
J. Numer. Math. 2023; 31(3):231–246

Daniel Arndt, Wolfgang Bangerth, Maximilian Bergbauer, Marco Feder, Marc Fehling,

Johannes Heinz, Timo Heister*, Luca Heltai, Martin Kronbichler, Matthias Maier,

Peter Munch, Jean-Paul Pelteret, Bruno Turcksin, David Wells, and Stefano Zampini

The deal.II library, Version 9.5

https://doi.org/10.1515/jnma-2023-0089

Received July 29, 2023; accepted August 01, 2023

Abstract: This paper provides an overview of the new features of the finite element library deal.II,

version 9.5.

Keywords: software, finite elements, deal.II

Classification: 65M60, 65N30, 65Y05

1 Overview

deal.II version 9.5.0 was released July 7, 2023. This paper provides an overview of the new features of this

release and serves as a citable reference for the deal.II software library version 9.5. deal.II is an object-

orientedfinite element library used around theworld in the development of finite element solvers. It is available

for free under the GNULesser General Public License (LGPL). Downloads are available at https://www.dealii.org/

and https://github.com/dealii/dealii.

The major changes of this release are:

– Substantial updates and extensions to deal.II’s interfaces to other libraries (see Section 2.1). This includes,

in particular, the integration of Kokkos (Section 2.1.1); additions and updates to the PETSc and Trilinos

interfaces (Sections 2.1.3 and 2.1.4, respectively).

– Uniform handling of nonlinear solver packages (Section 2.1.2) and a uniformway of defining callbacks used

by external libraries (Section 2.1.5).

– Advances in matrix-free infrastructure (see Section 2.2).

– Advances in non-matching support (see Section 2.3).

– New features related to linear algebra (see Section 2.4).

– C++ language modernization (see Section 2.5).

– Build-system modernization (see Section 2.6).

Daniel Arndt, Bruno Turcksin, Computational Coupled Physics Group, Computational Sciences and Engineering Division, Oak Ridge

National Laboratory, 1 Bethel Valley Rd., TN 37831, USA.

Wolfgang Bangerth, Marc Fehling, Department of Mathematics, Colorado State University, Fort Collins, CO 80523-1874, USA.

Wolfgang Bangerth, Department of Geosciences, Colorado State University, Fort Collins, CO 80523, USA.

Maximilian Bergbauer, Institute for Computational Mechanics, Technical University of Munich, Boltzmannstr. 15, 85748 Garching,

Germany.

Marco Feder, Luca Heltai, SISSA, International School for Advanced Studies, Via Bonomea 265, 34136, Trieste, Italy.

Johannes Heinz, Institute of Mechanics and Mechatronics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria.

*Corresponding author: Timo Heister, School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC, 29634, USA.

Email: heister@clemson.edu

Martin Kronbichler, Peter Munch, Institute of Mathematics, University of Augsburg, Universitätsstr. 12a, 86159 Augsburg, Germany.

Matthias Maier, Department of Mathematics, Texas A&M University, 3368 TAMU, College Station, TX 77845, USA.

Peter Munch, Institute of Material Systems Modeling, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany.

Jean-Paul Pelteret, Independent researcher.

David Wells, Department of Mathematics, University of North Carolina, Chapel Hill, NC 27516, USA.

Stefano Zampini, Extreme Computing Research Center, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Saudi

Arabia.



232  D.Arndt et al., The deal.II library, Version 9.5

While all of thesemajor changes are discussed in detail in Section 2, there are a number of other noteworthy

changes in the current deal.II release, which we briefly outline in the remainder of this section:

– The new function CellAccessor::as_dof_handler_iterator() simplifies the conversion from a Cell-

Accessor to a DoFCellAccessor. The old way,

C++ code

const auto cell_dof = typename DoFHandler<dim, spacedim>::

active_cell_iterator(&dof_handler.get_triangulation(),

cell->level(), cell->index(), &dof_handler);

was lengthy and error-prone. In contrast, the following function is substantially clearer and more concise:

C++ code

const auto cell_dof = cell->as_dof_handler_iterator(dof_handler);

– Several functions used intensively during initialization of deal.II-based programs, such as the refine-

ment of triangulations, the enumeration of degrees of freedom, the setup of global-coarsening multigrid

algorithms, and several evaluation functions of the MappingQ class representing a polynomial mapping of

quadrilateral and hexahedral, have been overhauled to runmore quickly and sometimes also consume less

memory. These and related improvements are guided by several performance tests that are used tomonitor

the performance of the library over time.

The changelog lists more than 120 other features and bugfixes.

2 Major changes to the library

This release of deal.II contains a number of large and significant changes, which will be discussed in this

section. It of course also includes a vast number of smaller changes and added functionality; the details of these

can be found in the file that lists all changes for this release (see [54]).

2.1 Updates to interfaces to other packages

For many operations, deal.II relies on external libraries – some of these are optional, others are mandatory

(such as Boost and, now, Kokkos); a complete list of external dependencies is provided in Section 3. A substantial

amount of work has gone into overhauling and extending these interfaces for the current release, as detailed

in the following subsections.

2.1.1 Integration of Kokkos

Kokkos [73] is a C++ library that enables the creation of performance portable applications for all major high-

performance computing platforms. It implements a programming model that allows developers to write code

that can efficiently run on diverse architectures. Kokkos provides abstractions for both parallel execution of

code and data management. It supports a wide range of backend programming models, including CUDA, HIP,

SYCL, HPX, OpenMP, and C++ threads, and continues to evolve with the development of new hardware and

corresponding backend options.

deal.II has, for several releases already, used CUDA to offload some operations onto GPUs. It has also

had interfaces to CUDA-based linear algebra libraries. Yet, the diversification of GPU platforms away from a

single vendor (Nvidia) has made it clear that we need a different strategy to support what users want. As a



D. Arndt et al., The deal.II library, Version 9.5  233

consequence, Kokkos has become a mandatory dependency of deal.II as part of the current release; if it is not

found on a given system during configuration time, then the library will fall back on a copy of Kokkos stored in

the bundled/ directory in the same way as we already interface with Boost.

In the current release, LinearAlgebra::distributed::Vector and the CUDAWrappers::MatrixFree

framework are using Kokkos. This allows them to work on all the architectures supported by Kokkos. In

particular, the step-64 example can now also be run on the CPU and doesn’t require a GPU anymore. The Kokkos

backend used by deal.II is Kokkos::DefaultExecutionSpace which corresponds to the highest available

backend in the hierarchy device, host-parallel, and host-serial at the time Kokkos was configured.

2.1.2 Uniform interface for nonlinear solvers

With the current release, deal.II now supports solvers for nonlinear problems provided by several different

external packages: (i) KINSOL (part of SUNDIALS); (ii) SNES (part of PETSc, see Section 2.1.3); and (iii) NOX (part

of Trilinos, see Section 2.1.4). The wrappers are provided by the classes PETScWrappers::NonlinearSolver

<VectorType>, SUNDIALS::KINSOL<VectorType>, and TrilinosWrappers::NOXSolver<VectorType>, respec-

tively.

All three of these classes have a very similar interface, except that they vary in the kind of algorithms and

parameters offered. The new class NonlinearSolverSelector<VectorType> provides a wrapper on top of the

three external solvers with a unified interface. The user can either let deal.II decide which of the packages to

use (depending on the current availability of the external packages) or specify it manually.

The following code snippet shows a complete example using the new class for applying a Newton solver by

automatically choosing one of the available packages:

C++ code

using NLS = NonlinearSolverSelector<VectorType>;

NLS::AdditionalData additional_data(

NLS::automatic, // other options: kinsol, nox, petsc_snes

NLS::newton);

NLS nonlinear_solver(additional_data, mpi_communicator);

solver.reinit_vector = [&](VectorType &x) {/*...*/};

solver.residual = [&](const VectorType &src,

VectorType &dst) {/*...*/};

solver.setup_jacobian = [&](const VectorType &src) {/*...*/};

solver.apply_jacobian = [&](const VectorType &src,

VectorType &dst) {/*...*/};

solver.solve_with_jacobian = [&](const VectorType &src,

VectorType &dst,

const double tol) {/*...*/};

solver.solve(current_solution);

Note that while the selector class provides a unified interface and therefore allows to easily switch between

backends, there are caseswhenusers need to use the underlyingwrapper classes, if, e.g., the functionality is only

provided by one implementation. Details of each of the implementations are discussed in subsequent sections.

2.1.3 Updates and additions to the PETScwrappers

The deal.II classes wrapping PETSc objects have been rewritten in substantial ways to support PETSc’s Sys-

tem of Nonlinear Equations Solver SNES and the Ordinary Differential Equations (ODE) solver TS [1]. First, we



234  D.Arndt et al., The deal.II library, Version 9.5

briefly describe the most important improvements to the existing classes and then outline the newly designed

interfaces to the nonlinear solvers, togetherwith a new interface to the communicationmodule SF in PETSc [76].

Vector andmatrix classes of the PETScwrappers havebeen extendedwith an additional constructor that can

wrap an already existing PETSc vector ormatrix, respectively. The BlockVector and BlockSparseMatrix classes

now internally use PETSc nested objects, i.e., VECNEST and MATNEST respectively. We have added a new class

PETScWrappers::PreconditionShell to support user-defined preconditioning that can be simply customized

as the following code snippet shows:

C++ code

PETScWrappers::PreconditionShell preconditioner(/*...*/);

preconditioner.vmult = [&](const VectorType &src,

VectorType &dst) {/*...*/};

The resulting object can be passed to PETSc and used within the nonlinear solver hierarchy. See Section 2.1.5

for additional information on such kind of callbacks.

The PETSc SNES subpackage solves systems of nonlinear equations of the form F(x) = 0. The interface to

SNES in the class PETScWrappers::NonlinearSolver has been modeled on the already existing interface to the

KINSOL solver from the SUNDIALS package: the nonlinear problem is specified via a set of callbacks as shown

above in Section 2.1.2. The default configuration is set up to use a Jacobian-free Newton–Krylov (JFNK) ap-

proach [46], using solve_with_jacobian as linear solver. Numerous other solver configurations are possible

and can be selected programmatically using the constructor arguments, or via the powerful command line cus-

tomization of PETSc. This includes, for example, quasi-Newtonmethods, Anderson’s acceleration, and nonlinear

preconditioning [20]. The step-77 tutorial program has gained a section that discusses the use of these new SNES

interfaces.

The PETSc TS subpackage solves ODEs in explicit or implicit form [1], i.e.,

u̇ = G(t, u) (explicit)

F(t, u, u̇) = 0 (implicit).

The interface to TS has been modeled on the already existing interfaces to the IDA and ARKODE solvers from the

SUNDIALS package. Specifically:

C++ code

PETScWrappers::TimeDependentSolver<VectorType> solver(/*...*/);

// If solving udot = G(t,u)

solver.explicit_function = [&](const double t,

const VectorType &u,

VectorType &G) {/*...*/};

// If solving F(t,u,udot) = 0

solver.implicit_function = [&](const double t,

const VectorType &u,

const VectorType &udot,

VectorType &F) {/*...*/};

In addition to specifying the function callbacks, users can further customize the solution of the linearized equa-

tions α ∂F /∂u̇ + ∂F /∂u via the following callbacks:

C++ code

solver.setup_jacobian = [&](const double t,

const VectorType &u,

const VectorType &udot,

const double alpha) {/*...*/};

solver.solve_with_jacobian = [&](const VectorType &rhs,

VectorType &sol) {/*...*/};



D. Arndt et al., The deal.II library, Version 9.5  235

Aswith SNES, the default configuration of an implicit solver is set up to use a JFNK approach, and the entire suite

of solvers offered by PETSc is available programmatically or via the command line interface, including adaptive

time-stepping and Implicit–Explicit schemes.

We close this section by introducing the interface to the SF subpackage, the abstract communication

model of PETSc. The deal.II interface to SF has been modeled on the existing Utilities::MPI::Partitioner

and Utilities::MPI::NoncontiguousPartitioner classes, with minimal changes for the communication

routines API; the equivalent classes based on SF are PETScWrappers::Partitioner and PETScWrappers::

CommunicationPattern. Future developments will add support for GPU buffers.

We refer interested readers to our documentation for more advanced functions of the SNES, TS, and SF

wrappers, and to the tests/petsc/ folder for examples on how to use them.

2.1.4 Interfaces to Trilinos’ Belos and NOX packages

Trilinos is a large collection of individual subpackages [41, 72]. deal.IIhas longhad interfaces to the Trilinos

packages that provide parallel vector and matrix classes (both Epetra and Tpetra), as well as a small number

of linear algebra packages for iterative solvers and preconditions. In the current release, there are now also

interfaces to two additional packages: Belos and NOX.

Belos is the successor of the Trilinos package AztecOO and provides basic and advanced iterative solvers

that heavily rely on multivector operations. The interface of the wrapper is similar to deal.II’s own iterative

solvers:

C++ code

TrilinosWrappers::SolverBelos<VectorType> solver(/*...*/);

solver.solve(matrix, x, r, preconditioner);

The omitted constructor arguments allow selecting the actual iterative solver to be used, along with other con-

figuration options.

Secondly,wehave added awrapper to NOX, a nonlinear solver library that is similar to both the KINSOL solver

from the SUNDIALSpackage towhichwealreadyhad interfaces, and also to the SNES collections of functions from

PETSc (see also Section 2.1.3). As for the SNES interface above, the NOX interface is drive by the callbacks shown

in Section 2.1.2, and implemented in the TrilinosWrappers::NOXSolver class.

2.1.5 Uniform error reporting in callbacks

With the current release, deal.II has gained interfaces to several external packages that are largely driven via

callbacks – see for example the code examples for nonlinear or ODE solvers in the previous sections.

This substantially enlarged use of callbacks used by different backend libraries raises the issue that each

underlying package has its own convention on how success or error codes of these callbacks should be encoded.

In the case of PETSc’s SNES and TS, and for Trilinos’s NOX, success is indicated by a zero integer return value,

whereas failure is indicated by a nonzero return value. On the other hand, the SUNDIALS packages indicate

success by a zero integer return value, a recoverable failure with a positive value, and an irrecoverable failure

with a negative value. Newer PETSc versions can deal with recoverable failures as well, in some cases by calling

back into PETSc from a callback to set an error flag, in others by setting the elements of a returned vector to

NaN. None of these conventions mesh well with C++ where error codes are generally indicated via exceptions.

It is conceivable that libraries we want to interface with in the future use yet other conventions.

In order to shield those who write these callbacks from having to learn the intricacies of the underlying

libraries, we have adopted a convention whereby user-provided callbacks are just regular functions that re-

turn errors via exceptions as is common in C++. Internally, the interfaces to different underlying libraries then

translate these exceptions into the appropriate error codes, saving the thrown exception for possible later use;



236  D.Arndt et al., The deal.II library, Version 9.5

if an underlying library supports recoverable errors, then a callback should indicate such an error by throwing

an object of the special type RecoverableUserCallbackError. If one of the underlying packages returns with

an error caused by a user-provided callback throwing an exception, then the wrapper code rethrows the pre-

viously saved exception, allowing the calling site to catch it to obtain information about what might have gone

wrong.

This convention for user callbacks is documented in a glossary entry that is also linked to from the docu-

mentation of all variables storing callbacks.

2.2 Updates to matrix-free algorithms

The current release includes numerous updates to the matrix-free infrastructure, including:

– In release 9.3, we enabled parallel hp-operations in the matrix-free infrastructure. The infrastructure did

not work properly for cells that do not have any degrees of freedom because they use FE_Nothing. This

has been fixed now. Furthermore, FE_Nothing now also works together with discontinuous Lagrange el-

ements (i.e., with the FE_DGQ class). Due to the popularity of FE_Nothing as a means to enable or disable

cells, we have introduced the new class ElementActivationAndDeactivationMatrixFree, which wraps a

MatrixFree object, only loops over all active cells, and optionally interprets faces between active and deac-

tivated cells as boundary faces. This functionality has enabled simulations in powder-bed-fusion additive

manufacturing in [64].

– The matrix-free infrastructure allows interleaving cell loops with vector updates by providing pre/post

functions that are run on index ranges. The deal.II library uses this feature, e.g., to improve the perfor-

mance of (preconditioned) conjugate gradient solvers [50] as well as of relaxation and Chebyshev iterations

(see Subsection 2.4). Up to release 9.3, the pre/post infrastructure was only supported for continuous ele-

ments (cell loop); now, it also works for discontinuous elements which also require face loops to assemble

jump and penalty terms.

– The operator CellwiseInverseMassMatrix now also efficiently evaluates the inverse for coupling (dyadic)

coefficients in the case of multiple components:

(

vi , Dijuj
)

Ω(K)
, 1 6 i, j 6 c

with c being the number of components and D ∈ R
c×c a tensorial coefficient. The algorithm relies on the

construction of the element mass matrix,

M =
(

I1 ⊗ NT)(D ⊗ I2
)(

I1 ⊗ N
)

with N being the tabulated values of shape functions at quadrature and I1 , I2 identity matrices associated

to c vector components and the quadrature points, respectively. The algorithms assumes a square N:

M−1 =
(

I1 ⊗ N−1
)(

D−1 ⊗ I2
)(

I1 ⊗ N−T
)

.

For hypercube-shaped cells, N−1 has an explicit representation again in terms of tensor products; for exam-

ple, in 3D it can be expressed as N−1 = N−11D ⊗ N−11D ⊗ N−11D , allowing the use sum factorization [51].

2.3 Advances in non-matching support

The (matrix-free) non-matching support of deal.II heavily relies on the classes FEPointEvaluation and

RemotePointEvaluation, which were introduced in release 9.3. While FEPointEvaluation is responsible for

efficient evaluation/integration at arbitrary (reference) points within a cell, RemotePointEvaluation is respon-

sible for sorting points with regards to the cells they reside in, and for the communication necessary to evaluate

solutions on cells owned by other MPI processes.



D. Arndt et al., The deal.II library, Version 9.5  237

In the current release, we have considerably optimized FEPointEvaluation, e.g, by caching the evaluated

shape functions, templating loop bounds, and exploiting the tensor-product structure of the shape functions if

all points are positioned on a face, a commonuse case in the context of fluid–structure interaction. Furthermore,

the extended class NonMatching::MappingInfo allows for precomputing and storing metric terms, like the Ja-

cobian, its determinant, or the unit outer normal vectors. This is useful in cases in which these metric terms

do not change and can be reused, e.g., in the context of iterative solvers. This development is part of an effort

to make the interfaces of the (matrix-free) non-matching support more similar to the ones of the established

matrix-free infrastructure of deal.II for fixed quadrature formulas.

In addition to these node-level performance optimizations, we added experimental support for (i) gener-

ating intersections of distributed non-matching grids and working on them, and (ii) multigrid with non-nested

levels. In the following, we describe these in more detail.

2.3.1 Intersected meshes

In the current release, we added experimental support to compute intersections on parallel::distributed::

Triangulation objects using CGAL [70]. For this purpose, we introduced a free function distributed_compute_

intersection_locations() that computes intersections and relevant information for communication from

intersection_requests. The data structure intersection_requests is a vector indicating entities of a given

triangulation that intersections are computed upon. Each entity (face or cell) is described by a vector of vertices.

Currently, the function is placed in GridTools::internal, since the location and arguments of the function

might still change in the future. To compute intersections between two geometric entities, the function internally

uses the new function CGALWrappers::compute_intersection_of_cells().

For the common case of Nitsche-typemortaring, quadrature points must be distributed on the intersections

to evaluate the underlying physical coupling terms. The data structure returned by distributed_compute_

intersection_locations() can convert itself to a data structure that canbeused tofill RemotePointEvaluation.

This conversion is triggered by the member function convert_to_distributed_compute_point_locations_

internal(), given the number of quadrature points per intersection. The whole procedure is done without

communication. This functionality is useful since RemotePointEvaluation can nowbe used to access quantities

at quadrature points on intersections without further ado. To reduce the user’s effort, we plan to add a wrapper

that takes care of the described procedure and provides interfaces like FEEvaluation to access quantities easily,

e.g., in a matrix-free loop.

The procedure described above and an early version of the wrapper have been used successfully in [37] to

performNitsche-typemortaring in the context of the conservative formulation of acoustic equations discretized

with a discontinuous Galerkin method to suppress artificial modes.

2.3.2 Non-nested multigrid

deal.II has provided support for geometric multigrid methods (GMG) for locally refined meshes nearly since

its inception. (deal.II also supports algebraic multigrid methods by interfacing to the external libraries PETSc

and Trilinos.) Traditionally, these GMGs were based on local-smoothing methods (described many years later

in [43, 44], see also [23]), and more recently also global-coarsening algorithms [59]. The global-coarsening in-

frastructure, furthermore, allows globally coarsening the polynomial degree (p-multigrid), with specific appli-

cability to hp-adaptivemethods. In the current release, we have added support for the case that multigrid levels

are given by non-nested meshes [2, 16, 19]. An example for such meshes is presented in Fig. 1.

The current implementation extends the existing global-coarsening infrastructure by introducing, in addi-

tion to the (conformal) MGTwoLevelTransfer, a new (non-conformal) two-level transfer operator:





D. Arndt et al., The deal.II library, Version 9.5  239

– Our relaxation preconditioner (PreconditionRelaxation) now also allows interleaving cell loops and vec-

tor updates related to relaxation. The relaxation iteration reads as

x(i+1) ← x(i) + ωP−1(b − Ax(i)).

In the case that the preconditioner P is a diagonal matrix, the zeroing of the destination vector xi+1 can be

performed during a pre-operation of the application of A and the vector update x(i+1)
j

← x(i)
j
+ ωP−1j,j (bj −

(Ax(i))j) during a post operation, allowing for a reduction in the number of read and write accesses from

8 and 4, to 1 and 3, respectively. The existing pre/post support in our Chebyshev-preconditioner imple-

mentation (PreconditionChebyshev) has been improved. In addition, both PreconditionRelaxation and

PreconditionChebyshev support pre/post optimizations now not only for diagonal preconditioners but

also for preconditioners that are built around cell loops and, as a consequence, support interleaving. Ex-

amples of such preconditioners are patch-based additive Schwarz preconditioners.

– In the context of additive Schwarz methods, the preconditioner application is defined as

v = P−1u =
∑

RTi A
−1
i Riu

with Ai = RiAR
T
i being a block of the assembled systemmatrix A restricted to an index set described by Ri .

In the special case when Ri denotes the unknowns of cells, the expression RiAR
T
i resembles the reverse of

matrix assembly. During the restriction step, rows of the systemmatrix that are potentially owned by other

processes are needed. In deal.II, it is not possible to access remote entries of sparse matrices. Two new

functions query this information. First, restrict_to_serial_sparse_matrix() creates, based on a given

index set, a serial sparse matrix from a distributed matrix:

C++ code

SparseMatrixTools::restrict_to_serial_sparse_matrix (

sparse_matrix_in, sparsity_pattern, requested_index_set,

system_matrix_out, sparsity_pattern_out)

This function can be used, e.g., if the granularity of the additive Schwarz preconditioner is a complete sub-

domain, potentially, with a fixed overlap.

In contrast, restrict_to_full_matrices() performs the restriction for arbitrary number of patch-

es/blocks:

C++ code

SparseMatrixTools::restrict_to_full_matrices (

sparse_matrix_in, sparsity_pattern, indices_of_blocks, blocks)

The data is stored in dense matrices, since the typical granularity is a (rather small) cell-centric or vertex-

star patch.

– For certain types of configurations, there are computationally more efficient approaches than extracting

submatrices from an assembled matrix. For example, for the Laplace operator on 2D Cartesian meshes, the

(element/patch) matrix is given as

Acarti = K1 ⊗M0 +M1 ⊗ K0

i.e., as the tensor product of 1D mass and stiffness matrices. The inverse is explicitly available via the fast

diagonalization method [56] as

(

Acarti

)−1
= (T1 ⊗ T0)(Λ1 ⊗ I + I ⊗ Λ0)

−1(TT1 ⊗ TT0 )

with Ti and Λi being the (orthonormal) eigenvectors and the diagonal matrix of eigenvalues, obtained from

a generalized eigendecomposition KiTi = MiTiΛi , as also used by deal.II’s step-59 tutorial program. Since

Ai ≈ A
cart
i might be a good approximation also in the case of non-Cartesian meshes and Acarti has an explicit

inverse, it is considered in the literature as a patch preconditioner in the context of additive Schwarz [24, 63,



240  D.Arndt et al., The deal.II library, Version 9.5

75] and block-Jacobi methods [49]. In deal.II, the new function TensorProductMatrixCreator::create_

laplace_tensor_product_matrix() computes Ki and Mi for cell-centric patches with a specified overlap

and givenboundary conditions. A set of Ti and Λi is applied to a cell via TensorProductMatrixSymmetricSum

or to a collection of cells via the new class TensorProductMatrixSymmetricSumCollection, which tries to

reuse the eigenvalues and eigenvectors between cells.

2.5 C++ language modernization

This version of deal.II uses C++14 as the language standard to which its code base is written. It can also use

the classes std::optional and std::variant if the compiler supports C++17, but falls back to implementations

obtained via the Boost library otherwise, and this is true also for a number of individual functions that were

introduced in C++17 or C++20.

As part of the current release, deal.II now also uses some C++20 features to annotate classes and functions

with regard to properties template arguments need to satisfy. This aids in situations such as with the following

function:

C++ code

template <class MeshType>

std::vector<typename MeshType::active_cell_iterator>

find_cells_adjacent_to_vertex(const MeshType & mesh,

const unsigned int vertex);

This function is intended to be called with either a Triangulation or DoFHandler object as first argument (and

documents this requirement), but the compiler can not check this requirement at the call site and will gladly

call it with any other kind of object as well. Because the implementation of the function is in a .cc file, and the

template is only instantiated for the two classes mentioned above, calling the function (erroneously) with any-

thing else as first argument is not detected at compile time, but only later when the linker reports an undefined

symbol.

We have started to address this by annotating functions using C++20-style ‘requires’ clauses:

C++ code

template <class MeshType>

requires (concepts::is_triangulation_or_dof_handler<MeshType>)

std::vector<typename MeshType::active_cell_iterator>

find_cells_adjacent_to_vertex(const MeshType & mesh,

const unsigned int vertex)

If the compiler supports C++20, then the added clausewill cause the compiler to reject any call to the function for

which the first argument MeshType does not satisfy the named concept, which is defined as the type being either

a Triangulation or DoFHandler object, as intended. (The requires annotation is suppressed if the compiler

does not support C++20.)

Given the heavy dependence of deal.II on templates, there are likely hundreds or thousands of locations

that should be annotated with requirements on template arguments over time; for the moment, the library

contains some 300 of these requires clauses.

The next release of deal.II will build upon C++17.

2.6 Build-systemmodernization

deal.II’s original CMakebuild system,merged for the 8.0.0 release in 2013,waswritten for CMake 2.8.8 and thus

lacks many of the modern features introduced into CMake over the last several years. This created a particular

issue with an increasing number of dependencies switching their CMake configuration to import targets, where



D. Arndt et al., The deal.II library, Version 9.5  241

all necessary information for using an external resource, such as include directories and library link interfaces,

are associated with an imported CMake target rather than being provided with individual (and inconsistently)

named CMake variables.With the deal.II 9.5 release the handling of external dependencies has been rewritten

entirely to support imported targets. The Trilinos and Kokkos interfaces have been modernized. We plan to

migrate all remaining dependencies to import targets wherever possible for the next release.

deal.II’s CMake project configuration itself now exports three targets, dealii::dealii_debug, dealii::

dealii_release, and dealii::dealii. Linking against one of thefirst two variants via target_link_libraries()

populates the target with all necessary include directories and the full link interface necessary for deal.II.

The third variant, dealii::dealii, automatically switches between debug and release interface depending on

the build type set via CMAKE_BUILD_TYPE. The dealii::dealii third variant also populates compiler and linker

options,whereas for the first two variants a client project has to ensure that the compiler and linker are properly

set up. The new import targets now make it possible to configure a dependent project without the use of any

deal.II specific macros:

Code

cmake_minimum_required(VERSION 3.13.4)

set(CMAKE_BUILD_TYPE Debug CACHE STRING "")

project(step CXX)

find_package(deal.II 9.5.0 REQUIRED)

add_executable(step step.cc)

target_link_libraries(step dealii::dealii)

2.7 New and improved tutorials and code gallery programs

While there are no new deal.II tutorial programs in this release,manywere extensively revised: Around 145 of

the more than 2200 (non-merge) commits that went into this release touched the tutorial, in some cases adding

substantial amounts of text.

There are four new programs in the code gallery (a collection of user-contributed programs that often solve

more complicated problems than tutorial programs, and that are intended as starting points for further research

rather than as teaching tools):

– ‘A posteriori error estimator for first order hyperbolic problems’, contributed by Marco Feder;

– ‘Distributed moving laser heating’, contributed by Hongfeng Ma and Tatiana E. Itina;

– ‘Generalized Swift–Hohenberg equation solver’, contributed by Sam Scheuerman.

– ‘Information density-based mesh refinement’, contributed by Wolfgang Bangerth.

2.8 Incompatible changes

The 9.5 release includes around35 incompatible changes (see [54]).Manyof these incompatibilities change inter-

nal interfaces that are not usually used in external applications. That said, the following are worth mentioning

since they may have been more widely used:

– The class hp::DoFHandler has been removed. The DoFHandler class now implements all hp-related func-

tionality, as it has for the past two releases.

– We improved the type safety for active and future FE indices in the DoFHandler implementationby introduc-

ing a newdata type types::fe_index. Corresponding functions like DoFCellAccessor::active_fe_index()

and DoFHandler::get_active_fe_indices() have changed their interface.



242  D.Arndt et al., The deal.II library, Version 9.5

This rework also affects the serialization process of active FE indices. You will need to recreate your serial-

ized data if and only if you work in hp-mode, but can continue to use previously generated data otherwise.

For parallel::distributed::Triangulation when used with non-hp data, it is sufficient to increase the

version in the metadata file from ‘4’ to ‘5’.

– Several old interfaces to MatrixFree have been removed, e.g., initialization functions without Mapping ar-

gument and some queries to the number of cell batches as well as DoFHandler objects. In each case, new

interfaces are available.

3 How to cite deal.II

In order to justify thework the developers of deal.II put into this software, we ask that papers using the library

reference one of the deal.II papers. This helps us justify the effort we put into this library.

There are various ways to reference deal.II. To acknowledge the use of the current version of the library,

please reference the present document. For up-to-date information and a bibtex entry see

https://www.dealii.org/publications.html

The original deal.II paper containing an overview of its architecture is [14], and amore recent publication

documenting deal.II’s design decisions is available as [10]. If you rely on specific features of the library, please

consider citing any of the following:

– For geometric multigrid: [23, 43, 44, 59];

– For distributed parallel computing: [13];

– For hp-adaptivity: [15, 30];

– For partition-of-unity method (PUM) and finite el-

ement enrichment method: [28];

– For matrix-free and fast assembly techniques:

[47, 48];

– For computations on lower-dimensional mani-

folds: [29];

– For curved geometry representations and mani-

folds: [39];

– For integration with CAD files and tools: [38];

– For boundary element computations: [34];

– For the LinearOperator and PackagedOperation

facilities: [57, 58];

– For uses of the WorkStream interface: [74];

– For uses of the ParameterAcceptor concept, the

MeshWorker::ScratchData base class, and the

ParsedConvergenceTable class: [67];

– For uses of the particle functionality in deal.II:

[32].

deal.II can interface with many other libraries:

– ADOL-C [35]

– ArborX [52]

– ARPACK [53]

– Assimp [68]

– BLAS and LAPACK [5]

– Boost [18]

– CGAL [70]

– cuSOLVER [25]

– cuSPARSE [26]

– Gmsh [33]

– GSL [31, 36]

– Ginkgo [6, 7]

– HDF5 [71]

– METIS [45]

– MUMPS [3, 4]

– muparser [60]

– OpenCASCADE [61]

– p4est [21, 22]

– PETSc [11, 12]

– ROL [66]

– ScaLAPACK [17]

– SLEPc [40]

– SUNDIALS [42]

– SymEngine [69]

– TBB [65]

– Trilinos [41, 72]

– UMFPACK [27]

Please consider citing the appropriate references if you use interfaces to these libraries.

The two previous releases of deal.II can be cited as [8, 9].



D. Arndt et al., The deal.II library, Version 9.5  243

4 Acknowledgments

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S.

Department of Energy. The United States Government retains and the publisher, by accepting the article for

publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,

worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for

United States Government purposes. The Department of Energy will provide public access to these results of

federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-

public-access-plan).

deal.II is a worldwide project with dozens of contributors around the globe. Other than the authors of

this paper, the following people contributed code to this release:

Pasquale Africa, Nicolas Barnafi, Nistha Bhawsinka, Bruno Blais, Fabian Castelli, Terry Cojean, Niklas Fehn,

Emmanuel Ferdman, Vadim Gallyamov, Daniel Garcia-Sanchez, Rene Gassmoeller, Robin Goermer, Graham

Harper, Quang Hoang, Sean Ingimarson, Vladimir Ivannikov, Pengfei Jia, Tao Jin, Nils Margenberg, Luz Paz,

Laura Prieto Saavedra, Sebastian Proell, Ce Qin, Oleg Rogozin, Andrew Salmon, Michael Schlottke-Lakemper,

Christoph Schmidt, Magdalena Schreter-Fleischhacker, Richard Schussnig, Nils Schween, Ahmad Shahba, Simon

Sticko, Buǧrahan Temür, Ivy Weber, Niklas Wik, Vladimir Yushutin, Jiaqi Zhang.

Their contributions are much appreciated!

Funding: deal.II and its developers are financially supported through a variety of funding sources:

D. Arndt and B. Turcksin: Research sponsored by the Laboratory Directed Research and Development Pro-

gram of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

W. Bangerth and T. Heister were partially supported by the Computational Infrastructure for Geodynamics

initiative (CIG), through the National Science Foundation (NSF) under AwardNo. EAR-1550901 and EAR-2149126

via The University of California – Davis.

W. Bangerth andM. Fehling were partially supported by Award OAC-1835673 as part of the Cyberinfrastruc-

ture for Sustained Scientific Innovation (CSSI) program.

W. Bangerth was also partially supported by Awards DMS-1821210 and EAR-1925595.

M. Bergbauer was supported by the German Research Foundation (DFG) under the project ‘High-Perfor-

mance Cut Discontinuous Galerkin Methods for Flow Problems and Surface-Coupled Multiphysics Problems’

Grant Agreement No. 456365667.

J. Heinz was supported by the European Union’s Framework Programme for Research and Innovation Hori-

zon 2020 (2014-2020) under the Marie Skłodowska-Curie Grant Agreement No. 812719.

T. Heister was also partially supported by NSF Awards OAC-2015848, DMS-2028346, and EAR-1925575.

L. Heltai and M .Feder were partially supported by the Italian Ministry of University and Research (MUR),

under the grant MUR PRIN 2022 No. 2022WKWZA8 ‘Immersed methods for multiscale and multiphysics prob-

lems (IMMEDIATE)’.

M. Kronbichler and P.Munch were partially supported by the German Ministry of Education and Research,

project ‘PDExa: Optimized softwaremethods for solving partial differential equations on exascale supercomput-

ers’ and theBayerischesKompetenznetzwerk für Technisch-WissenschaftlichesHoch- undHöchstleistungsrech-

nen (KONWIHR), projects ‘High-order matrix-free finite element implementations with hybrid parallelization

and improved data locality’ and ‘Fast and scalable finite element algorithms for coupled multiphysics problems

and non-matching grids’.

M.Maier was partially supported by NSF Award DMS-2045636 and and by the Air Force Office of Scientific

Research under grant/contract number FA9550-23-1-0007.

D.Wells was supported by the NSF Award OAC-1931516.

S. Zampini was supported by the KAUST Extreme Computing Research Center.

Clemson University is acknowledged for generous allotment of compute time on Palmetto cluster.



244  D.Arndt et al., The deal.II library, Version 9.5

The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin

for providing HPC resources that have contributed to the research results reported within this paper (see http:

//www.tacc.utexas.edu).

This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported

by National Science Foundation grant No. ACI-1053575 access through the CIG Science Gateway and Community

Codes for the Geodynamics Community MCA08X011 allocation.

References

[1] S. Abhyankar, J. Brown, E.M. Constantinescu, D. Ghosh, B. F. Smith, and H. Zhang, PETSc/TS: A modern scalable ODE/DAE solver

library, arXiv:1806.01437, 2018.

[2] M. Adams, Evaluation of three unstructured multigrid methods on 3D finite element problems in solid mechanics, Int. J. Numer.

Meth. Engrg. 55 (2002), No. 5, 519–534.

[3] P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T.Mary, Performance and scalability of the block low-rank multifrontal factorization on

multicore architectures, ACM Trans. Math. Software 45 (2019), No. 1, 2/1–26.

[4] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent, A fully asynchronous multifrontal solver using distributed dynamic scheduling,

SIAM J. Matrix Anal. Appl. 23 (2001), No. 1, 15–41.

[5] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A.McKenney, and

D. Sorensen, LAPACK Users’ Guide, 3rd ed., Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999.

[6] H. Anzt, T. Cojean, Y.-C. Chen, G. Flegar, F. Göbel, T. Grützmacher, P. Nayak, T. Ribizel, and Y.-H. Tsai, Ginkgo: A high performance

numerical linear algebra library, J. Open Source Software 5 (2020), No. 52, 2260.

[7] H. Anzt, T. Cojean, G. Flegar, F. Göbel, T. Grützmacher, P. Nayak, T. Ribizel, Y. M. Tsai, and E. S. Quintana-Ortí, Ginkgo: A modern linear

operator algebra framework for high performance computing, ACM Trans. Math. Software 48 (2022), No. 1, 2/1–33.

[8] D. Arndt, W. Bangerth, B. Blais, T. C. Clevenger, M. Fehling, A. V. Grayver, T. Heister, L. Heltai, M. Kronbichler, M.Maier, P.Munch,

J.-P. Pelteret, R. Rastak, I. Thomas, B. Turcksin, Z.Wang, and D.Wells, The deal.II Library, Version 9.2, J. Numer. Math. 28 (2020),

No. 3, 131–146.

[9] D. Arndt, W. Bangerth, B. Blais, M. Fehling, R. Gassmöller, T. Heister, L. Heltai, U. Köcher, M. Kronbichler, M.Maier, P.Munch,

J.-P. Pelteret, S. Proell, K. Simon, B. Turcksin, D.Wells, and J. Zhang, The deal.II Library, Version 9.3, J. Numer. Math. 29 (2021), No. 3,

171–186.

[10] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M.Maier, J.-P. Pelteret, B. Turcksin, and D.Wells, The deal.II

finite element library: Design, features, and insights, Computers & Mathematics with Applications 81 (2021), 407–422.

[11] S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E.M. Constantinescu, L. Dalcin, A. Dener,

V. Eijkhout, W. D. Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong, S. Kruger, D. A.May, L. C.McInnes,

R. T.Mills, L. Mitchell, T. Munson, J. E. Roman, K. Rupp, P. Sanan, J. Sarich, B. F. Smith, S. Zampini, H. Zhang, and J. Zhang, PETSc/TAO

Users Manual, Argonne National Laboratory, Report No. ANL-21/39 – Revision 3.17, 2022.

[12] S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, E.M. Constantinescu, L. Dalcin, A. Dener,

V. Eijkhout, J. Faibussowitsch, W. D. Gropp, V. Hapla, T. Isaac, P. Jolivet, D. Karpeev, D. Kaushik, M. G. Knepley, F. Kong, S. Kruger,

D. A.May, L. C.McInnes, R. T.Mills, L. Mitchell, T. Munson, J. E. Roman, K. Rupp, P. Sanan, J. Sarich, B. F. Smith, S. Zampini, H. Zhang,

and J. Zhang, PETSc Web Page, https://petsc.org/, 2023.

[13] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler, Algorithms and data structures for massively parallel generic adaptive

finite element codes, ACM Trans. Math. Software 38 (2012), No. 2, 14/1–28.

[14] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II – a general purpose object oriented finite element library, ACM Trans. Math.

Software 33 (2007), No. 4, 24–es.

[15] W. Bangerth and O. K.-Herold, Data structures and requirements for hp finite element software, ACM Trans. Math. Software 36

(2009), No. 1, 4/1–31.

[16] M. L. Bittencourt, C. C. Douglas, and R. A. Feijóo, Nonnested multigrid methods for linear problems, Numerical Methods for Partial

Differential Equations: An Int. J. 17 (2001), No. 4, 313–331.

[17] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley,

D.Walker, and R. C.Whaley, ScaLAPACK Users’ Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997.

[18] Boost C++ Libraries, http://www.boost.org/.

[19] J. H. Bramble, J. E. Pasciak, and J. Xu, The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms,

Mathematics of Computation 56 (1991), No. 193, 1–34.

[20] P. R. Brune, M. G. Knepley, B. F. Smith, and X. Tu, Composing scalable nonlinear algebraic solvers, SIAM Review 57 (2015), No. 4,

535–565.

[21] C. Burstedde, L. C.Wilcox, and O. Ghattas, p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees,

SIAM J. Sci. Comput. 33 (2011), No. 3, 1103–1133.



D. Arndt et al., The deal.II library, Version 9.5  245

[22] C. Burstedde, Parallel tree algorithms for AMR and non-standard data access, ACM Trans. Math. Software 46 (2020), No. 4, 32/1–31.

[23] T. C. Clevenger, T. Heister, G. Kanschat, and M. Kronbichler, A flexible, parallel, adaptive geometric multigrid method for FEM, ACM

Trans. Math. Software 47 (2021), No. 1, 7/1–27.

[24] W. Couzy, Spectral element discretization of the unsteady Navier–Stokes equations and its iterative solution on parallel computers,

EPFL Report, 1995.

[25] cuSOLVER Library, https://docs.nvidia.com/cuda/cusolver/index.html.

[26] cuSPARSE Library, https://docs.nvidia.com/cuda/cusparse/index.html.

[27] T. A. Davis, Algorithm 832: UMFPACK V4.3 – an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software 30 (2004),

196–199.

[28] D. Davydov, T. Gerasimov, J.-P. Pelteret, and P. Steinmann, Convergence study of the h-adaptive PUM and the hp-adaptive FEM

applied to eigenvalue problems in quantum mechanics, Advanced Modeling and Simulation in Engineering Sciences 4 (2017), No. 1, 7.

[29] A. DeSimone, L. Heltai, and C.Manigrasso, Tools for the Solution of PDEs Defined on Curved Manifolds with deal.II, SISSA, Report

No. 42/2009/M, 2009.

[30] M. Fehling and W. Bangerth, Algorithms for parallel generic hp-adaptive finite element software, ACM Trans. Math. Software 48

(2022).

[31] M.Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, and F. Rossi, GNU Scientific Library Reference Manual, 3rd ed., Net-

work Theory Ltd., 2009.

[32] R. Gassmöller, H. Lokavarapu, E. Heien, E. G. Puckett, and W. Bangerth, Flexible and scalable particle-in-cell methods with adaptive

mesh refinement for geodynamic computations, Geochemistry, Geophysics, Geosystems 19 (2018), No. 9, 3596–3604.

[33] C. Geuzaine and J.-F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J.

Numer. Methods Engrg. 79 (2009), No. 11, 1309–1331.

[34] N. Giuliani, A.Mola, and L. Heltai, π-BEM: A flexible parallel implementation for adaptive, geometry aware, and high order bound-

ary element methods, Advances in Engineering Software 121 (2018), 39–58.

[35] A. Griewank, D. Juedes, and J. Utke, Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in

C/C++, ACM Trans. Math. Software 22 (1996), No. 2, 131–167.

[36] GSL: GNU Scientific Library, http://www.gnu.org/software/gsl.

[37] J. Heinz, P.Munch, and M. Kaltenbacher, High-order non-conforming discontinuous Galerkin methods for the acoustic conservation

equations, Int. J. Numer. Methods Engrg. 124 (2023), No. 9, 2034–2049.

[38] L. Heltai and A.Mola, Towards the integration of CAD and FEM using open source libraries: a collection of deal.II manifold wrap-

pers for the OpenCASCADE library, SISSA Report, 2015.

[39] L. Heltai, W. Bangerth, M. Kronbichler, and A.Mola, Propagating geometry information to finite element computations, ACM Trans.

Math. Software 47 (2021), No. 4, 32/1–30.

[40] V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems, ACM Trans.

Math. Software 31 (2005), No. 3, 351–362.

[41] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps,

A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M.Willenbring, A.Williams, and K. S. Stanley, An overview of the Trilinos project,

ACM Trans. Math. Software 31 (2005), 397–423.

[42] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S.Woodward, SUNDIALS: suite of nonlinear and

differential/algebraic equation solvers, ACM Trans. Math. Software 31 (2005), No. 3, 363–396.

[43] B. Janssen and G. Kanschat, Adaptive multilevel methods with local smoothing for H1- and Hcurl-conforming high order finite ele-

ment methods, SIAM J. Sci. Comput. 33 (2011), No. 4, 2095–2114.

[44] G. Kanschat, Multi-level methods for discontinuous Galerkin FEM on locally refined meshes, Comput. & Struct. 82 (2004), No. 28,

2437–2445.

[45] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput. 20 (1998),

No. 1, 359–392.

[46] D. A. Knoll and D. E. Keyes, Jacobian-free Newton–Krylov methods: a survey of approaches and applications, J. Comput. Physics 193

(2004), No. 2, 357–397.

[47] M. Kronbichler and K. Kormann, A generic interface for parallel cell-based finite element operator application, Comput. Fluids 63

(2012), 135–147.

[48] M. Kronbichler and K. Kormann, Fast matrix-free evaluation of discontinuous Galerkin finite element operators, ACM Trans. Math.

Software 45 (2019), No. 3, 29/1–40.

[49] M. Kronbichler, K. Kormann, N. Fehn, P.Munch, and J.Witte, A Hermite-like basis for faster matrix-free evaluation of interior penalty

discontinuous Galerkin operators, arXiv:1907.08492, 2019.

[50] M. Kronbichler, D. Sashko, and P.Munch, Enhancing data locality of the conjugate gradient method for high-order matrix-free

finite-element implementations, The Int. J. High Performance Computing Applications (2022) 10943420221107880.

[51] M. Kronbichler, S. Schoeder, C.Müller, and W. A.Wall, Comparison of implicit and explicit hybridizable discontinuous Galerkin meth-

ods for the acoustic wave equation, Int. J. Numer. Meth. Eng. 106 (2016), No. 9, 712–739.

[52] D. Lebrun-Grandié, A. Prokopenko, B. Turcksin, and S. R. Slattery, ArborX: a performance portable geometric search library, ACM

Trans. Math. Software 47 (2020), No. 1, 2/1–15.



246  D.Arndt et al., The deal.II library, Version 9.5

[53] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted

Arnoldi Methods, SIAM, Philadelphia, 1998.

[54] List of Changes for 9.5, https://www.dealii.org/developer/doxygen/deal.II/changes_between_9_4_2_and_9_5_0.html.

[55] J. Lottes, Optimal polynomial smoothers for multigrid V-cycles, arXiv:2202.08830, 2022.

[56] R. E. Lynch, J. R. Rice, and D. H. Thomas, Direct solution of partial difference equations by tensor product methods, Numerische Math-

ematik 6 (1964), No. 1, 185–199.

[57] M.Maier, M. Bardelloni, and L. Heltai, LinearOperator – a generic, high-level expression syntax for linear algebra, Computers and

Mathematics with Applications 72 (2016), No. 1, 1–24.

[58] M.Maier, M. Bardelloni, and L. Heltai, LinearOperator Benchmarks, Version 1.0.0, March 2016.

[59] P.Munch, T. Heister, L. P. Saavedra, and M. Kronbichler, Efficient distributed matrix-free multigrid methods on locally refined

meshes for FEM computations, ACM Trans. Parallel Computing 10 (2023), No. 1, 1–38.

[60] muparser: Fast Math Parser Library, https://beltoforion.de/en/muparser.

[61] OpenCASCADE: Open CASCADE Technology, 3D Modeling & Numerical Simulation, http://www.opencascade.org/.

[62] M. Phillips and P. Fischer, Optimal Chebyshev smoothers and one-sided V-cycles, arXiv:2210.03179, 2022.

[63] M. Phillips, S. Kerkemeier, and P. Fischer, Auto-tuned preconditioners for the spectral element method on GPUs, arXiv:2110.07663,

2021.

[64] S. D. Proell, P. Munch, M. Kronbichler, W. A.Wall, and C.Meier, A highly efficient computational framework for fast scan-resolved

simulations of metal additive manufacturing processes on the scale of real parts, arXiv:2302.05164, 2023.

[65] J. Reinders, Intel Threading Building Blocks, O’Reilly, 2007.

[66] D. Ridzal and D. P. Kouri, Rapid Optimization Library, Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States), Re-

port, 2014.

[67] A. Sartori, N. Giuliani, M. Bardelloni, and L. Heltai, deal2lkit: A toolkit library for high performance programming in deal.II, SoftwareX

7 (2018), 318–327.

[68] T. Schulze, A. Gessler, K. Kulling, D. Nadlinger, J. Klein, M. Sibly, and M. Gubisch, Open Asset Import Library (assimp),

https://github.com/assimp/assimp, 2021.

[69] SymEngine: Fast Symbolic Manipulation Library, Written in C++, https://symengine.org/.

[70] The CGAL Project, CGAL User and Reference Manual, 5.4.1 ed., CGAL Editorial Board, 2022,

https://doc.cgal.org/5.4.1/Manual/packages.html.

[71] The HDF Group, Hierarchical Data Format, version 5, 2022, http://www.hdfgroup.org/HDF5/.

[72] The Trilinos Project Team, The Trilinos Project Website, https://trilinos.github.io/.

[73] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang, N. Ellingwood, R. Gayatri, E. Harvey, D. S. Hollman, D. Ibanez, N. Liber,

J. Madsen, J. Miles, D. Poliakoff, A. Powell, S. Rajamanickam, M. Simberg, D. Sunderland, B. Turcksin, and J.Wilke, Kokkos 3: Program-

ming Model Extensions for the Exascale Era, IEEE Trans. Parallel Distributed Systems 33 (2022), No. 4, 805–817.

[74] B. Turcksin, M. Kronbichler, and W. Bangerth, WorkStream – a design pattern for multicore-enabled finite element computations,

ACM Trans. Math. Software 43 (2016), No. 1, 2/1–29.

[75] J. Witte, D. Arndt, and G. Kanschat, Fast tensor product Schwarz smoothers for high-order discontinuous Galerkin methods, Compu-

tational Methods in Applied Mathematics 21 (2021), No. 3, 709–728.

[76] J. Zhang, J. Brown, S. Balay, J. Faibussowitsch, M. Knepley, O.Marin, R. T.Mills, T. Munson, B. F. Smith, and S. Zampini, The PetscSF

scalable communication layer, IEEE Trans. Parallel Distributed Systems 33 (2021), No. 4, 842–853.


