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 a b s t r a c t

Phase-field models for fracture have demonstrated significant power in simulating realistic fractures, including 
complex behaviors like crack branching, coalescing, and fragmentation. Despite this, these models have mostly 
remained in the realm of proof-of-concept studies rather than being applied to practical problems. This paper 
introduces a computationally efficient implementation of the phase-field method based on the open source fi-
nite element library deal.II, incorporating parallel computing and adaptive mesh refinement. We provide a 
detailed outline of the steps required to implement the phase field model in deal.II. We then validate our 
implementation through a benchmark 3D boundary value problem and finally demonstrate the computational 
capabilities by running field scale problems involving complicated fracture patterns in 3D. This open-source code 
offers a framework that enables engineers and researchers to simulate diffuse crack growth within a widely-used 
computational environment.

1.  Introduction

Modeling fracture and cracks in materials is difficult because it in-
volves describing lower-dimensional surfaces that cut through a higher-
dimensional material. Moreover, the complex geometry of the resulting 
object changes over time as cracks grow (or perhaps heal), and resolv-
ing these phenomena by remeshing both the fracture surfaces and the 
domain is not practically feasible for all but the simplest situations.

The phase-field method (PFM) for fracture mechanics addresses this 
issue by modeling fractures not as discrete surfaces, but instead as ex-
tended volumetric regions that are weaker than the surrounding mate-
rial and that can accommodate crack opening via strain accumulation. 
Phase field methods employ a continuous scalar field (the “damage” 
field) to represent cracks as diffused surfaces. Crack evolution is gov-
erned by an additional equation for the damage field. Based on an en-
ergy minimization principle, the phase-field method allows cracks to 
evolve naturally to minimize the system’s total energy, without requir-
ing explicit criteria for crack propagation. This makes PFMs particu-
larly effective for modeling complex fracture scenarios, including crack 
branching, merging, and fragmentation, especially in 3D [1–3], where 
meshing such complex and evolving scenarios is not reasonable.

∗ Corresponding author.
 E-mail address: annavarapuc@civil.iitm.ac.in (C. Annavarapu).

Despite its flexibility and recent popularity in research, there are 
only few publicly available implementations of the phase-field method 
for fracture models that researchers can base their own work on when 
exploring alternative formulations, or to actually simulate concrete ap-
plications. The existing implementations of PFM typically fall into two 
categories: commercial software and ones built on open-source finite 
element libraries. Let us review what we have found in the available 
literature:

• Commercial Software: PFMs for fracture have been implemented 
in various commercial platforms like ABAQUS [4], ANSYS [5], and
COMSOL [6,7] as part of their extensive set of built-in tools for simulat-
ing fracture mechanics [3,7–11]. However, most commercial imple-
mentations are limited to 2D due to the high computational demands 
of PFM, which requires fine meshing for an accurate crack repre-
sentation. 3D simulations are rare and typically restricted to simple 
cases. As examples, Molnár and Gravouil model a 3D single-notched 
plate under uniaxial tension, utilizing a prepared mesh that is fine 
only in regions where crack growth is anticipated [4]. Similarly, 
Navitehrani et al. leverage symmetry by modeling just one-eighth 
of the 3D Brazilian test, applying appropriate boundary conditions 
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[3]. While these simulations serve as valuable proof-of-concept ex-
amples, they fall short of showcasing the full capabilities of PFMs in 
capturing complex fracture patterns in 3D. Additionally, while com-
mercial software simplifies PFM use, it also lacks the customization 
required for advanced research or novel methodologies – for exam-
ple, it may be restricted to isotropic materials, or specific kinds of 
anisotropic materials, excluding the simulation of layered fabrics.

• Codes built on Open-Source Finite Element Libraries: Open-source li-
braries like MOOSE [12], FEniCS [13], Gridap [14], Jive [15],
Nutils [16] and deal.II [17] provide greater flexibility, particu-
larly for custom implementations. MOOSE has been used for phase-
field fracture modeling due to its efficient implementation of non-
linear PDE solvers, adaptive mesh refinement (AMR), and parallel 
computing capabilities [18,19]. Likewise, FEniCS, with its Python 
interface, has seen PFM implementations from various researchers 
[20–24]. FEniCS (and, to some extent, MOOSE) focus on simplicity 
and automation and consequently make it very easy to create a first 
version of a solver for a new model or formulation; at the same time, 
the automation also sometimes makes it difficult to control details.
Gridap was designed to strike a balance between computational ef-
ficiency, ease of use, and streamlined workflow productivity and has 
been successfully used to model phase-field fracture in research such 
as [25–30]. Jive is another open-source FEM toolkit designed for 
parallel and multi-core computing. It supports domain decomposi-
tion, allowing the full simulation process – including both assem-
bly and solution – to be executed in parallel. May et al. [31], Li 
et al. [32], and Mandal et al. [33] used Jive [15] to assess phase-
field models for brittle and cohesive fracture; however, none of these 
works seem to use MPI or adaptive mesh refinement. Nutils is an 
open-source Python-based library for finite element computations, 
offering efficient vectorization and built-in parallelism. It allows for 
seamless transition from academic models to real-world applications. 
Singh et al. [34] used Nutils to solve simplified 2D fracture problems 
using predefined non-uniform meshes guided by the expected crack 
path.

The deal.II library, which we use here, is a popular open-source 
finite element library that emphasizes high-performance computing 
(HPC) and strong parallel computing capabilities, making it ideal 
for complex, large-scale models such as those necessary for three-
dimensional phase-field fracture simulations. The work of Heister et 
al. [35] on pfm-cracks [36] is one of the earliest and pioneering pa-
pers of PFM in deal.II. Several other applications of the phase-field 
fracture model in deal.II have followed and demonstrated multi-
physics coupling (for example, [37–44]). However, most of these pa-
pers focused on efficient numerical strategies to advance the phase-
field fracture model itself, and the authors consequently did not 
provide a detailed guide for implementing the phase-field fracture 
model in deal.II. More recently, Jin et al. [45,46] proposed two 
novel phase-field formulations to address difficulties in solving non-
convex energy minimization problems. While both incorporate adap-
tive mesh refinement, their parallelization strategies remain limited 
to using multi-threading via the Threading Building Blocks (TBB) li-
brary only during element-level operations, with the rest of the code 
remaining sequential.

Our conclusion from this overview is that despite the growing pop-
ularity of the phase-field fracture method, a detailed implementation 
guide tailored for early-career researchers using deal.II is still lack-
ing. While such comprehensive resources exist for commercial soft-
ware like ABAQUS, and for other open-source finite element libraries, 
there remains a clear need for a similarly well-documented, open-source 
reference based on deal.II. To address this gap, we herein provide 
an implementation-focused guide to developing a phase-field fracture 
model using deal.II. Specifically, we here discuss the steps necessary 
to implement the hybrid PFM model, as described in Ambati et al. [47], 
in deal.II. The hybrid PFM is an easily extendible framework for PFM 

solvers that integrates aspects of the early phase-field models – which ex-
hibit identical responses in compression and tension – with the more ad-
vanced approaches that later introduced tension-compression splitting 
to reflect asymmetric fracture behavior. When solved using a staggered 
solution approach, the hybrid PFM keeps the subproblems associated 
with the various physical effects linear and enables the incorporation 
of other physical effects (such as thermal or electromagnetic stresses) as 
well. Having said that, we would like to acknowledge that while PFM of-
fers several advantages, it is not without its limitations. For instance, al-
though PFM excels at simulating complex crack behaviors such as propa-
gation, branching, and coalescence [48–54], predicting crack nucleation 
remains a significant challenge [55,56]. In this paper, our primary ob-
jective is to provide a detailed guide for implementing PFM in deal.II. 
We do not address any inherent limitations of the model. We choose
deal.II for its state-of-the-art numerical methods including adaptive 
mesh refinement and parallel computing. Specifically, our goals for this 
paper are:

• Describe a concrete implementation of a phase-field model, along with 
the underlying algorithms;

• Demonstrate the versatility of the implementation using non-trivial 
benchmarks;

• Illustrate the performance of our implementation using large-scale 
parallel and adaptive simulations.

The code accompanying this paper, see [57], is available as part 
of the deal.II “code gallery” (a collection of user-contributed codes 
based on the deal.II library) and can be used as an open-source ba-
sis for further extension to more complex, physics-driven problems. 
It is licensed under the Lesser GNU Public License (LGPL) version 
2.1 or later, allowing for re-use in a wide range of scenarios. The 
code can be found as a link in the list of code gallery programs 
at https://dealii.org/developer/doxygen/deal.II/CodeGallery.html, or 
directly at https://dealii.org/developer/doxygen/deal.II/code_gallery_
Phase_field_fracture_model_in_3D.html.

Outline. The remainder of this paper is structured as follows: In
Section 2 we describe the specific model our code solves, including the 
governing equations, the overall algorithm structure, and our goals for 
adaptive mesh refinement and parallel computing. Section 3 then dis-
cusses algorithmic and software-specific details of the implementation. 
We illustrate our implementation with a sequence of numerical experi-
ments in Section 4 with which we validate the correctness of our imple-
mentation, show how adaptive mesh refinement helps us solve nontriv-
ial examples, and demonstrate parallel scalability. Finally, we conclude 
in Section 5.

2.  Methodology

Let us begin outlining the methodology that underlies our code by 
describing the basic premises of our code. Namely, in the following, we 
will discuss the mathematical model (Section 2.1), the staggered algo-
rithm to solve these equations (Section 2.2), the spatial discretization 
and adaptive mesh refinement (Section 2.3), and finally our approach 
to parallel computing (Section 2.4).

2.1.  Governing equations

We use the hybrid phase-field method that combines the quasi-static 
evolution of a displacement field as a result of load stepping, with the 
accumulation of damage to the material due to tensile stress. We refer 
to Ambati et al. [47] for a detailed discussion of this model, and provide 
its outline below.

The elastic model. Phase-field models describe crack propagation via the 
interplay of elastic (or perhaps plastic) deformation and the build-up 
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of a “damage” field that describes the weakening of the elastic body. 
Each of these two building blocks is represented by a partial differential 
equation that form a coupled system. To fix notation, let us consider a 
domain Ω with an external boundary 𝜕Ω, where 𝒏 denotes the outward-
pointing normal vector to the boundary.

On this domain, we consider the deformation of an elastic solid in 
quasi-static equilibrium, driven by external loading that is applied in 
small steps. The equations for linear momentum balance in the absence 
of external body forces are then defined as 
∇ ⋅ 𝝈(𝜺(𝒖), 𝑑) = 𝟎  in Ω, (1a)

𝒖 = 𝒖𝐷  on Γ𝐷, (1b)

𝝈 ⋅ 𝒏 = 𝒕𝑁  on Γ𝑁 . (1c)

Here, 𝝈 is the Cauchy stress tensor, 𝜺(𝐮) is the small-strain tensor and 
𝒖 is the displacement vector. 𝑑 is the spatially variable damage field we 
will discuss below. Eqs. (1b) and (1c) represent the standard Dirichlet 
and Neumann boundary conditions, where 𝒖𝐷 and 𝒕𝑁  refer to prescribed 
displacements and tractions, respectively.

The Cauchy stress tensor, 𝝈, is defined as 

𝝈 = 𝑔(𝑑)
𝜕𝜓0(𝜺(𝐮))

𝜕𝜺
, (2a)

𝑔(𝑑) =

{

(1 − 𝑑)2 if 𝜓+
0 > 𝜓−

0 ,
1 otherwise.

(2b)

Here, the “degradation function” 𝑔(𝑑) describes the effect of damage 
on the stiffness of the material. Specifically, the damage field 𝑑 is a spa-
tially variable function with values between zero (undamaged material) 
and one (completely destroyed material with no remaining internal co-
hesion); 𝑔(𝑑) as defined in (2b) then describes a situation in which the 
stress for a given strain is reduced by a factor (1 − 𝑑)2 if the material is 
under tension (if 𝜓+

0 > 𝜓−
0 ), corresponding to the notion that fractures 

under tension do not provide the material with stiffness. In contrast, a 
fracture under compression (if 𝜓+

0 < 𝜓−
0 ) is assumed to be just as stiff 

as undamaged material. This approach ensures that the hybrid model 
prevents unphysical cracks in compression while keeping the equation 
of momentum balance linear. In our code, we only implement the first 
branch of Eq. (2b) since we only consider tensile cases; this is also the 
approach taken in [2].

In our experiments, we use isotropic linear materials for which the 
representative total, tensile, and compressive strain energy densities 𝜓0
, 𝜓+

0  and 𝜓−
0  are expressed in terms of the strain 𝜺 and the Lamé param-

eters 𝜆 and 𝜇 as 

𝜓0(𝜺) =
1
2
𝜆 tr(𝜺)2 + 𝜇 tr

(

𝜺2
)

, (3a)

𝜓±
0 (𝜺) =

1
2
𝜆⟨tr(𝜺)⟩2± + 𝜇 tr

(

𝜺2±
)

. (3b)

Here, we use a tension-compression split based on the spectral decompo-
sition of the strain tensor (see Miehe et al. [58]) to suppress nonphysical 
crack growth in compression. It is defined via the Macaulay brackets 
⟨∙⟩± = 1

2 (∙ ± | ∙ |) that map a number to its positive/negative part, and 
using this to define the positive/negative parts of a symmetric tensor 
via its principal strain decomposition

𝜺± =
𝑛𝑠𝑑
∑

𝑖=1
⟨𝜀𝑖⟩±𝒆𝒊 ⊗ 𝒆𝒊. (4)

Here, 𝜀𝑖 are the principal strains, 𝒆𝒊 are the principal directions, and 
𝑛𝑠𝑑 = 2, 3 is the number of space dimensions.

Finally, note that while the equations above are all time-
independent, they do depend on the loading of the object as provided 
by successive load steps applied through the boundary conditions. The 
loading history is also reflected in the damage variable 𝑑 we will discuss 
next.

The damage model. In order to describe the damage the material incurs, 
we compute a monotonically increasing “history field” + that at each 

point in the domain represents the irreversible damage (see Miehe et al. 
[58]) and that is defined as 
+ = max

𝜏∈[0,𝑡]
𝜓+
0 (𝜺(𝜏)), (5)

where we use the symbol 𝑡 to denote the loading history variable.
Using +, we can define a damage field 𝑑 that is, in essence, a 

smoothed out and scaled version of +: 
−𝐺𝑐 𝑙∇2𝑑 +

𝐺𝑐
𝑙
𝑑 = 2(1 − 𝑑)+  in Ω, (6a)

(

𝐺𝑐 𝑙
)

∇𝑑 ⋅ 𝒏 = 𝟎  on 𝜕Ω, (6b)

Here, 𝑙 denotes the phase-field length scale parameter, and 𝐺𝑐 rep-
resents the critical energy release rate that can be a spatially variable 
function. Eq. (6b) defines flux-free boundary conditions over the entire 
external boundary.

2.2.  The staggered solution approach

The model described in the previous section consists of two partial 
differential equations that are coupled and nonlinear. The nonlinearity 
is also non-smooth through the tension-compression split as well as the 
use of the maximum operation in the definition of +. The nonlinear-
ity and non-smoothness pose difficulties for the numerical solution of 
the coupled system. These difficulties can be overcome through sophis-
ticated mathematical schemes exploiting details of the formulation (see, 
for example, [36]), but this limits how easy it is to extend our imple-
mentation to other formulations. As a consequence, we have opted for a 
simpler approach that alternates solving the two equations individually, 
until convergence is reached.

The key to our scheme is the observation that individually, the two 
equations are linear – i.e., for a fixed 𝑑, Equation (1) is linear in the 
displacement 𝐮, and for a fixed displacement 𝐮 and history variable +, 
Equation (6) is linear in 𝑑. The linearity of Equation (2) is a feature 
of the “hybrid” phase-field model because, in this model, the degrada-
tion function is computed as a postprocessed quantity from the previous 
iteration. This degradation function is then used to degrade the entire 
strain energy density thus ensuring the linearity of Equation (1) while si-
multaneously enforcing tension-compression asymmetry. As both Equa-
tions (1) and (6) are linear, they can consequently be solved efficiently in 
a staggered scheme until a convergence criterion is satisfied. It bears em-
phasis that damage irreversibility can be enforced through other, more 
rigorous, means such as the primal-dual active set strategy described in 
[35]. However, the use of a history field variable is arguably more ben-
eficial in the hybrid phase-field model as it maintains the linearity of 
the field equations. Ambati et al. [47] present a detailed comparison of 
the performance of the hybrid model with older phase-field models that 
result in nonlinear momentum balance equations due to the tension-
compression split.

We utilize the linearity of the two governing field equations in the 
design of the algorithm herein. Within a load step, we therefore start the 
iteration with 𝐮0, 𝑑0 corresponding to the final solutions of the previous 
load step. For the 𝑖th iteration within this load step, we then first solve
∇ ⋅ 𝝈(𝜺(𝒖𝑖+1), 𝑑𝑖) = 𝟎 in Ω (7)

for 𝒖𝑖+1 using the current loading displacements and tractions; update 
the history field +,𝑖+1; and finally solve
−𝑙2∇2𝑑𝑖+1 + 𝑑𝑖+1 = 2𝑙

𝐺𝑐
(1 − 𝑑𝑖+1)+,𝑖+1  in Ω (8)

for 𝑑𝑖+1. The iterative procedure is stopped when the relative error in 
the nodal solution vectors from two successive iterations is smaller than 
a specified tolerance 
||𝐮𝑖+1 − 𝐮𝑖||

||𝐮𝑖||
≤ tol. (9)

and 
||𝐝𝑖+1 − 𝐝𝑖||

||𝐝𝑖||
≤ tol. (10)
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This overall approach, including the load stepping loop around the 
nonlinear iteration is outlined Algorithm 1. 

Algorithm 1 Load stepping and staggered nonlinear solver.
1: for load step 𝑡 = 1 to 𝑡max do
2:  iteration ← 0
3:  stoppingCriterion ← false
4:  while stoppingCriterion = false do
5:  assemble and solve elastic system
6:  update +

7:  assemble and solve damage system
8:  if iteration > 0 then
9:  stoppingCriterion ← check_convergence(solution,

  solution_old)
10:  end if
11:  solution_damage_old ← solution_damage
12:  solution_elastic_old ← solution_elastic
13:  if stoppingCriterion = false then
14:  refine_grid()
15:  end if
16:  iteration ← iteration + 1
17:  end while
18:  post_process_solution(t)
19: end for

2.3.  Spatial discretization and adaptive mesh refinement

As mentioned, (7) and (8) are both linear partial differential equa-
tions. We utilize the finite element method for spatial discretization (for 
details, see Section 3), using the same mesh for both the displacement 
and the phase field variables. Specifically, we use trilinear, continuous 
elements for both variables. The discretization utilizes a computational 
mesh composed of hexahedra that we modify in each nonlinear iter-
ation via adaptive mesh refinement (AMR) to optimize computational 
efficiency; the resulting mesh is refined only in regions where the crack 
exists or is expected to propagate. Our AMR strategy consists of the fol-
lowing steps:

1. Error estimation: We first estimate some measure of error on each cell. 
Specifically, we use the KellyErrorEstimator class of deal.II (see 
[59,60]), which provides a measure of how well each cell of the 
mesh is suited to approximating the damage field. Because damage 
accumulates in places where stresses are large, a mesh adapted to 
resolving the phase field is also well suited to resolving the displace-
ment field.

2. Cell marking: We mark a certain top percentile of cells with the largest 
error estimates for refinement.

3. Refinement and coarsening: Marked cells are refined using isotropic 
cell division. As a result of this step, the mesh density is adjusted 
where needed.

4. Solution transfer: Solutions from the previous mesh are interpolated 
onto the refined mesh.

2.4.  Parallel computing

Fracture problems are only really relevant in three dimensions as that 
is the dimensionality in which the objects engineers want to simulate 
tend to live. On the other hand, in three-dimensions appropriately re-
solving the phase-field length scale typically requires meshes with hun-
dreds of thousands, millions, or even more cells – resulting in problems 
that can no longer be efficiently solved on a single computer. As a con-
sequence, our implementation of all of the steps outlined above needs 
to use parallel algorithms that scale to both large problem sizes and to 
large numbers of processor cores.

3.  Implementation in deal.II

Let us now move on to a discussion of the implementation of the 
phase-field fracture model described above within the finite element 
framework of deal.II [17,61]. deal.II is a widely used, open source 
finite element framework written in C++.

As discussed in Section 2.1, our solution scheme involves iterating 
between the solution of two equations for the displacement field and 
the phase-field variable; the mesh is adapted after every iteration until 
convergence is achieved. We will discuss our implementation in the fol-
lowing sections in three steps: First, we describe the implementation of 
the discretization and staggered solver. Next, we discuss how we incor-
porate the Message Passing Interface (MPI) in our implementation for a 
solver that can run in parallel. Finally, we outline how we incorporate 
Adaptive Mesh Refinement (AMR) in our code.

In the explanations below, we will frequently refer to one or the 
other of deal.II’s extensively documented tutorial programs in which 
the relevant functionality is discussed and demonstrated. The deal.II
tutorial enumerates these programs as step-1, step-2, etc. Our code fol-
lows the general structure of these programs, in particular using a single 
principal class; a function called run() that contains the top-level loops; 
and using the common naming scheme for functions and variables. Our 
code will consequently look familiar to everyone who has read through 
the first few tutorial programs. Table 1 at the end of this section also 
summarizes which tutorial programs we drew from in writing the code, 
along with the modifications we needed to make.

Our code is licensed under the Lesser GNU Public License (LGPL) 
version 2.1 or later, allowing for re-use in a wide range of scenarios.

3.1.  Discretization framework

We have to discretize and solve two principal equations iteratively 
for our scheme. The first describes the elastostatic equilibrium (7), and 
can be rewritten into
∇ ⋅

(

𝑔(𝑑𝑖)ℂ𝜺(𝒖𝑖+1)
)

= 𝟎, (11)

to make clear that we consider it as an equation for the displacement 
𝐮𝑖+1 in a one-field displacement formulation. Here, ℂ is the tensor that 
relates strain to stress. The equation is a standard elliptic equation not 
dissimilar to the Poisson equation, though it is vector-valued. The sec-
ond key component is Eq. (8) that describes the damage field 𝑑𝑖+1 and 
that can be rewritten as

−∇2𝑑𝑖+1 +
(1 + 2+,𝑖+1𝑙∕𝐺𝑐 )

𝑙2
𝑑𝑖+1 = 2

𝐺𝑐 𝑙
+,𝑖+1 (12)

to make clear that it is a Helmholtz equation. Since the coefficient in 
front of 𝑑𝑖+1 is strictly positive, the equation is also elliptic.

Both of these equations are easy to discretize using the finite element 
method. In our implementation, we lean heavily on the fact that these 
two equations are solved in the step-8 and step-7 tutorial programs of 
the deal.II library, respectively. These are two exceedingly well doc-
umented programs with dozens of pages of explanation for the mathe-
matical background and the actual implementation. As a consequence, 
we do not feel that it is necessary to discuss their general structure or 
approach and consequently only comment on the changes necessary to 
accommodate the specifics of our problem.

Compared to the implementation in step-8, the key change is the 
incorporation of the damage factor 𝑔(𝑑𝑖) in (11) when assembling the 
stiffness matrix. This factor needs to be computed at each quadra-
ture point; this is straightforward as the factor only depends on the 
previous iteration’s damage variable 𝑑, which is a known quantity 
when solving the momentum balance equation. Evaluating a finite el-
ement field at quadrature points of a cell is efficiently done with the
FEValues::get_function_values() function.

Finally, let us also discuss how we deal with the history variable +. 
Strictly speaking, + is a spatially variable function like 𝐮 and 𝑑, and 
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Table 1 
Details of the deal.II specific changes to the load stepping and staggered nonlinear solver of Algorithm 1, along with the deal.II tutorials from which parts of 
the algorithm are derived.
 Step  Description
 Solve Equation (1)  Based on step-8 with following changes:

 – Incorporate 𝑔(𝑑𝑖) to degrade stiffness matrix
 – Replace Vector and SparseMatrix objects with PETScWrappers::MPI::Vector and PETScWrappers::MPI::SparseMatrix objects or Trilinos equivalents
 – Use CG solver with AMG preconditioner

 Update +  Postprocess from 𝑢𝑖+1
 Store using CellDataStorage

 Solve Equation (6)  Based on step-7 with following changes:
 – Compute 𝛼 and 𝑓 using Eq.  (12)
 – Replace Vector and SparseMatrix objects with PETScWrappers::MPI::Vector and PETScWrappers::MPI::SparseMatrix objects or Trilinos equivalents
 – Use CG solver with AMG preconditioner

 Refine Grid  Use KellyErrorEstimator on 𝑑𝑖+1
 Interpolate solutions from old mesh to new mesh (adapted from step-15, step-26)
 Interpolate + using CellDataStorage, TransferableQuadraturePointData, and ContinuousQuadratureDataTransfer classes

it could be discretized in the same way. At the same time, + is not 
described by a partial differential equation, but the point-wise equal-
ity (5) and so there is no expectation that it will, for example, have to 
be a continuous function of space. Moreover, in the phase-field model, 
+ appears as a coefficient and in the right hand side term of the dam-
age equation; in practice, this means that it is only needed at quadra-
ture points during assembly of the damage linear system, rather than 
as a function defined everywhere. As is common in computational me-
chanics, we therefore do not store + as a finite element field defined 
at node points, but instead as values defined at quadrature points. The 
necessary functionality is provided in deal.II via the CellDataStorage
class, which associates scalar or vector-valued data with each cell in the 
mesh, and specifically with the quadrature points on each cell.

3.2.  Considerations for parallel computing based on MPI

The key consideration in writing programs that can run in parallel 
on clusters is that every data structure that is used in a finite element 
program must be split up so that every MPI (Message Passing Interface) 
process only stores a part it “owns”, along with perhaps a small amount 
of data on adjacent cells (the “ghost cells”). We then say that this data 
structure is “distributed” across the collection of MPI processes. As a 
consequence of this approach, all operations where things are added up 
– say, the assembly of the system matrix and right hand side – require 
each process to only compute on that part of the input it actually owns 
(say, the “locally owned” cells), followed by a reduction step where if 
a process wants to add its result to an element of the output data struc-
ture that it does not own itself, that result is instead sent to the owning 
process for addition. deal.II has had the ability to support this pro-
gramming paradigm for nearly twenty years. The key tutorial program 
that explains the concepts we use in our implementation of the phase-
field method is step-40, which solves the Poisson equation in a paral-
lel distributed computing environment. We follow essentially the same 
approach in our implementation. Specifically, we utilize the building 
blocks discussed in the following.

Triangulations. We use the parallel::distributed::Triangulation
mesh class that distributes its cells across multiple processes. This class 
partitions the mesh such that each process owns a roughly equally-sized 
portion of the domain. A layer of ghost cells is used to handle the over-
lap needed for communication between processes. This class utilizes the
p4est [62] library to handle partitioning and parallel adaptive mesh re-
finement.

Refining and coarsening a mesh also triggers a re-balancing oper-
ation that ensures that each process in a parallel computation always 
has a roughly equal share of both the overall workload and the overall 

memory usage, even on locally refined meshes. The scalability of this 
approach to very large computations is described in detail in [63].

Linear systems. We replace the Vector and SparseMatrix classes 
of step-7 and step-8 by the PETScWrappers::MPI::Vector and
PETScWrappers:: MPI::SparseMatrix classes, or their Trilinos equiv-
alents; both PETSc [64,65] and Trilinos [66,67] support parallel op-
erations and our code uses whatever the underlying deal.II library 
is configured with. These classes distribute data across MPI processes, 
meaning each process stores only a portion of a global vector or matrix.

Where necessary, vectors can be instructed to also store vector en-
tries that correspond to (remotely owned) degrees of freedom located 
on ghost cells or at the interface between locally owned and ghost cells. 
Such vectors are called “ghosted” vectors and are needed whenever it 
is necessary to evaluate the solution on locally owned cells (which may 
not own the degrees of freedom at an interface to a ghost cell).

In practice, managing where to use ghosted and where to use 
non-ghosted vectors is a frequent source of complexity in distributed-
memory parallel computing. This is because some operations can only 
be performed on one kind of vector whereas other operations require 
the opposite kind. In practice, computing a vector – say, as the solution 
of a linear system or during the assembly of the right hand side – gener-
ally requires vectors that have no ghost elements because the underlying 
operations only ever write into a vector (or add to its elements). On the 
other hand, using a vector, for example to postprocess the solution to 
obtain load-displacement curves or for graphical output – requires read-
ing elements that correspond to degrees of freedom on locally owned or 
ghost cells and therefore requires vectors with ghost elements.

In our program, we generally store information only in one kind of 
vector. For example, the right hand side vector is never read from, and 
so it is stored as a non-ghosted vector. The solution vector is computed 
as a non-ghosted vector during the solution of the linear system, but 
it is immediately converted into a ghosted vector which then serves as 
the input for both the assembly of the next linear system and for post-
processing. Ensuring that our code only ever stores information in one 
kind of vector also avoids the common issue of duplicated information 
going out of sync, and the difficult-to-find bugs that result.

Assembly of system matrices and right hand sides. Following the paradigm 
outlined above, parallel assembly of the system matrix and right-hand 
side vector requires that each process assembles the contributions only 
on those elements it owns. This includes contributions to matrix and 
vector entries owned by different processes, and these contributions are 
communicated between processes in a process called “compression” at 
the end of assembly.

Parallel solvers. In parallel programs, every MPI process only stores a 
subset of the rows of a matrix, and a subset of the elements of vectors. 

Computer Physics Communications 319 (2026) 109901 

5 



W.N. Munshi, M. Fehling, W. Bangerth et al.

This puts limitations on what solvers one can use – for example, direct 
solvers computing lower-upper (LU) decompositions of a matrix can not 
be implemented efficiently, whereas iterative solvers that only ever use 
matrix-vector products do work efficiently. As a consequence, we use 
such iterative methods – specifically, we use the Conjugate Gradient 
(CG) method for both the elasticity and the damage linear systems given 
that the matrices involved in both linear systems are symmetric and 
positive definite.

Parallel preconditioners. Most iterative linear solvers are only efficient 
if paired with good preconditioners. As with solvers, parallel programs 
challenge the design of preconditioners because preconditioning opera-
tions must run in parallel and cannot require access to data stored else-
where. As a consequence, many common preconditioners such as sym-
metric successive over-relaxation (SSOR) are not an option. Instead, we 
rely on the parallel implementations of algebraic multigrid (AMG) meth-
ods that are available via PETSc [64,65] and Trilinos [66,67]. AMG is 
a methodology that builds a hierarchy of matrices, each of which is a 
lower-dimensional approximation of the next higher-dimensional one. 
Specifically, we use the hypre [68] implementation of AMG if deal.II
was configured to use PETSc, and ML [69] or MueLu [70] when using
Trilinos-based linear algebra. All of these are highly optimized, par-
allel implementations of the AMG idea that are widely used as black-
box preconditioners for symmetric and positive definite matrices such 
as those we are solving with for both of the linear systems we consider.

Communication. An important part of parallel programs is that they 
have to exchange (communicate) data computed locally on one pro-
cess but required elsewhere on a different process. A specific kind of 
communication is synchronization, where processes exchange the infor-
mation that they have all reached a specific point in the program, only 
after which point they can continue with their work.

In practice, deal.II handles almost all necessary communication 
and synchronization. However, there are places where we post-process 
the solution – notably for computing the load-displacement curve where 
we need to compute integrals to compute a traction force; these integrals 
are over all boundary faces, which may be owned by different processes. 
In such situations, every MPI process only computes the contributions 
to the integral from the boundary faces of cells it owns, after which the 
complete integral is computed by explicitly summing up the contribu-
tions from all processes via an MPI reduction operation.

3.3.  Considerations for incorporating adaptive mesh refinement

As outlined in Algorithm 1 and in Section 2.3, we adapt the mesh 
after each cycle of solving for the displacement 𝐮𝑖, the accumulated his-
tory field +,𝑖, and the damage field 𝑑𝑖. We do this so that the mesh 
continues to accurately resolve these variables without the need for a 
globally refined mesh that is almost certainly going to require far more 
cells to reach the same resolution.

As for parallelization, deal.II provides many of the tools to make 
this possible, but it is worth discussing the specific implementation de-
tails one has to consider. We will do so in the following sub-sections.

Choices for mesh refinement. One can refine finite element meshes in a 
number of different ways [71]. For triangular and tetrahedral meshes, 
one often uses red-green refinement or longest-edge bisection to obtain 
meshes that remain conforming, i.e., for which every face of a cell not at 
the boundary of the domain is a complete face of a neighboring cell. This 
is not easily feasible with quadrilateral and hexahedral meshes like the 
ones we use here. Instead, we use deal.II’s approach of splitting each 
cell into four children (for quadrilaterals in 2d) or eight children (for 
hexahedra in 3d) via bisection in each of the cells’ principal directions. 
This results in meshes with “hanging nodes” in which neighboring cells 
may differ in size by one refinement level. (We will show examples of 

how such meshes look like in Section 4.) We will briefly discuss how to 
treat hanging nodes in the next section.

Our approach to choosing which cells to refine is based on an “error 
indicator” that provides an estimate of how large the error may be on 
a given cell. Specifically, we use the error criterion by Kelly et al. [59] 
applied to the damage field to determine which cells should be refined, 
as implemented in the KellyErrorEstimator class of deal.II. This cri-
terion computes an estimate of the second derivative of a finite element 
field, times a power of the mesh size, as the resulting quantity is the dom-
inant factor in estimating the interpolation error, and is widely used in 
the literature for the quality of the locally refined meshes it produces.

Ensuring continuity of the solutions. As mentioned above, the scheme for 
mesh refinement we utilize results in meshes with “hanging nodes” at 
which, unless special care is taken, finite element functions would be 
discontinuous because the shape functions associated with vertices, mid-
edge, or mid-face nodes do not match from the two adjacent cells. On 
the other hand, we are using continuous finite elements in the discretiza-
tion of both 𝐮 and 𝑑, and we need to ensure continuity of the discretized 
functions even at hanging nodes. We enforce the continuity requirement 
via constraints that augment the linear systems we obtain via assembly. 
These constraints are stored in an AffineConstraints object (along 
with other constraints resulting from boundary conditions, for example), 
and obtained via the DoFTools::make_hanging_node_constraints()
function after mesh refinement. Our approach fundamentally follows 
the example set in deal.II’s step-6 tutorial program and its extension 
to parallel computations in step-40.

Interpolating solutions from the old to the new mesh. In the finite element 
method, solutions are piecewise polynomial functions defined by their 
nodal values – typically the values at vertices and interpolation points 
along edges, faces, and in cell interiors. When the mesh is changed 
through mesh adaptation, it is necessary to transfer solutions from the 
old to the new mesh. This can be done in different ways, one of which 
is to interpolate solutions from the old to the new mesh; this is made 
particularly convenient in deal.II because the old and new meshes are 
related by the fact that mesh refinement replaces a cell by its isotropi-
cally refined children, and mesh coarsening replaces a number of small 
cells by their erstwhile parent cell – all of which guarantees that the new 
nodal points at which we need to evaluate the old solution have known 
locations in the old mesh.

In practice, the interpolation is achieved by using the
SolutionTransfer class in ways that resemble its use in step-15 
and step-26.

Interpolating the history variable + from the old to the new mesh. As dis-
cussed in Section 3.1, we do not store the history variable + as a finite 
element field, but rather as values associated with quadrature points. 
This poses questions when adapting the mesh because we need + at 
the quadrature points of the new mesh, and these generally do not line 

Fig. 1. Validation test case: Geometry, boundary conditions and initial cracks 
for the 3D double-notched test of Muixí et al. [2]. The angle 𝜃 between the 
notches and the plane 𝑥 = 62.5 mm is 𝜋∕6, leading to an eccentricity of 𝑒 =
12.5 × tan(𝜋∕6) mm.
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Fig. 2. Validation test case: Domain decomposition using different numbers of processors. Each color represents that part of the overall domain owned by one 
process.

Fig. 3. Validation test case: Comparison of load-displacement curves. We com-
pare our results using 5, 10, 20, and 40 processors with the results from Muixí 
et al. [2]. The results are clearly in excellent agreement.

up with the quadrature points of the old mesh. Conceptually, the most 
reasonable approach to dealing with the issue is to first find a piecewise 
polynomial function that matches or approximates the values stored at 
the quadrature points of the old mesh, interpolate this function to the 
new mesh, and then evaluate the function at the quadrature points of 
the new mesh.

It is clear that it is not trivial to implement such an approach, in 
particular if both the new and old mesh are partitioned across MPI 
processes. In practice, the CellDataStorage class we use to store +

can be combined with the TransferableQuadraturePointData and
ContinuousQuadratureDataTransfer classes to facilitate this process, 
though there are at the moment no tutorial programs that illustrate how 
this can be done. Consequently, we think of our program also as a contri-
bution to the documentation of deal.II showing how to achieve trans-
fer of quadrature point data between meshes.

4.  Results

Having discussed details of the implementation of our program in 
the previous section, let us now demonstrate how it works in practice. 
To this end, we will consider two test cases: (i) In Section 4.1 a three-
dimensional crack propagation problem that has been considered in the 
literature before and for which we consequently have a known solution 
against which we can compare to validate our implementation’s correct-
ness; and (ii) in Section 4.2 a test case that results in complex fracture 
patterns and that we can utilize to demonstrate our code’s ability to solve 
complicated, real-world examples typical of what applications look like.

4.1.  Validation test case: Fracture propagation in a 3D beam

As a validation example, we consider a 3D problem discussed by 
Muixí et al. in [2] and shown in Fig. 1. The setup is a beam with a 
square section Ω = [0, 125] × [0, 25] × [0, 25]mm3 with two notches on 
the surfaces 𝑦 = 0mm and 𝑦 = 25mm as shown in Fig. 1. The notch 
on the surface 𝑦 = 25mm is oriented at an inclination of 𝜃 = 𝜋∕6 = 30◦

with respect to the 𝑦 − 𝑧 plane in the counter-clockwise direction, while 
the notch on the surface 𝑦 = 0mm is oriented at the same inclination, 
but in the clockwise direction. The beam is clamped along the left end 
(at 𝑥 = 0mm), and prescribed displacements are applied incrementally 
in the 𝑥-direction at the right end (at 𝑥 = 125mm). We use load steps 
of Δ𝑢 = 5 × 10−4 mm and tol = 10−2 as the numerical tolerance for con-
vergence. The Young’s modulus, Poisson’s ratio, and critical energy re-
lease rate are 𝐸 = 32GPa, 𝜈 = 0.25, 𝐺𝑐 = 1.6 × 10−4 kN∕mm. We choose 
the characteristic length scale 𝑙 to be 2 mm. We validate the correct-
ness of our implementation by comparing the damage profiles and the 
displacement-load curves against the results shown in [2].

4.1.1.  Validating the correctness of our MPI implementation
To validate our parallel framework, we first consider a uniform mesh 

of 256 × 40 × 40 = 409 600 trilinear hexahedral elements and compare 
the results of our code using increasingly larger numbers of processors. 
This mesh ensures that the phase-field length scale 𝑙 is appropriately re-
solved as the ratio 𝑙∕ℎ (ℎ being the mesh size) is around 3. The general 
recommendation is to use an 𝑙∕ℎ ratio between 2–5 (see Wu et al. [72]). 
The domain decomposition for 5, 10, 20, and 40 processors is shown in 
Fig. 2. Fig. 3 shows a comparison of load-displacement curves against 
the results of Muixí et al. [2]. It is clear that there is excellent agreement 
between our implementation and that of Muixí et al. In particular, it is 
reassuring (and expected) that the number of MPI processes used has no 
influence on the results – it should, after all, only affect how long the 
program runs, not what it computes.

Fig. 4 shows the damage profiles for the front, back, top, and bottom 
surfaces of the domain obtained in a computation with 40 processes, 
compared against the results of Muixí et al. [2]. Again, there is excellent 
agreement between our implementation and theirs.

4.1.2.  Validating the convergence of results with mesh refinement
Having validated the parallel framework on the fixed mesh of the 

previous section, we now perform a mesh convergence study by com-
paring results from four simulations using uniform meshes of increasing 
resolution: 64 × 10 × 10, 128 × 20 × 20, 256 × 40 × 40, and 512×80×80. 
Fig. 7 presents the corresponding load-displacement curves. We observe 
that the curves for the coarser meshes (64 × 10 × 10 and 128 × 20 × 20) 
deviate noticeably from the benchmark solution obtained earlier using 
the 256 × 40 × 40 mesh. This discrepancy is expected, as these coarser 
meshes have a length scale ratio 𝑙∕ℎ < 2 and therefore lack the resolu-
tion needed to adequately capture the phase-field length scale. In con-
trast, the results for the finest mesh (512 × 80 × 80) closely overlap with 
those of the 256 × 40 × 40 mesh. This indicates that the solution has con-
verged and that further mesh refinement beyond 𝑙∕ℎ ≥ 3 does not yield 
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Fig. 4. Validation test case: Comparison of damage profiles on different faces of the domain for an applied displacement of 0.066 mm.

Fig. 5. Validation test case: Initial (top row) and final meshes (bottom row), along with the damage profile of a computation using adaptive mesh refinement, as 
seen from 𝑧 = 25mm (left) and 𝑦 = 25mm faces (right).

any significant improvement in accuracy. Overall, this study confirms 
that our implementation converges under mesh refinement, and demon-
strates that a resolution of 𝑙∕ℎ ≥ 3 is sufficient to accurately resolve the 
length scale in phase-field fracture simulations. Further refinement be-
yond this threshold offers minimal additional benefit.

Staggered schemes to iterate out the nonlinearity of the coupled 
model, such as the scheme we use herein, are often considered inef-
ficient compared to monolithic methods such as those in [35]. Yet, for 
the benchmark of this section, the computations on the 256 × 40 × 40
mesh always converge in two iterations (one to solve the system, one to 
realize that the error criterion is now below the threshold) with the ex-
ception of a single load step in which our method requires 25 iterations 
to achieve a convergence tolerance of 10−2; that one load step is the one 
in which the specimen fails. In other words, the cost for iterating out the 
nonlinearity instead of tackling it directly in a monolithic approach is 
clearly acceptable. If crack growth occurred in a more controlled man-
ner, rather than in a single load-step, a staggered approach could indeed 
be much more expensive as discussed in [46].

4.1.3.  Validating the adaptive mesh refinement implementation
Next, we validate the AMR implementation by solving the above 

problem using an adaptively refined mesh. While adaptive mesh refine-

ment is often seen as selectively increasing mesh resolution in certain 
parts of the domain, it can also be seen as selectively decreasing res-
olution where high resolution is not necessary, and consequently dra-
matically reducing the computational effort without compromising ac-
curacy. In order to test this, let us examine the accuracy we obtain 
from the meshes shown in Fig. 5 that have the same cell size for the 
smallest cells as the uniformly refined mesh of the previous section, 
though the vast majority of cells is far coarser. For example, the ini-
tial mesh has only 11048 cells compared to 409600 cells of the uni-
formly refined mesh. As the crack propagates, the mesh adaptively re-
fines in regions with high damage gradients; the final mesh has 24278
cells.

The final damage profile along with the mesh is shown in Fig. 5. 
These damage profiles are in good agreement with the results of Muixí 
et al. [2] and those in Fig. 4. We compare the load-displacement in Fig. 6, 
again showing a largely comparable behavior, with the peak loads and 
maximal displacements before failure having differences of 1% and 3%, 
respectively. These small differences should perhaps not be too surpris-
ing given that the computational problem is 20 to 40 times smaller than 
the one of the previous section, and correspondingly faster. It is also 
worth emphasizing that the accuracy might be further improved by uti-
lizing more sophisticated adaptive mesh-refinement strategies such as 
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the predictor-corrector strategy advocated in  [35]. However, the Kelly 
error estimator-based AMR utilized here provides a good trade-off be-
tween accuracy, cost, and implementational ease.

4.2.  The oreo test case: A three-layered medium under biaxial loading

Having convinced ourselves that our implementation of the model 
matches results previously presented in the literature, let us turn to our 
second test case: An example where we showcase the complexity of sit-
uations we can simulate with our code. Specifically, we investigate frac-
ture propagation in a three-layered medium, subjected to biaxial load-
ing. The problem setup, shown in Fig. 8, consists of a rectangular prism
Ω = [0, 30] × [0, 30] × [0, 13]mm3 with two planar material interfaces at 
𝑧 = 5mm and 𝑧 = 8mm that separate the specimen into three layers. All 
three layers are homogeneous with Young’s modulus 𝐸 = 37.5GPa and 
Poisson’s ratio 𝜈 = 0.25. The top and bottom layers have a critical energy 
release rate 𝐺𝑐 = 1 × 10−3 kN∕mm, while the middle layer is considered 
more brittle by a factor of 25 such that its critical energy release rate is 

Fig. 6. Validation test case: Comparison of load-displacement curves for two 
computations, one using a fixed mesh of 256 × 40 × 40 hexahedra and the other 
using an initial mesh of 64 × 10 × 10 hexahedra which is then adaptively refined.

Fig. 7. Mesh convergence study: Comparison of load-displacement curves for 
four computations, each using a fixed mesh of increasingly higher resolution.

Fig. 8. Oreo test case: Problem setup, showing the geometry and the material 
properties for the Oreo test. The specimen is pulled in positive 𝑥 and 𝑦-direction. 
Displacement constraints are applied on the 𝑥 = 0mm and 𝑦 = 0mm faces to 
prevent rigid body motion.

𝐺m𝑐 = 4 × 10−5kN∕mm. The phase-field characteristic length 𝑙 is chosen 
to be the same in all three layers, with 𝑙 = 0.6mm. Because the test case 
resembles the make-up of a common sweet treat available globally – in 
which a weak layer is sandwiched between two tougher layers –, we call 
this example the “Oreo test case”.

Incremental extensional displacements Δ𝑢 = 1 × 10−3 mm are applied 
along the positive 𝑥- and positive 𝑦-direction on the surface 𝑥 = 30mm
and 𝑦 = 30mm, respectively. To prevent rigid body motion, normal dis-
placements are constrained for the faces 𝑥 = 0mm and 𝑦 = 0mm, while 
the degrees of freedom along the line defined by the 𝑧 = 6.5mm and 
𝑥 = 0mm are constrained in the 𝑧-direction.

Fig. 9 shows a visualization of the damage that results from the load-
ing of the specimen. It clearly shows the complexity of the fracture net-
work induced.

In the following, let us present results obtained on both a fine uni-
form, and an adaptively refined mesh, that will illustrate both the com-
plexity of simulations possible with our code and its parallel scalability 
to these kinds of large computations.

4.2.1.  Parallel scalability on a uniform mesh
We first perform a strong scaling study on a fixed mesh with 

160 × 160 × 80 = 2048 000 cells, without any adaptive mesh refinement. 
This problem has 6298803 degrees of freedom for the linear momentum 
balance equation and about 2099601 degrees of freedom for the dam-
age evolution equation. We solve this fixed-size problem with different 
numbers of MPI processes for a single load step, while timing those parts 
of the program that occupy the most run time. We repeated each run five 
times to mitigate fluctuations and took the minimum in each category 
as our result. For our study, we used an in-house computing cluster. 
Each standard computing node is equipped with two Intel® Xeon® Gold 
6140 processors (with 18 cores each, running at 2.30GHz) and 132GB 
of memory. Communication between nodes happens via an InfiniBand 
network operating at up 100GB/s. More information on the configura-
tion of the machine can be found at https://cluster.karlin.mff.cuni.cz/.

Experience with other deal.II-based codes indicates that each MPI 
process should ideally have at least 100000 unknowns in order to 
ensure that communication costs do not outweigh computation costs 
[63,73,74]. This suggests that for the problem sizes mentioned above, 
we should expect that run times are roughly proportional to one over 
the number 𝑃  of MPI processes as long as 𝑃 ≲ 20 for the damage equa-
tion and 𝑃 ≲ 60 for the elasticity equation. We confirm this behavior 
with the timing results of our experiments displayed in Fig. 10; in fact, 
scaling seems to extend substantially further than these limits. In the 
example shown in the figure, the use of 128 MPI processes reduces the 
average time to solve one load step of the “for” loop in Algorithm 1 from 
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Fig. 9. Oreo test case: The left column shows the scalar damage field over the 
entire three-dimensional domain for applied displacements of 4 × 10−2 mm, 6 ×
10−2 mm, 8 × 10−2 mm and 9 × 10−2 mm (top to bottom). The right column shows 
the corresponding crack surface plotted by visualizing the damage field only in 
regions where it exceeds a threshold value of 𝑑∗ = 0.9. We use a 20×20×10 
uniform initial mesh, followed by AMR.

slightly more than one hour to just under a minute, a speed-up of about 
70.

4.2.2.  Results for a parallel simulation on an adaptively refined mesh
We conclude by showcasing the computational efficiency of our 

framework, utilizing both AMR and MPI. Starting with a coarse initial 

Fig. 10. Oreo test case: Strong scaling results showing the run time for solving 
a fixed-size problem as a function of the number 𝑃  of MPI processes used. The 
run times for each operation are corresponding to the two iterations of the first 
load step of the simulation. Until 𝑃 = 16, all MPI processes fit onto a single node; 
beyond that, we utilize several nodes running 16 MPI processes each.

Fig. 11. Oreo test case: Final mesh and damage field on the adaptively refined 
mesh of Section 4.2.2, showing the highly resolved mesh around fractures.

mesh of 20 × 20 × 10 cells, adaptive refinement is applied as the dam-
age evolves. This process grows the number of cells from 4000 cells 
to 432006 cells in the final refined mesh, shown in Fig. 11. This fi-
nal mesh has the same minimal cell size as the uniformly refined one, 
but has only about one fifth the number of cells. Furthermore, due to 
the brittle fracture nature of the problem, most mesh refinement occurs 
late in the simulation as the fracture network grows, allowing a coarse 
mesh to be used for the majority of the computation. Combining the 
savings of adaptive meshes and parallel processing, the simulation us-
ing adaptive mesh refinement takes only 983 seconds (approximately 
16 minutes) running on 40 MPI processes; the same simulation using a 
uniformly refined mesh and a single MPI process takes 433856 seconds 
(approximately 5 days), highlighting the potential for combining AMR 
and parallel processing to solve very large problems.

5.  Conclusions

Herein, we have presented the design and implementation of an 
open-source code that solves a widely-used formulation of fracture prop-
agation using the phase-field method. It couples an equation of quasi-
static elastic equilibrium driven by stepped loads with a model that
describes damage that the material has incurred as a result of the defor-
mation, and alternates solving these two equations until convergence is 
achieved within each load step. We have also provided numerical evi-
dence that our computations yield simulation results which match those 
that can be found in the literature. Our numerical experiments also show 
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that, using adaptive mesh refinement and parallel computing based on 
MPI, we can efficiently solve large three-dimensional problems of sub-
stantial complexity, using many millions of degrees of freedom.

Our goals for this manuscript were (i) to demonstrate how one can 
implement solvers for phase-field-based fracture models with deal.II, 
and (ii) to provide a basis for future experiments by other members in 
our community. Indeed, while the iterative algorithm we use – alternat-
ing between solving the elasticity and damage equations – could likely 
be improved upon to achieve faster convergence using algorithms such 
as those described in [36], our implementation has the advantage of 
flexibility for future extensions of this program. In particular, it is easy 
to exchange the equations that describe damage 𝑑 as a function of the 
history variable +, to include anisotropy or nonlinearity into the elas-
ticity equation, or indeed to replace elasticity by plasticity or other forms 
of anelastic behavior. By compartmentalizing the solvers for 𝐮, +, and 
𝑑, the code can also easily use much more complicated descriptions of 
how damage is actually created by deformation.

We look forward to seeing the ways in which our code will serve as 
a resource for the community.
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