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1 Overview

deal.II version 9.5.0 was released July 7, 2023. This paper provides an overview of the new features of this

release and serves as a citable reference for the deal.II software library version 9.5. deal.II is an object-

orientedfinite element library used around theworld in the development of finite element solvers. It is available

for free under the GNULesser General Public License (LGPL). Downloads are available at https://www.dealii.org/

and https://github.com/dealii/dealii.

The major changes of this release are:

– Substantial updates and extensions to deal.II’s interfaces to other libraries (see Section 2.1). This includes,

in particular, the integration of Kokkos (Section 2.1.1); additions and updates to the PETSc and Trilinos

interfaces (Sections 2.1.3 and 2.1.4, respectively).

– Uniform handling of nonlinear solver packages (Section 2.1.2) and a uniformway of defining callbacks used

by external libraries (Section 2.1.5).

– Advances in matrix-free infrastructure (see Section 2.2).

– Advances in non-matching support (see Section 2.3).

– New features related to linear algebra (see Section 2.4).

– C++ language modernization (see Section 2.5).

– Build-system modernization (see Section 2.6).
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While all of thesemajor changes are discussed in detail in Section 2, there are a number of other noteworthy

changes in the current deal.II release, which we briefly outline in the remainder of this section:

– The new function CellAccessor::as_dof_handler_iterator() simplifies the conversion from a Cell-

Accessor to a DoFCellAccessor. The old way,

C++ code

const auto cell_dof = typename DoFHandler<dim, spacedim>::

active_cell_iterator(&dof_handler.get_triangulation(),

cell->level(), cell->index(), &dof_handler);

was lengthy and error-prone. In contrast, the following function is substantially clearer and more concise:

C++ code

const auto cell_dof = cell->as_dof_handler_iterator(dof_handler);

– Several functions used intensively during initialization of deal.II-based programs, such as the refine-

ment of triangulations, the enumeration of degrees of freedom, the setup of global-coarsening multigrid

algorithms, and several evaluation functions of the MappingQ class representing a polynomial mapping of

quadrilateral and hexahedral, have been overhauled to runmore quickly and sometimes also consume less

memory. These and related improvements are guided by several performance tests that are used tomonitor

the performance of the library over time.

The changelog lists more than 120 other features and bugfixes.

2 Major changes to the library

This release of deal.II contains a number of large and significant changes, which will be discussed in this

section. It of course also includes a vast number of smaller changes and added functionality; the details of these

can be found in the file that lists all changes for this release (see [54]).

2.1 Updates to interfaces to other packages

For many operations, deal.II relies on external libraries – some of these are optional, others are mandatory

(such as Boost and, now, Kokkos); a complete list of external dependencies is provided in Section 3. A substantial

amount of work has gone into overhauling and extending these interfaces for the current release, as detailed

in the following subsections.

2.1.1 Integration of Kokkos

Kokkos [73] is a C++ library that enables the creation of performance portable applications for all major high-

performance computing platforms. It implements a programming model that allows developers to write code

that can efficiently run on diverse architectures. Kokkos provides abstractions for both parallel execution of

code and data management. It supports a wide range of backend programming models, including CUDA, HIP,

SYCL, HPX, OpenMP, and C++ threads, and continues to evolve with the development of new hardware and

corresponding backend options.

deal.II has, for several releases already, used CUDA to offload some operations onto GPUs. It has also

had interfaces to CUDA-based linear algebra libraries. Yet, the diversification of GPU platforms away from a

single vendor (Nvidia) has made it clear that we need a different strategy to support what users want. As a
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consequence, Kokkos has become a mandatory dependency of deal.II as part of the current release; if it is not

found on a given system during configuration time, then the library will fall back on a copy of Kokkos stored in

the bundled/ directory in the same way as we already interface with Boost.

In the current release, LinearAlgebra::distributed::Vector and the CUDAWrappers::MatrixFree

framework are using Kokkos. This allows them to work on all the architectures supported by Kokkos. In

particular, the step-64 example can now also be run on the CPU and doesn’t require a GPU anymore. The Kokkos

backend used by deal.II is Kokkos::DefaultExecutionSpace which corresponds to the highest available

backend in the hierarchy device, host-parallel, and host-serial at the time Kokkos was configured.

2.1.2 Uniform interface for nonlinear solvers

With the current release, deal.II now supports solvers for nonlinear problems provided by several different

external packages: (i) KINSOL (part of SUNDIALS); (ii) SNES (part of PETSc, see Section 2.1.3); and (iii) NOX (part

of Trilinos, see Section 2.1.4). The wrappers are provided by the classes PETScWrappers::NonlinearSolver

<VectorType>, SUNDIALS::KINSOL<VectorType>, and TrilinosWrappers::NOXSolver<VectorType>, respec-

tively.

All three of these classes have a very similar interface, except that they vary in the kind of algorithms and

parameters offered. The new class NonlinearSolverSelector<VectorType> provides a wrapper on top of the

three external solvers with a unified interface. The user can either let deal.II decide which of the packages to

use (depending on the current availability of the external packages) or specify it manually.

The following code snippet shows a complete example using the new class for applying a Newton solver by

automatically choosing one of the available packages:

C++ code

using NLS = NonlinearSolverSelector<VectorType>;

NLS::AdditionalData additional_data(

NLS::automatic, // other options: kinsol, nox, petsc_snes

NLS::newton);

NLS nonlinear_solver(additional_data, mpi_communicator);

solver.reinit_vector = [&](VectorType &x) {/*...*/};

solver.residual = [&](const VectorType &src,

VectorType &dst) {/*...*/};

solver.setup_jacobian = [&](const VectorType &src) {/*...*/};

solver.apply_jacobian = [&](const VectorType &src,

VectorType &dst) {/*...*/};

solver.solve_with_jacobian = [&](const VectorType &src,

VectorType &dst,

const double tol) {/*...*/};

solver.solve(current_solution);

Note that while the selector class provides a unified interface and therefore allows to easily switch between

backends, there are caseswhenusers need to use the underlyingwrapper classes, if, e.g., the functionality is only

provided by one implementation. Details of each of the implementations are discussed in subsequent sections.

2.1.3 Updates and additions to the PETScwrappers

The deal.II classes wrapping PETSc objects have been rewritten in substantial ways to support PETSc’s Sys-

tem of Nonlinear Equations Solver SNES and the Ordinary Differential Equations (ODE) solver TS [1]. First, we
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briefly describe the most important improvements to the existing classes and then outline the newly designed

interfaces to the nonlinear solvers, togetherwith a new interface to the communicationmodule SF in PETSc [76].

Vector andmatrix classes of the PETScwrappers havebeen extendedwith an additional constructor that can

wrap an already existing PETSc vector ormatrix, respectively. The BlockVector and BlockSparseMatrix classes

now internally use PETSc nested objects, i.e., VECNEST and MATNEST respectively. We have added a new class

PETScWrappers::PreconditionShell to support user-defined preconditioning that can be simply customized

as the following code snippet shows:

C++ code

PETScWrappers::PreconditionShell preconditioner(/*...*/);

preconditioner.vmult = [&](const VectorType &src,

VectorType &dst) {/*...*/};

The resulting object can be passed to PETSc and used within the nonlinear solver hierarchy. See Section 2.1.5

for additional information on such kind of callbacks.

The PETSc SNES subpackage solves systems of nonlinear equations of the form F(x) = 0. The interface to

SNES in the class PETScWrappers::NonlinearSolver has been modeled on the already existing interface to the

KINSOL solver from the SUNDIALS package: the nonlinear problem is specified via a set of callbacks as shown

above in Section 2.1.2. The default configuration is set up to use a Jacobian-free Newton–Krylov (JFNK) ap-

proach [46], using solve_with_jacobian as linear solver. Numerous other solver configurations are possible

and can be selected programmatically using the constructor arguments, or via the powerful command line cus-

tomization of PETSc. This includes, for example, quasi-Newtonmethods, Anderson’s acceleration, and nonlinear

preconditioning [20]. The step-77 tutorial program has gained a section that discusses the use of these new SNES

interfaces.

The PETSc TS subpackage solves ODEs in explicit or implicit form [1], i.e.,

u̇ = G(t, u) (explicit)

F(t, u, u̇) = 0 (implicit).

The interface to TS has been modeled on the already existing interfaces to the IDA and ARKODE solvers from the

SUNDIALS package. Specifically:

C++ code

PETScWrappers::TimeDependentSolver<VectorType> solver(/*...*/);

// If solving udot = G(t,u)

solver.explicit_function = [&](const double t,

const VectorType &u,

VectorType &G) {/*...*/};

// If solving F(t,u,udot) = 0

solver.implicit_function = [&](const double t,

const VectorType &u,

const VectorType &udot,

VectorType &F) {/*...*/};

In addition to specifying the function callbacks, users can further customize the solution of the linearized equa-

tions α ∂F /∂u̇ + ∂F /∂u via the following callbacks:

C++ code

solver.setup_jacobian = [&](const double t,

const VectorType &u,

const VectorType &udot,

const double alpha) {/*...*/};

solver.solve_with_jacobian = [&](const VectorType &rhs,

VectorType &sol) {/*...*/};



D. Arndt et al., The deal.II library, Version 9.5  235

Aswith SNES, the default configuration of an implicit solver is set up to use a JFNK approach, and the entire suite

of solvers offered by PETSc is available programmatically or via the command line interface, including adaptive

time-stepping and Implicit–Explicit schemes.

We close this section by introducing the interface to the SF subpackage, the abstract communication

model of PETSc. The deal.II interface to SF has been modeled on the existing Utilities::MPI::Partitioner

and Utilities::MPI::NoncontiguousPartitioner classes, with minimal changes for the communication

routines API; the equivalent classes based on SF are PETScWrappers::Partitioner and PETScWrappers::

CommunicationPattern. Future developments will add support for GPU buffers.

We refer interested readers to our documentation for more advanced functions of the SNES, TS, and SF

wrappers, and to the tests/petsc/ folder for examples on how to use them.

2.1.4 Interfaces to Trilinos’ Belos and NOX packages

Trilinos is a large collection of individual subpackages [41, 72]. deal.IIhas longhad interfaces to the Trilinos

packages that provide parallel vector and matrix classes (both Epetra and Tpetra), as well as a small number

of linear algebra packages for iterative solvers and preconditions. In the current release, there are now also

interfaces to two additional packages: Belos and NOX.

Belos is the successor of the Trilinos package AztecOO and provides basic and advanced iterative solvers

that heavily rely on multivector operations. The interface of the wrapper is similar to deal.II’s own iterative

solvers:

C++ code

TrilinosWrappers::SolverBelos<VectorType> solver(/*...*/);

solver.solve(matrix, x, r, preconditioner);

The omitted constructor arguments allow selecting the actual iterative solver to be used, along with other con-

figuration options.

Secondly,wehave added awrapper to NOX, a nonlinear solver library that is similar to both the KINSOL solver

from the SUNDIALSpackage towhichwealreadyhad interfaces, and also to the SNES collections of functions from

PETSc (see also Section 2.1.3). As for the SNES interface above, the NOX interface is drive by the callbacks shown

in Section 2.1.2, and implemented in the TrilinosWrappers::NOXSolver class.

2.1.5 Uniform error reporting in callbacks

With the current release, deal.II has gained interfaces to several external packages that are largely driven via

callbacks – see for example the code examples for nonlinear or ODE solvers in the previous sections.

This substantially enlarged use of callbacks used by different backend libraries raises the issue that each

underlying package has its own convention on how success or error codes of these callbacks should be encoded.

In the case of PETSc’s SNES and TS, and for Trilinos’s NOX, success is indicated by a zero integer return value,

whereas failure is indicated by a nonzero return value. On the other hand, the SUNDIALS packages indicate

success by a zero integer return value, a recoverable failure with a positive value, and an irrecoverable failure

with a negative value. Newer PETSc versions can deal with recoverable failures as well, in some cases by calling

back into PETSc from a callback to set an error flag, in others by setting the elements of a returned vector to

NaN. None of these conventions mesh well with C++ where error codes are generally indicated via exceptions.

It is conceivable that libraries we want to interface with in the future use yet other conventions.

In order to shield those who write these callbacks from having to learn the intricacies of the underlying

libraries, we have adopted a convention whereby user-provided callbacks are just regular functions that re-

turn errors via exceptions as is common in C++. Internally, the interfaces to different underlying libraries then

translate these exceptions into the appropriate error codes, saving the thrown exception for possible later use;
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if an underlying library supports recoverable errors, then a callback should indicate such an error by throwing

an object of the special type RecoverableUserCallbackError. If one of the underlying packages returns with

an error caused by a user-provided callback throwing an exception, then the wrapper code rethrows the pre-

viously saved exception, allowing the calling site to catch it to obtain information about what might have gone

wrong.

This convention for user callbacks is documented in a glossary entry that is also linked to from the docu-

mentation of all variables storing callbacks.

2.2 Updates to matrix-free algorithms

The current release includes numerous updates to the matrix-free infrastructure, including:

– In release 9.3, we enabled parallel hp-operations in the matrix-free infrastructure. The infrastructure did

not work properly for cells that do not have any degrees of freedom because they use FE_Nothing. This

has been fixed now. Furthermore, FE_Nothing now also works together with discontinuous Lagrange el-

ements (i.e., with the FE_DGQ class). Due to the popularity of FE_Nothing as a means to enable or disable

cells, we have introduced the new class ElementActivationAndDeactivationMatrixFree, which wraps a

MatrixFree object, only loops over all active cells, and optionally interprets faces between active and deac-

tivated cells as boundary faces. This functionality has enabled simulations in powder-bed-fusion additive

manufacturing in [64].

– The matrix-free infrastructure allows interleaving cell loops with vector updates by providing pre/post

functions that are run on index ranges. The deal.II library uses this feature, e.g., to improve the perfor-

mance of (preconditioned) conjugate gradient solvers [50] as well as of relaxation and Chebyshev iterations

(see Subsection 2.4). Up to release 9.3, the pre/post infrastructure was only supported for continuous ele-

ments (cell loop); now, it also works for discontinuous elements which also require face loops to assemble

jump and penalty terms.

– The operator CellwiseInverseMassMatrix now also efficiently evaluates the inverse for coupling (dyadic)

coefficients in the case of multiple components:

(

vi , Dijuj
)

Ω(K)
, 1 6 i, j 6 c

with c being the number of components and D ∈ R
c×c a tensorial coefficient. The algorithm relies on the

construction of the element mass matrix,

M =
(

I1 ⊗ NT)(D ⊗ I2
)(

I1 ⊗ N
)

with N being the tabulated values of shape functions at quadrature and I1 , I2 identity matrices associated

to c vector components and the quadrature points, respectively. The algorithms assumes a square N:

M−1 =
(

I1 ⊗ N−1
)(

D−1 ⊗ I2
)(

I1 ⊗ N−T
)

.

For hypercube-shaped cells, N−1 has an explicit representation again in terms of tensor products; for exam-

ple, in 3D it can be expressed as N−1 = N−11D ⊗ N−11D ⊗ N−11D , allowing the use sum factorization [51].

2.3 Advances in non-matching support

The (matrix-free) non-matching support of deal.II heavily relies on the classes FEPointEvaluation and

RemotePointEvaluation, which were introduced in release 9.3. While FEPointEvaluation is responsible for

efficient evaluation/integration at arbitrary (reference) points within a cell, RemotePointEvaluation is respon-

sible for sorting points with regards to the cells they reside in, and for the communication necessary to evaluate

solutions on cells owned by other MPI processes.
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In the current release, we have considerably optimized FEPointEvaluation, e.g, by caching the evaluated

shape functions, templating loop bounds, and exploiting the tensor-product structure of the shape functions if

all points are positioned on a face, a commonuse case in the context of fluid–structure interaction. Furthermore,

the extended class NonMatching::MappingInfo allows for precomputing and storing metric terms, like the Ja-

cobian, its determinant, or the unit outer normal vectors. This is useful in cases in which these metric terms

do not change and can be reused, e.g., in the context of iterative solvers. This development is part of an effort

to make the interfaces of the (matrix-free) non-matching support more similar to the ones of the established

matrix-free infrastructure of deal.II for fixed quadrature formulas.

In addition to these node-level performance optimizations, we added experimental support for (i) gener-

ating intersections of distributed non-matching grids and working on them, and (ii) multigrid with non-nested

levels. In the following, we describe these in more detail.

2.3.1 Intersected meshes

In the current release, we added experimental support to compute intersections on parallel::distributed::

Triangulation objects using CGAL [70]. For this purpose, we introduced a free function distributed_compute_

intersection_locations() that computes intersections and relevant information for communication from

intersection_requests. The data structure intersection_requests is a vector indicating entities of a given

triangulation that intersections are computed upon. Each entity (face or cell) is described by a vector of vertices.

Currently, the function is placed in GridTools::internal, since the location and arguments of the function

might still change in the future. To compute intersections between two geometric entities, the function internally

uses the new function CGALWrappers::compute_intersection_of_cells().

For the common case of Nitsche-typemortaring, quadrature points must be distributed on the intersections

to evaluate the underlying physical coupling terms. The data structure returned by distributed_compute_

intersection_locations() can convert itself to a data structure that canbeused tofill RemotePointEvaluation.

This conversion is triggered by the member function convert_to_distributed_compute_point_locations_

internal(), given the number of quadrature points per intersection. The whole procedure is done without

communication. This functionality is useful since RemotePointEvaluation can nowbe used to access quantities

at quadrature points on intersections without further ado. To reduce the user’s effort, we plan to add a wrapper

that takes care of the described procedure and provides interfaces like FEEvaluation to access quantities easily,

e.g., in a matrix-free loop.

The procedure described above and an early version of the wrapper have been used successfully in [37] to

performNitsche-typemortaring in the context of the conservative formulation of acoustic equations discretized

with a discontinuous Galerkin method to suppress artificial modes.

2.3.2 Non-nested multigrid

deal.II has provided support for geometric multigrid methods (GMG) for locally refined meshes nearly since

its inception. (deal.II also supports algebraic multigrid methods by interfacing to the external libraries PETSc

and Trilinos.) Traditionally, these GMGs were based on local-smoothing methods (described many years later

in [43, 44], see also [23]), and more recently also global-coarsening algorithms [59]. The global-coarsening in-

frastructure, furthermore, allows globally coarsening the polynomial degree (p-multigrid), with specific appli-

cability to hp-adaptivemethods. In the current release, we have added support for the case that multigrid levels

are given by non-nested meshes [2, 16, 19]. An example for such meshes is presented in Fig. 1.

The current implementation extends the existing global-coarsening infrastructure by introducing, in addi-

tion to the (conformal) MGTwoLevelTransfer, a new (non-conformal) two-level transfer operator:
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– Our relaxation preconditioner (PreconditionRelaxation) now also allows interleaving cell loops and vec-

tor updates related to relaxation. The relaxation iteration reads as

x(i+1) ← x(i) + ωP−1(b − Ax(i)).

In the case that the preconditioner P is a diagonal matrix, the zeroing of the destination vector xi+1 can be

performed during a pre-operation of the application of A and the vector update x(i+1)
j

← x(i)
j
+ ωP−1j,j (bj −

(Ax(i))j) during a post operation, allowing for a reduction in the number of read and write accesses from

8 and 4, to 1 and 3, respectively. The existing pre/post support in our Chebyshev-preconditioner imple-

mentation (PreconditionChebyshev) has been improved. In addition, both PreconditionRelaxation and

PreconditionChebyshev support pre/post optimizations now not only for diagonal preconditioners but

also for preconditioners that are built around cell loops and, as a consequence, support interleaving. Ex-

amples of such preconditioners are patch-based additive Schwarz preconditioners.

– In the context of additive Schwarz methods, the preconditioner application is defined as

v = P−1u =
∑

RTi A
−1
i Riu

with Ai = RiAR
T
i being a block of the assembled systemmatrix A restricted to an index set described by Ri .

In the special case when Ri denotes the unknowns of cells, the expression RiAR
T
i resembles the reverse of

matrix assembly. During the restriction step, rows of the systemmatrix that are potentially owned by other

processes are needed. In deal.II, it is not possible to access remote entries of sparse matrices. Two new

functions query this information. First, restrict_to_serial_sparse_matrix() creates, based on a given

index set, a serial sparse matrix from a distributed matrix:

C++ code

SparseMatrixTools::restrict_to_serial_sparse_matrix (

sparse_matrix_in, sparsity_pattern, requested_index_set,

system_matrix_out, sparsity_pattern_out)

This function can be used, e.g., if the granularity of the additive Schwarz preconditioner is a complete sub-

domain, potentially, with a fixed overlap.

In contrast, restrict_to_full_matrices() performs the restriction for arbitrary number of patch-

es/blocks:

C++ code

SparseMatrixTools::restrict_to_full_matrices (

sparse_matrix_in, sparsity_pattern, indices_of_blocks, blocks)

The data is stored in dense matrices, since the typical granularity is a (rather small) cell-centric or vertex-

star patch.

– For certain types of configurations, there are computationally more efficient approaches than extracting

submatrices from an assembled matrix. For example, for the Laplace operator on 2D Cartesian meshes, the

(element/patch) matrix is given as

Acarti = K1 ⊗M0 +M1 ⊗ K0

i.e., as the tensor product of 1D mass and stiffness matrices. The inverse is explicitly available via the fast

diagonalization method [56] as

(

Acarti

)−1
= (T1 ⊗ T0)(Λ1 ⊗ I + I ⊗ Λ0)

−1(TT1 ⊗ TT0 )

with Ti and Λi being the (orthonormal) eigenvectors and the diagonal matrix of eigenvalues, obtained from

a generalized eigendecomposition KiTi = MiTiΛi , as also used by deal.II’s step-59 tutorial program. Since

Ai ≈ A
cart
i might be a good approximation also in the case of non-Cartesian meshes and Acarti has an explicit

inverse, it is considered in the literature as a patch preconditioner in the context of additive Schwarz [24, 63,
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75] and block-Jacobi methods [49]. In deal.II, the new function TensorProductMatrixCreator::create_

laplace_tensor_product_matrix() computes Ki and Mi for cell-centric patches with a specified overlap

and givenboundary conditions. A set of Ti and Λi is applied to a cell via TensorProductMatrixSymmetricSum

or to a collection of cells via the new class TensorProductMatrixSymmetricSumCollection, which tries to

reuse the eigenvalues and eigenvectors between cells.

2.5 C++ language modernization

This version of deal.II uses C++14 as the language standard to which its code base is written. It can also use

the classes std::optional and std::variant if the compiler supports C++17, but falls back to implementations

obtained via the Boost library otherwise, and this is true also for a number of individual functions that were

introduced in C++17 or C++20.

As part of the current release, deal.II now also uses some C++20 features to annotate classes and functions

with regard to properties template arguments need to satisfy. This aids in situations such as with the following

function:

C++ code

template <class MeshType>

std::vector<typename MeshType::active_cell_iterator>

find_cells_adjacent_to_vertex(const MeshType & mesh,

const unsigned int vertex);

This function is intended to be called with either a Triangulation or DoFHandler object as first argument (and

documents this requirement), but the compiler can not check this requirement at the call site and will gladly

call it with any other kind of object as well. Because the implementation of the function is in a .cc file, and the

template is only instantiated for the two classes mentioned above, calling the function (erroneously) with any-

thing else as first argument is not detected at compile time, but only later when the linker reports an undefined

symbol.

We have started to address this by annotating functions using C++20-style ‘requires’ clauses:

C++ code

template <class MeshType>

requires (concepts::is_triangulation_or_dof_handler<MeshType>)

std::vector<typename MeshType::active_cell_iterator>

find_cells_adjacent_to_vertex(const MeshType & mesh,

const unsigned int vertex)

If the compiler supports C++20, then the added clausewill cause the compiler to reject any call to the function for

which the first argument MeshType does not satisfy the named concept, which is defined as the type being either

a Triangulation or DoFHandler object, as intended. (The requires annotation is suppressed if the compiler

does not support C++20.)

Given the heavy dependence of deal.II on templates, there are likely hundreds or thousands of locations

that should be annotated with requirements on template arguments over time; for the moment, the library

contains some 300 of these requires clauses.

The next release of deal.II will build upon C++17.

2.6 Build-systemmodernization

deal.II’s original CMakebuild system,merged for the 8.0.0 release in 2013,waswritten for CMake 2.8.8 and thus

lacks many of the modern features introduced into CMake over the last several years. This created a particular

issue with an increasing number of dependencies switching their CMake configuration to import targets, where
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all necessary information for using an external resource, such as include directories and library link interfaces,

are associated with an imported CMake target rather than being provided with individual (and inconsistently)

named CMake variables.With the deal.II 9.5 release the handling of external dependencies has been rewritten

entirely to support imported targets. The Trilinos and Kokkos interfaces have been modernized. We plan to

migrate all remaining dependencies to import targets wherever possible for the next release.

deal.II’s CMake project configuration itself now exports three targets, dealii::dealii_debug, dealii::

dealii_release, and dealii::dealii. Linking against one of thefirst two variants via target_link_libraries()

populates the target with all necessary include directories and the full link interface necessary for deal.II.

The third variant, dealii::dealii, automatically switches between debug and release interface depending on

the build type set via CMAKE_BUILD_TYPE. The dealii::dealii third variant also populates compiler and linker

options,whereas for the first two variants a client project has to ensure that the compiler and linker are properly

set up. The new import targets now make it possible to configure a dependent project without the use of any

deal.II specific macros:

Code

cmake_minimum_required(VERSION 3.13.4)

set(CMAKE_BUILD_TYPE Debug CACHE STRING "")

project(step CXX)

find_package(deal.II 9.5.0 REQUIRED)

add_executable(step step.cc)

target_link_libraries(step dealii::dealii)

2.7 New and improved tutorials and code gallery programs

While there are no new deal.II tutorial programs in this release,manywere extensively revised: Around 145 of

the more than 2200 (non-merge) commits that went into this release touched the tutorial, in some cases adding

substantial amounts of text.

There are four new programs in the code gallery (a collection of user-contributed programs that often solve

more complicated problems than tutorial programs, and that are intended as starting points for further research

rather than as teaching tools):

– ‘A posteriori error estimator for first order hyperbolic problems’, contributed by Marco Feder;

– ‘Distributed moving laser heating’, contributed by Hongfeng Ma and Tatiana E. Itina;

– ‘Generalized Swift–Hohenberg equation solver’, contributed by Sam Scheuerman.

– ‘Information density-based mesh refinement’, contributed by Wolfgang Bangerth.

2.8 Incompatible changes

The 9.5 release includes around35 incompatible changes (see [54]).Manyof these incompatibilities change inter-

nal interfaces that are not usually used in external applications. That said, the following are worth mentioning

since they may have been more widely used:

– The class hp::DoFHandler has been removed. The DoFHandler class now implements all hp-related func-

tionality, as it has for the past two releases.

– We improved the type safety for active and future FE indices in the DoFHandler implementationby introduc-

ing a newdata type types::fe_index. Corresponding functions like DoFCellAccessor::active_fe_index()

and DoFHandler::get_active_fe_indices() have changed their interface.
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This rework also affects the serialization process of active FE indices. You will need to recreate your serial-

ized data if and only if you work in hp-mode, but can continue to use previously generated data otherwise.

For parallel::distributed::Triangulation when used with non-hp data, it is sufficient to increase the

version in the metadata file from ‘4’ to ‘5’.

– Several old interfaces to MatrixFree have been removed, e.g., initialization functions without Mapping ar-

gument and some queries to the number of cell batches as well as DoFHandler objects. In each case, new

interfaces are available.

3 How to cite deal.II

In order to justify thework the developers of deal.II put into this software, we ask that papers using the library

reference one of the deal.II papers. This helps us justify the effort we put into this library.

There are various ways to reference deal.II. To acknowledge the use of the current version of the library,

please reference the present document. For up-to-date information and a bibtex entry see

https://www.dealii.org/publications.html

The original deal.II paper containing an overview of its architecture is [14], and amore recent publication

documenting deal.II’s design decisions is available as [10]. If you rely on specific features of the library, please

consider citing any of the following:

– For geometric multigrid: [23, 43, 44, 59];

– For distributed parallel computing: [13];

– For hp-adaptivity: [15, 30];

– For partition-of-unity method (PUM) and finite el-

ement enrichment method: [28];

– For matrix-free and fast assembly techniques:

[47, 48];

– For computations on lower-dimensional mani-

folds: [29];

– For curved geometry representations and mani-

folds: [39];

– For integration with CAD files and tools: [38];

– For boundary element computations: [34];

– For the LinearOperator and PackagedOperation

facilities: [57, 58];

– For uses of the WorkStream interface: [74];

– For uses of the ParameterAcceptor concept, the

MeshWorker::ScratchData base class, and the

ParsedConvergenceTable class: [67];

– For uses of the particle functionality in deal.II:

[32].

deal.II can interface with many other libraries:

– ADOL-C [35]

– ArborX [52]

– ARPACK [53]

– Assimp [68]

– BLAS and LAPACK [5]

– Boost [18]

– CGAL [70]

– cuSOLVER [25]

– cuSPARSE [26]

– Gmsh [33]

– GSL [31, 36]

– Ginkgo [6, 7]

– HDF5 [71]

– METIS [45]

– MUMPS [3, 4]

– muparser [60]

– OpenCASCADE [61]

– p4est [21, 22]

– PETSc [11, 12]

– ROL [66]

– ScaLAPACK [17]

– SLEPc [40]

– SUNDIALS [42]

– SymEngine [69]

– TBB [65]

– Trilinos [41, 72]

– UMFPACK [27]

Please consider citing the appropriate references if you use interfaces to these libraries.

The two previous releases of deal.II can be cited as [8, 9].
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