can be overcome through sophis-
ticated mathematical schemes exploiting details of the formulation (see,
for example, [36]), but this limits how easy it is to extend our imple-
mentation to other formulations. As a consequence, we have opted for a
simpler approach that alternates solving the two equations individually,
until convergence is reached.

The key to our scheme is the observation that individually, the two
equations are linear - i.e., for a fixed d, Equation (1) is linear in the
displacement u, and for a fixed displacement u and history variable H*,
Equation (6) is linear in d. The linearity of Equation (2) is a feature
of the “hybrid” phase-field model because, in this model, the degrada-
tion function is computed as a postprocessed quantity from the previous
iteration. This degradation function is then used to degrade the entire
strain energy density thus ensuring the linearity of Equation (1) while si-
multaneously enforcing tension-compression asymmetry. As both Equa-
tions (1) and (6) are linear, they can consequently be solved efficiently in
a staggered scheme until a convergence criterion is satisfied. It bears em-
phasis that damage irreversibility can be enforced through other, more
rigorous, means such as the primal-dual active set strategy described in
[35]. However, the use of a history field variable is arguably more ben-
eficial in the hybrid phase-field model as it maintains the linearity of
the field equations. Ambati et al. [47] present a detailed comparison of
the performance of the hybrid model with older phase-field models that
result in nonlinear momentum balance equations due to the tension-
compression split.

We utilize the linearity of the two governing field equations in the
design of the algorithm herein. Within a load step, we therefore start the
iteration with u’, d° corresponding to the final solutions of the previous
load step. For the ith iteration within this load step, we then first solve

V-o(e@™*h),d)=0 inQ @

for u'*! using the current loading displacements and tractions; update
the history field #**!; and finally solve

—2V2H 4 g = %(1 —d*HHtF inQ ®)

c
for d'*!. The iterative procedure is stopped when the relative error in
the nodal solution vectors from two successive iterations is smaller than
a specified tolerance

i+ _ i
[l = o, ©
[luf]]
and
i+l _ i
™ —dl ) 10)

(1C U —
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This overall approach, including the load stepping loop around the
nonlinear iteration is outlined Algorithm 1.

Algorithm 1 Load stepping and staggered nonlinear solver.

1: for load step r =1 to 7, do

2: iteration « 0

3 stoppingCriterion « false

4 while stoppingCriterion = false do

5: assemble and solve elastic system

6: update H*

7 assemble and solve damage system

8 if iteration > 0 then

9 stoppingCriterion « check_convergence(solution,
solution_old)

10: end if

11: solution_damage_old « solution_damage
12: solution_elastic_old « solution_elastic
13: if stoppingCriterion = false then

14: refine_grid()

15: end if

16: iteration « iteration + 1

17: end while

18: post_process_solution(t)

19: end for

2.3. Spatial discretization and adaptive mesh refinement

As mentioned, (7) and (8) are both linear partial differential equa-
tions. We utilize the finite element method for spatial discretization (for
details, see Section 3), using the same mesh for both the displacement
and the phase field variables. Specifically, we use trilinear, continuous
elements for both variables. The discretization utilizes a computational
mesh composed of hexahedra that we modify in each nonlinear iter-
ation via adaptive mesh refinement (AMR) to optimize computational
efficiency; the resulting mesh is refined only in regions where the crack
exists or is expected to propagate. Our AMR strategy consists of the fol-
lowing steps:

1. Error estimation: We first estimate some measure of error on each cell.
Specifically, we use the KellyErrorEstimator class of deal.II (see
[59,60]), which provides a measure of how well each cell of the
mesh is suited to approximating the damage field. Because damage
accumulates in places where stresses are large, a mesh adapted to
resolving the phase field is also well suited to resolving the displace-
ment field.

2. Cell marking: We mark a certain top percentile of cells with the largest
error estimates for refinement.

3. Refinement and coarsening: Marked cells are refined using isotropic
cell division. As a result of this step, the mesh density is adjusted
where needed.

4. Solution transfer: Solutions from the previous mesh are interpolated
onto the refined mesh.

2.4. Parallel computing

Fracture problems are only really relevant in three dimensions as that
is the dimensionality in which the objects engineers want to simulate
tend to live. On the other hand, in three-dimensions appropriately re-
solving the phase-field length scale typically requires meshes with hun-
dreds of thousands, millions, or even more cells — resulting in problems
that can no longer be efficiently solved on a single computer. As a con-
sequence, our implementation of all of the steps outlined above needs
to use parallel algorithms that scale to both large problem sizes and to
large numbers of processor cores.
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3. Implementation in deal.II

Let us now move on to a discussion of the implementation of the
phase-field fracture model described above within the finite element
framework of deal.II [17,61]. deal.II is a widely used, open source
finite element framework written in C+ +.

As discussed in Section 2.1, our solution scheme involves iterating
between the solution of two equations for the displacement field and
the phase-field variable; the mesh is adapted after every iteration until
convergence is achieved. We will discuss our implementation in the fol-
lowing sections in three steps: First, we describe the implementation of
the discretization and staggered solver. Next, we discuss how we incor-
porate the Message Passing Interface (MPI) in our implementation for a
solver that can run in parallel. Finally, we outline how we incorporate
Adaptive Mesh Refinement (AMR) in our code.

In the explanations below, we will frequently refer to one or the
other of deal.II’s extensively documented tutorial programs in which
the relevant functionality is discussed and demonstrated. The deal.II
tutorial enumerates these programs as step-1, step-2, etc. Our code fol-
lows the general structure of these programs, in particular using a single
principal class; a function called run () that contains the top-level loops;
and using the common naming scheme for functions and variables. Our
code will consequently look familiar to everyone who has read through
the first few tutorial programs. Table 1 at the end of this section also
summarizes which tutorial programs we drew from in writing the code,
along with the modifications we needed to make.

Our code is licensed under the Lesser GNU Public License (LGPL)
version 2.1 or later, allowing for re-use in a wide range of scenarios.

3.1. Discretization framework

We have to discretize and solve two principal equations iteratively
for our scheme. The first describes the elastostatic equilibrium (7), and
can be rewritten into

V- (gd)Ce@™h)) =0, an

to make clear that we consider it as an equation for the displacement
u*! in a one-field displacement formulation. Here, C is the tensor that
relates strain to stress. The equation is a standard elliptic equation not
dissimilar to the Poisson equation, though it is vector-valued. The sec-
ond key component is Eq. (8) that describes the damage field d'+! and
that can be rewritten as

2 e, (F 2HH1/G,) i+l _ 2 g il
-Vad't 4+ I—Zd = G_CIH (12)
to make clear that it is a Helmholtz equation. Since the coefficient in
front of d’*! is strictly positive, the equation is also elliptic.

Both of these equations are easy to discretize using the finite element
method. In our implementation, we lean heavily on the fact that these
two equations are solved in the step-8 and step-7 tutorial programs of
the deal.II library, respectively. These are two exceedingly well doc-
umented programs with dozens of pages of explanation for the mathe-
matical background and the actual implementation. As a consequence,
we do not feel that it is necessary to discuss their general structure or
approach and consequently only comment on the changes necessary to
accommodate the specifics of our problem.

Compared to the implementation in step-8, the key change is the
incorporation of the damage factor g(d’) in (11) when assembling the
stiffness matrix. This factor needs to be computed at each quadra-
ture point; this is straightforward as the factor only depends on the
previous iteration’s damage variable d, which is a known quantity
when solving the momentum balance equation. Evaluating a finite el-
ement field at quadrature points of a cell is efficiently done with the
FEValues::get_function_values() function.

Finally, let us also discuss how we deal with the history variable H*.
Strictly speaking, H* is a spatially variable function like u and d, and
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Table 1
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Details of the deal.II specific changes to the load stepping and staggered nonlinear solver of Algorithm 1, along with the deal.II tutorials from which parts of

the algorithm are derived.

Step Description

Solve Equation (1) Based on step-8 with following changes:

— Incorporate g(d') to degrade stiffness matrix

— Replace Vector and SparseMatrix objects with PETScWrappers: :MPI: :Vector and PETScWrappers: :MPI: :SparseMatrix objects or Trilinos equivalents

— Use CG solver with AMG preconditioner

Update H* Postprocess from u/*!

Store using CellDataStorage

Solve Equation (6)  Based on step-7 with following changes:

— Compute « and f using Eq. (12)

— Replace Vector and SparseMatrix objects with PETScWrappers: :MPI::Vector and PETScWrappers: :MPI: :SparseMatrix objects or Trilinos equivalents

— Use CG solver with AMG preconditioner

Refine Grid Use KellyErrorEstimator on d'*!

Interpolate solutions from old mesh to new mesh (adapted from step-15, step-26)
Interpolate H* using CellDataStorage, TransferableQuadraturePointData, and ContinuousQuadratureDataTransfer classes

it could be discretized in the same way. At the same time, H™* is not
described by a partial differential equation, but the point-wise equal-
ity (5) and so there is no expectation that it will, for example, have to
be a continuous function of space. Moreover, in the phase-field model,
H™* appears as a coefficient and in the right hand side term of the dam-
age equation; in practice, this means that it is only needed at quadra-
ture points during assembly of the damage linear system, rather than
as a function defined everywhere. As is common in computational me-
chanics, we therefore do not store H* as a finite element field defined
at node points, but instead as values defined at quadrature points. The
necessary functionality is provided in deal.II via the CellDataStorage
class, which associates scalar or vector-valued data with each cell in the
mesh, and specifically with the quadrature points on each cell.

3.2. Considerations for parallel computing based on MPI

The key consideration in writing programs that can run in parallel
on clusters is that every data structure that is used in a finite element
program must be split up so that every MPI (Message Passing Interface)
process only stores a part it “owns”, along with perhaps a small amount
of data on adjacent cells (the “ghost cells”). We then say that this data
structure is “distributed” across the collection of MPI processes. As a
consequence of this approach, all operations where things are added up
- say, the assembly of the system matrix and right hand side - require
each process to only compute on that part of the input it actually owns
(say, the “locally owned” cells), followed by a reduction step where if
a process wants to add its result to an element of the output data struc-
ture that it does not own itself, that result is instead sent to the owning
process for addition. deal.II has had the ability to support this pro-
gramming paradigm for nearly twenty years. The key tutorial program
that explains the concepts we use in our implementation of the phase-
field method is step-40, which solves the Poisson equation in a paral-
lel distributed computing environment. We follow essentially the same
approach in our implementation. Specifically, we utilize the building
blocks discussed in the following.

Triangulations. We use the parallel::distributed::Triangulation
mesh class that distributes its cells across multiple processes. This class
partitions the mesh such that each process owns a roughly equally-sized
portion of the domain. A layer of ghost cells is used to handle the over-
lap needed for communication between processes. This class utilizes the
p4est [62] library to handle partitioning and parallel adaptive mesh re-
finement.

Refining and coarsening a mesh also triggers a re-balancing oper-
ation that ensures that each process in a parallel computation always
has a roughly equal share of both the overall workload and the overall

memory usage, even on locally refined meshes. The scalability of this
approach to very large computations is described in detail in [63].

Linear systems. We replace the Vector and SparseMatrix classes
of step-7 and step-8 by the PETScWrappers::MPI::Vector and
PETScWrappers: : MPI: : SparseMatrix classes, or their Trilinos equiv-
alents; both PETSc [64,65] and Trilinos [66,67] support parallel op-
erations and our code uses whatever the underlying deal.II library
is configured with. These classes distribute data across MPI processes,
meaning each process stores only a portion of a global vector or matrix.

Where necessary, vectors can be instructed to also store vector en-
tries that correspond to (remotely owned) degrees of freedom located
on ghost cells or at the interface between locally owned and ghost cells.
Such vectors are called “ghosted” vectors and are needed whenever it
is necessary to evaluate the solution on locally owned cells (which may
not own the degrees of freedom at an interface to a ghost cell).

In practice, managing where to use ghosted and where to use
non-ghosted vectors is a frequent source of complexity in distributed-
memory parallel computing. This is because some operations can only
be performed on one kind of vector whereas other operations require
the opposite kind. In practice, computing a vector — say, as the solution
of a linear system or during the assembly of the right hand side — gener-
ally requires vectors that have no ghost elements because the underlying
operations only ever write into a vector (or add to its elements). On the
other hand, using a vector, for example to postprocess the solution to
obtain load-displacement curves or for graphical output - requires read-
ing elements that correspond to degrees of freedom on locally owned or
ghost cells and therefore requires vectors with ghost elements.

In our program, we generally store information only in one kind of
vector. For example, the right hand side vector is never read from, and
so it is stored as a non-ghosted vector. The solution vector is computed
as a non-ghosted vector during the solution of the linear system, but
it is immediately converted into a ghosted vector which then serves as
the input for both the assembly of the next linear system and for post-
processing. Ensuring that our code only ever stores information in one
kind of vector also avoids the common issue of duplicated information
going out of sync, and the difficult-to-find bugs that result.

Assembly of system matrices and right hand sides. Following the paradigm
outlined above, parallel assembly of the system matrix and right-hand
side vector requires that each process assembles the contributions only
on those elements it owns. This includes contributions to matrix and
vector entries owned by different processes, and these contributions are
communicated between processes in a process called “compression” at
the end of assembly.

Parallel solvers. In parallel programs, every MPI process only stores a
subset of the rows of a matrix, and a subset of the elements of vectors.
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This puts limitations on what solvers one can use — for example, direct
solvers computing lower-upper (LU) decompositions of a matrix can not
be implemented efficiently, whereas iterative solvers that only ever use
matrix-vector products do work efficiently. As a consequence, we use
such iterative methods - specifically, we use the Conjugate Gradient
(CG) method for both the elasticity and the damage linear systems given
that the matrices involved in both linear systems are symmetric and
positive definite.

Parallel preconditioners. Most iterative linear solvers are only efficient
if paired with good preconditioners. As with solvers, parallel programs
challenge the design of preconditioners because preconditioning opera-
tions must run in parallel and cannot require access to data stored else-
where. As a consequence, many common preconditioners such as sym-
metric successive over-relaxation (SSOR) are not an option. Instead, we
rely on the parallel implementations of algebraic multigrid (AMG) meth-
ods that are available via PETSc [64,65] and Trilinos [66,67]. AMG is
a methodology that builds a hierarchy of matrices, each of which is a
lower-dimensional approximation of the next higher-dimensional one.
Specifically, we use the hypre [68] implementation of AMG if deal.II
was configured to use PETSc, and ML [69] or MueLu [70] when using
Trilinos-based linear algebra. All of these are highly optimized, par-
allel implementations of the AMG idea that are widely used as black-
box preconditioners for symmetric and positive definite matrices such
as those we are solving with for both of the linear systems we consider.

Communication. An important part of parallel programs is that they
have to exchange (communicate) data computed locally on one pro-
cess but required elsewhere on a different process. A specific kind of
communication is synchronization, where processes exchange the infor-
mation that they have all reached a specific point in the program, only
after which point they can continue with their work.

In practice, deal.II handles almost all necessary communication
and synchronization. However, there are places where we post-process
the solution - notably for computing the load-displacement curve where
we need to compute integrals to compute a traction force; these integrals
are over all boundary faces, which may be owned by different processes.
In such situations, every MPI process only computes the contributions
to the integral from the boundary faces of cells it owns, after which the
complete integral is computed by explicitly summing up the contribu-
tions from all processes via an MPI reduction operation.

3.3. Considerations for incorporating adaptive mesh refinement

As outlined in Algorithm 1 and in Section 2.3, we adapt the mesh
after each cycle of solving for the displacement u’, the accumulated his-
tory field H*#, and the damage field d’. We do this so that the mesh
continues to accurately resolve these variables without the need for a
globally refined mesh that is almost certainly going to require far more
cells to reach the same resolution.

As for parallelization, deal.II provides many of the tools to make
this possible, but it is worth discussing the specific implementation de-
tails one has to consider. We will do so in the following sub-sections.

Choices for mesh refinement. One can refine finite element meshes in a
number of different ways [71]. For triangular and tetrahedral meshes,
one often uses red-green refinement or longest-edge bisection to obtain
meshes that remain conforming, i.e., for which every face of a cell not at
the boundary of the domain is a complete face of a neighboring cell. This
is not easily feasible with quadrilateral and hexahedral meshes like the
ones we use here. Instead, we use deal.II’s approach of splitting each
cell into four children (for quadrilaterals in 2d) or eight children (for
hexahedra in 3d) via bisection in each of the cells’ principal directions.
This results in meshes with “hanging nodes” in which neighboring cells
may differ in size by one refinement level. (We will show examples of
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how such meshes look like in Section 4.) We will briefly discuss how to
treat hanging nodes in the next section.

Our approach to choosing which cells to refine is based on an “error
indicator” that provides an estimate of how large the error may be on
a given cell. Specifically, we use the error criterion by Kelly et al. [59]
applied to the damage field to determine which cells should be refined,
as implemented in the KellyErrorEstimator class of deal.II. This cri-
terion computes an estimate of the second derivative of a finite element
field, times a power of the mesh size, as the resulting quantity is the dom-
inant factor in estimating the interpolation error, and is widely used in
the literature for the quality of the locally refined meshes it produces.

Ensuring continuity of the solutions. As mentioned above, the scheme for
mesh refinement we utilize results in meshes with “hanging nodes” at
which, unless special care is taken, finite element functions would be
discontinuous because the shape functions associated with vertices, mid-
edge, or mid-face nodes do not match from the two adjacent cells. On
the other hand, we are using continuous finite elements in the discretiza-
tion of both u and d, and we need to ensure continuity of the discretized
functions even at hanging nodes. We enforce the continuity requirement
via constraints that augment the linear systems we obtain via assembly.
These constraints are stored in an AffineConstraints object (along
with other constraints resulting from boundary conditions, for example),
and obtained via the DoFTools: :make_hanging_node_constraints()
function after mesh refinement. Our approach fundamentally follows
the example set in deal.II’s step-6 tutorial program and its extension
to parallel computations in step-40.

Interpolating solutions from the old to the new mesh. In the finite element
method, solutions are piecewise polynomial functions defined by their
nodal values - typically the values at vertices and interpolation points
along edges, faces, and in cell interiors. When the mesh is changed
through mesh adaptation, it is necessary to transfer solutions from the
old to the new mesh. This can be done in different ways, one of which
is to interpolate solutions from the old to the new mesh; this is made
particularly convenient in deal.II because the old and new meshes are
related by the fact that mesh refinement replaces a cell by its isotropi-
cally refined children, and mesh coarsening replaces a number of small
cells by their erstwhile parent cell — all of which guarantees that the new
nodal points at which we need to evaluate the old solution have known
locations in the old mesh.

In practice, the interpolation is achieved by using the
SolutionTransfer class in ways that resemble its use in step-15
and step-26.

Interpolating the history variable H* from the old to the new mesh. As dis-
cussed in Section 3.1, we do not store the history variable H* as a finite
element field, but rather as values associated with quadrature points.
This poses questions when adapting the mesh because we need H* at
the quadrature points of the new mesh, and these generally do not line
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Fig. 1. Validation test case: Geometry, boundary conditions and initial cracks
for the 3D double-notched test of Muixi et al. [2]. The angle 6 between the
notches and the plane x = 62.5 mm is z/6, leading to an eccentricity of e =
12.5 X tan(zr/6) mm.
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Fig. 2. Validation test case: Domain decomposition using different numbers of processors. Each color represents that part of the overall domain owned by one
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Fig. 3. Validation test case: Comparison of load-displacement curves. We com-
pare our results using 5, 10, 20, and 40 processors with the results from Muixi
et al. [2]. The results are clearly in excellent agreement.

up with the quadrature points of the old mesh. Conceptually, the most
reasonable approach to dealing with the issue is to first find a piecewise
polynomial function that matches or approximates the values stored at
the quadrature points of the old mesh, interpolate this function to the
new mesh, and then evaluate the function at the quadrature points of
the new mesh.

It is clear that it is not trivial to implement such an approach, in
particular if both the new and old mesh are partitioned across MPI
processes. In practice, the CellDataStorage class we use to store H*
can be combined with the TransferableQuadraturePointData and
ContinuousQuadratureDataTransfer classes to facilitate this process,
though there are at the moment no tutorial programs that illustrate how
this can be done. Consequently, we think of our program also as a contri-
bution to the documentation of deal.II showing how to achieve trans-
fer of quadrature point data between meshes.

4. Results

Having discussed details of the implementation of our program in
the previous section, let us now demonstrate how it works in practice.
To this end, we will consider two test cases: (i) In Section 4.1 a three-
dimensional crack propagation problem that has been considered in the
literature before and for which we consequently have a known solution
against which we can compare to validate our implementation’s correct-
ness; and (ii) in Section 4.2 a test case that results in complex fracture
patterns and that we can utilize to demonstrate our code’s ability to solve
complicated, real-world examples typical of what applications look like.

4.1. Validation test case: Fracture propagation in a 3D beam

As a validation example, we consider a 3D problem discussed by
Muixi et al. in [2] and shown in Fig. 1. The setup is a beam with a
square section Q = [0, 125] x [0,25] x [0,25]mm? with two notches on
the surfaces y = 0mm and y =25mm as shown in Fig. 1. The notch
on the surface y = 25 mm is oriented at an inclination of § = /6 = 30°
with respect to the y — z plane in the counter-clockwise direction, while
the notch on the surface y = 0mm is oriented at the same inclination,
but in the clockwise direction. The beam is clamped along the left end
(at x = 0mm), and prescribed displacements are applied incrementally
in the x-direction at the right end (at x = 125 mm). We use load steps
of Au=5x 10~* mm and tol = 102 as the numerical tolerance for con-
vergence. The Young’s modulus, Poisson’s ratio, and critical energy re-
lease rate are E =32GPa,v=0.25,G, = 1.6 X 10~*kN/mm. We choose
the characteristic length scale / to be 2 mm. We validate the correct-
ness of our implementation by comparing the damage profiles and the
displacement-load curves against the results shown in [2].

4.1.1. Validating the correctness of our MPI implementation

To validate our parallel framework, we first consider a uniform mesh
of 256 x 40 x 40 = 409600 trilinear hexahedral elements and compare
the results of our code using increasingly larger numbers of processors.
This mesh ensures that the phase-field length scale / is appropriately re-
solved as the ratio //h (h being the mesh size) is around 3. The general
recommendation is to use an / /A ratio between 2-5 (see Wu et al. [72]).
The domain decomposition for 5, 10, 20, and 40 processors is shown in
Fig. 2. Fig. 3 shows a comparison of load-displacement curves against
the results of Muixi et al. [2]. It is clear that there is excellent agreement
between our implementation and that of Muixi et al. In particular, it is
reassuring (and expected) that the number of MPI processes used has no
influence on the results — it should, after all, only affect how long the
program runs, not what it computes.

Fig. 4 shows the damage profiles for the front, back, top, and bottom
surfaces of the domain obtained in a computation with 40 processes,
compared against the results of Muixi et al. [2]. Again, there is excellent
agreement between our implementation and theirs.

4.1.2. Validating the convergence of results with mesh refinement

Having validated the parallel framework on the fixed mesh of the
previous section, we now perform a mesh convergence study by com-
paring results from four simulations using uniform meshes of increasing
resolution: 64 x 10 x 10, 128 x 20 x 20, 256 x 40 x 40, and 512 x 80x80.
Fig. 7 presents the corresponding load-displacement curves. We observe
that the curves for the coarser meshes (64 x 10 x 10 and 128 x 20 x 20)
deviate noticeably from the benchmark solution obtained earlier using
the 256 x 40 x 40 mesh. This discrepancy is expected, as these coarser
meshes have a length scale ratio //h < 2 and therefore lack the resolu-
tion needed to adequately capture the phase-field length scale. In con-
trast, the results for the finest mesh (512 x 80 x 80) closely overlap with
those of the 256 x 40 x 40 mesh. This indicates that the solution has con-
verged and that further mesh refinement beyond //h > 3 does not yield
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Fig. 4. Validation test case: Comparison of damage profiles on different faces of the domain for an applied displacement of 0.066 mm.

(a) Initial mesh and damage field as seen (b) Initial mesh and damage field as seen

from z = 25 mm.

from y = 25 mm.

(c¢) Final mesh and damage field as seen (d) Final mesh and damage field as seen

from z = 25mm.

from y = 25 mm.

Fig. 5. Validation test case: Initial (top row) and final meshes (bottom row), along with the damage profile of a computation using adaptive mesh refinement, as

seen from z = 25 mm (left) and y = 25 mm faces (right).

any significant improvement in accuracy. Overall, this study confirms
that our implementation converges under mesh refinement, and demon-
strates that a resolution of //h > 3 is sufficient to accurately resolve the
length scale in phase-field fracture simulations. Further refinement be-
yond this threshold offers minimal additional benefit.

Staggered schemes to iterate out the nonlinearity of the coupled
model, such as the scheme we use herein, are often considered inef-
ficient compared to monolithic methods such as those in [35]. Yet, for
the benchmark of this section, the computations on the 256 x 40 x 40
mesh always converge in two iterations (one to solve the system, one to
realize that the error criterion is now below the threshold) with the ex-
ception of a single load step in which our method requires 25 iterations
to achieve a convergence tolerance of 1072; that one load step is the one
in which the specimen fails. In other words, the cost for iterating out the
nonlinearity instead of tackling it directly in a monolithic approach is
clearly acceptable. If crack growth occurred in a more controlled man-
ner, rather than in a single load-step, a staggered approach could indeed
be much more expensive as discussed in [46].

4.1.3. Validating the adaptive mesh refinement implementation
Next, we validate the AMR implementation by solving the above
problem using an adaptively refined mesh. While adaptive mesh refine-

ment is often seen as selectively increasing mesh resolution in certain
parts of the domain, it can also be seen as selectively decreasing res-
olution where high resolution is not necessary, and consequently dra-
matically reducing the computational effort without compromising ac-
curacy. In order to test this, let us examine the accuracy we obtain
from the meshes shown in Fig. 5 that have the same cell size for the
smallest cells as the uniformly refined mesh of the previous section,
though the vast majority of cells is far coarser. For example, the ini-
tial mesh has only 11048 cells compared to 409600 cells of the uni-
formly refined mesh. As the crack propagates, the mesh adaptively re-
fines in regions with high damage gradients; the final mesh has 24278
cells.

The final damage profile along with the mesh is shown in Fig. 5.
These damage profiles are in good agreement with the results of Muixi
etal. [2] and those in Fig. 4. We compare the load-displacement in Fig. 6,
again showing a largely comparable behavior, with the peak loads and
maximal displacements before failure having differences of 1% and 3%,
respectively. These small differences should perhaps not be too surpris-
ing given that the computational problem is 20 to 40 times smaller than
the one of the previous section, and correspondingly faster. It is also
worth emphasizing that the accuracy might be further improved by uti-
lizing more sophisticated adaptive mesh-refinement strategies such as
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the predictor-corrector strategy advocated in [35]. However, the Kelly
error estimator-based AMR utilized here provides a good trade-off be-
tween accuracy, cost, and implementational ease.

4.2. The oreo test case: A three-layered medium under biaxial loading

Having convinced ourselves that our implementation of the model
matches results previously presented in the literature, let us turn to our
second test case: An example where we showcase the complexity of sit-
uations we can simulate with our code. Specifically, we investigate frac-
ture propagation in a three-layered medium, subjected to biaxial load-
ing. The problem setup, shown in Fig. 8, consists of a rectangular prism
Q =[0,30] x [0,30] X [0, 13] mm?> with two planar material interfaces at
z =5mm and z = 8 mm that separate the specimen into three layers. All
three layers are homogeneous with Young’s modulus E = 37.5 GPa and
Poisson’s ratio v = 0.25. The top and bottom layers have a critical energy
release rate G, = 1 x 1073 kN/mm, while the middle layer is considered
more brittle by a factor of 25 such that its critical energy release rate is
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Fig. 6. Validation test case: Comparison of load-displacement curves for two
computations, one using a fixed mesh of 256 x 40 x 40 hexahedra and the other
using an initial mesh of 64 x 10 x 10 hexahedra which is then adaptively refined.
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Fig. 7. Mesh convergence study: Comparison of load-displacement curves for
four computations, each using a fixed mesh of increasingly higher resolution.
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Fig. 8. Oreo test case: Problem setup, showing the geometry and the material
properties for the Oreo test. The specimen is pulled in positive x and y-direction.
Displacement constraints are applied on the x = 0mm and y = Omm faces to
prevent rigid body motion.
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G™ =4 x 10~°kN/mm. The phase-field characteristic length / is chosen
to be the same in all three layers, with / = 0.6 mm. Because the test case
resembles the make-up of a common sweet treat available globally — in
which a weak layer is sandwiched between two tougher layers —, we call
this example the “Oreo test case”.

Incremental extensional displacements Au = 1 x 10~ mm are applied
along the positive x- and positive y-direction on the surface x = 30 mm
and y = 30 mm, respectively. To prevent rigid body motion, normal dis-
placements are constrained for the faces x = 0mm and y = 0 mm, while
the degrees of freedom along the line defined by the z = 6.5 mm and
x = 0mm are constrained in the z-direction.

Fig. 9 shows a visualization of the damage that results from the load-
ing of the specimen. It clearly shows the complexity of the fracture net-
work induced.

In the following, let us present results obtained on both a fine uni-
form, and an adaptively refined mesh, that will illustrate both the com-
plexity of simulations possible with our code and its parallel scalability
to these kinds of large computations.

4.2.1. Parallel scalability on a uniform mesh

We first perform a strong scaling study on a fixed mesh with
160 x 160 x 80 = 2048 000 cells, without any adaptive mesh refinement.
This problem has 6298 803 degrees of freedom for the linear momentum
balance equation and about 2099 601 degrees of freedom for the dam-
age evolution equation. We solve this fixed-size problem with different
numbers of MPI processes for a single load step, while timing those parts
of the program that occupy the most run time. We repeated each run five
times to mitigate fluctuations and took the minimum in each category
as our result. For our study, we used an in-house computing cluster.
Each standard computing node is equipped with two Intel® Xeon® Gold
6140 processors (with 18 cores each, running at 2.30 GHz) and 132 GB
of memory. Communication between nodes happens via an InfiniBand
network operating at up 100GB/s. More information on the configura-
tion of the machine can be found at https://cluster.karlin.mff.cuni.cz/.

Experience with other deal.II-based codes indicates that each MPI
process should ideally have at least 100000 unknowns in order to
ensure that communication costs do not outweigh computation costs
[63,73,74]. This suggests that for the problem sizes mentioned above,
we should expect that run times are roughly proportional to one over
the number P of MPI processes as long as P < 20 for the damage equa-
tion and P < 60 for the elasticity equation. We confirm this behavior
with the timing results of our experiments displayed in Fig. 10; in fact,
scaling seems to extend substantially further than these limits. In the
example shown in the figure, the use of 128 MPI processes reduces the
average time to solve one load step of the “for” loop in Algorithm 1 from
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Fig. 9. Oreo test case: The left column shows the scalar damage field over the
entire three-dimensional domain for applied displacements of 4 X 10~> mm, 6 x
1072 mm, 8 X 107> mm and 9 x 102 mm (top to bottom). The right column shows
the corresponding crack surface plotted by visualizing the damage field only in
regions where it exceeds a threshold value of d, = 0.9. We use a 20 x 20x10
uniform initial mesh, followed by AMR.

slightly more than one hour to just under a minute, a speed-up of about
70.

4.2.2. Results for a parallel simulation on an adaptively refined mesh
We conclude by showcasing the computational efficiency of our
framework, utilizing both AMR and MPI. Starting with a coarse initial
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Fig. 10. Oreo test case: Strong scaling results showing the run time for solving
a fixed-size problem as a function of the number P of MPI processes used. The
run times for each operation are corresponding to the two iterations of the first

load step of the simulation. Until P = 16, all MPI processes fit onto a single node;
beyond that, we utilize several nodes running 16 MPI processes each.

Fig. 11. Oreo test case: Final mesh and damage field on the adaptively refined
mesh of Section 4.2.2, showing the highly resolved mesh around fractures.

mesh of 20 x 20 x 10 cells, adaptive refinement is applied as the dam-
age evolves. This process grows the number of cells from 4000 cells
to 432006 cells in the final refined mesh, shown in Fig. 11. This fi-
nal mesh has the same minimal cell size as the uniformly refined one,
but has only about one fifth the number of cells. Furthermore, due to
the brittle fracture nature of the problem, most mesh refinement occurs
late in the simulation as the fracture network grows, allowing a coarse
mesh to be used for the majority of the computation. Combining the
savings of adaptive meshes and parallel processing, the simulation us-
ing adaptive mesh refinement takes only 983 seconds (approximately
16 minutes) running on 40 MPI processes; the same simulation using a
uniformly refined mesh and a single MPI process takes 433 856 seconds
(approximately 5 days), highlighting the potential for combining AMR
and parallel processing to solve very large problems.

5. Conclusions

Herein, we have presented the design and implementation of an
open-source code that solves a widely-used formulation of fracture prop-
agation using the phase-field method. It couples an equation of quasi-
static elastic equilibrium driven by stepped loads with a model that
describes damage that the material has incurred as a result of the defor-
mation, and alternates solving these two equations until convergence is
achieved within each load step. We have also provided numerical evi-
dence that our computations yield simulation results which match those
that can be found in the literature. Our numerical experiments also show
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that, using adaptive mesh refinement and parallel computing based on
MPI, we can efficiently solve large three-dimensional problems of sub-
stantial complexity, using many millions of degrees of freedom.

Our goals for this manuscript were (i) to demonstrate how one can
implement solvers for phase-field-based fracture models with deal.II,
and (ii) to provide a basis for future experiments by other members in
our community. Indeed, while the iterative algorithm we use — alternat-
ing between solving the elasticity and damage equations — could likely
be improved upon to achieve faster convergence using algorithms such
as those described in [36], our implementation has the advantage of
flexibility for future extensions of this program. In particular, it is easy
to exchange the equations that describe damage d as a function of the
history variable H*, to include anisotropy or nonlinearity into the elas-
ticity equation, or indeed to replace elasticity by plasticity or other forms
of anelastic behavior. By compartmentalizing the solvers for u, H*, and
d, the code can also easily use much more complicated descriptions of
how damage is actually created by deformation.

We look forward to seeing the ways in which our code will serve as
a resource for the community.
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