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1 Overview

deal.II version 9.2.0 was released May 20, 2020. This paper provides an overview of the new features of this

release and serves as a citable reference for the deal.II software library version 9.2. deal.II is an object-

oriented inite element library used around the world in the development of inite element solvers. It is avail-

able for free under the GNU Lesser General Public License (LGPL). Downloads are available at https://www.

dealii.org/ and https://github.com/dealii/dealii.

The major changes of this release are:

ś A new, parallel, fully distributed triangulation class (see Section 2.1);

ś Substantially improved performance for very large computations on tens or hundreds of thousands of

processor cores and up to trillions of unknowns (see Section 2.2);

ś Better support for parallel hp-adaptive algorithms (see Section 2.3);

ś Support for particle-based methods (see Section 2.4);

ś Improved performance of the symbolic diferentiation framework (see Section 2.5);
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ś Advances in SIMD capabilities and the matrix-free infrastructure (see Section 2.6);

ś Advances in GPU support (see Section 2.7);

ś Better use of modern C++ language features (see Section 2.8);

ś Seven new tutorial programs (see Section 2.9).

These major changes are discussed in detail in Section 2. There are a number of other noteworthy changes in

the current deal.II release that we briely outline in the remainder of this section:

ś deal.II had decent support for solving complex-valued problems for a while already (e.g., ones in quan-

tum mechanics Ð like the equation used in the step-58 tutorial program covered below Ð or for time-

harmonic problems). However, there were two areas in which support was missing. First, the UMFPACK

direct solver packaged with deal.II did not support solving complex-valued linear problems. This has

now been addressed: UMFPACK actually can solve such systems, we just needed to write the appropriate

interfaces. Second, the DataOut class that is responsible for converting nodal data into information that

can then be written into iles for visualization did not know how to deal with vector- and tensor-valued

ields whose components are complex numbers. An example for this is to solve the time-harmonic ver-

sion of the Maxwell equations that has the electric and magnetic ields as solution. This, too, has been

addressed in this release.

ś The new DiscreteTime class provides a more consistent, more readable, and less error-prone approach

to control time-stepping algorithms within time-dependent simulations. While providing a rich read-

only interface, the non-const interface of this class is designed to be minimal to enforce a number of

important programming invariants, reducing the possibility of mistakes in the user code. For instance,

DiscreteTime ensures that the inal time step ends precisely on a predeined end time, automatically

lengthening or shortening the inal time step.

ś A key component of deal.II are the FEValues and FEFaceValues classes that evaluate inite element

functions at quadrature points located on cells and faces of a cell, respectively, see [13]. This release

now contains a class FEInterfaceValues that considers the restriction of the shape functions from both

sides of a face and allows evaluating jumps and averages of shape functions along this face. These are

common components of the bilinear forms of discontinuous Galerkin schemes (as well as schemes for

fourth-order equations, see the discussion of step-47 below) and greatly simplify the implementation of

these methods.

ś Previously, the parallel::distributed::ContinuousQuadratureDataTransfer class, which transfers

local quadrature point data onto the children of newly reined cells, did not allow diferent cells to store

quadrature data of diferent lengths. This release lifts this restriction, which enables eicient quadrature

data storage and data transfer within a triangulation containing multiple material models, each with

their own number of local state variables and history variables. As an example, in a solid mechanics

simulation, we can assign a hyper-elastic material model to a region of the mesh with no associated

history variables, while in another part of the triangulation we incorporate an elasto-plastic constitutive

model, requiring the storage of local plasticity data at quadrature points. During each reinement of the

mesh, we can then use ContinuousQuadratureDataTransfer to transfer and interpolate plasticity data

from parent cells to their children, ignoring the cells with the hyper-elastic constitutive model.

The changelog lists more than 240 other features and bugixes.

2 Major changes to the library

This release of deal.II contains a number of large and signiicant changes that will be discussed in this

section. It of course also contains a vast number of smaller changes and added functionality; the details of

these can be found in the ile that lists all changes for this release, see [49].

https://dealii.org/developer/doxygen/deal.II/changes_between_9_1_1_and_9_2_0.html
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2.1 A new fully distributed triangulation class

Previously, all triangulation classes of deal.II had in common that the coarse grid is replicated by all pro-

cesses in a parallel environment, and the actual mesh used for computations is constructed by repeated re-

inement. However, this has its limitations in many applications where the mesh comes from an external

mesh generator in the form of a ile that frequently already contains millions or tens of millions of cells. For

such conigurations, applications might exhaust available memory already while reading the mesh on each

MPI process.

The new parallel::fullydistributed::Triangulation class targets this issue by distributing also the

coarse grid. Such a triangulation can be created by providing to each process a TriangulationDescrip-

tion::Description struct, containing (i) the relevant data to construct the local part of the coarse grid, (ii)

the translation of the local coarse-cell IDs to globally unique IDs, (iii) the hierarchy of mesh reinement steps,

and (iv) the owner of the cells on the active mesh level as well as on the multigrid levels. For the current

release, triangulations set up this way cannot be adaptively reined after construction, though we plan to

improve this for the next release.

The new fully distributed triangulation class supports 1D, 2D, and 3Dmeshes including geometric multi-

grid hierarchies, periodic boundary conditions, and hanging nodes.

2.2 Improved large-scale performance

Large-scale simulations with up to 304,128 cores have revealed bottlenecks in release 9.1 during initializa-

tion of a number of distributed data structures, due to the usage of expensive collective operations like

MPI_Allgather() and MPI_Alltoall(). Typical examples are the pre-computation of the indices of those

vector entries (or other linear index ranges) owned by each process, which were previously stored in an array

on every process. This information is needed to set up the Utilities::MPI::Partitioner class. In release

9.2, we have replaced these functions in favor of consensus algorithms [39], which can be found in the names-

pace Utilities::MPI::ConsensusAlgorithms (short: CA). Now, only the locally relevant information about

the index ranges is (re)computed when needed, which, for more than 100 MPI processes, uses point-to-point

communications and a single MPI_IBarrier().

Users can apply the new algorithms for their own dynamic-sparse problems by providing a list of tar-

get processes and pack/unpack routines either by implementing the interface CA::Process or by providing

std::function objects to CA::AnonymousProcess.

By replacing the collective communications during set up and removing the arrays that contain informa-

tion for each process (enabled by the application of consensus algorithms and other modiications Ð a full

list of modiications leading to this improvement can be found online), we were able to signiicantly improve

the set up time for large-scale simulations and to solve a Poisson problem with multigrid with 2.1 × 1012
unknowns on the SuperMUC-NG supercomputer with 304,152 cores [7, 8]. Figure 1 compares timings of simu-

lations of various problem sizes (including set up) on 49,152 MPI ranks using a matrix-free solver [8, 46, 47];

this solver uses discontinuous elements of degree 5 in a geometric multigrid (GMG) scheme. The compari-

son between the previous release 9.1 and the current release 9.2 shows that while the scaling for the V-cycle

had been very good before, many initialization routines have been considerably improved, especially the

enumeration of unknowns on the multigrid levels and the setup of the multigrid transfer.

As part of this efort, we ran benchmarks on the TACC Frontera system, where we were able to apply

the matrix-free geometric multigrid framework to a variable viscosity Stokes system and achieved weak and

strong scaling up to 114K MPI ranks with up to 2.1 × 1011 unknowns. This is likely the largest block system
currently solved with deal.II and required various optimizations and ixes on top of the ones mentioned

above: (i) Bug ixes to concurrent point to point communications. (ii) Fixes to multigrid transfer with adap-

tive reinement and more than 4 × 109 unknowns. (iii) Fixes to index sets in block indices with more than

4 × 109 unknowns. (iv) Fixes to computations with more than 4 × 109 active cells. (v) Implementation of

IDR(s) solvers to reduce memory overhead. For more details, see [19].
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Fig. 1: Comparison of initialization costs of various data structures in the 9.1 release (left) and the new 9.2 release (right) when

run on 49,152 MPI ranks.

2.3 Better support for parallel hp-adaptive algorithms

Since the previous release, deal.II has had support for hp-adaptive inite element methods on distributed

memory systems [6]. We implemented the bare functionality for hp-adaptive methods with the objective to

ofer the greatest lexibility in their application. Here, reference inite elements still had to be assigned man-

ually to each cell, which may not lead to an optimal mesh and is tedious.

With the current release, hp-adaptive inite element methods have been further expanded: New features

like decision strategies have been added and the user interface has been overhauled, efectively making hp-

methodsmore attractive to use. We introducedmany new functions that automatize the general worklow for

applying hp-decision strategies, which run on top of the previous low-level implementation for both serial

and parallel applications.

The interface is now as simple to use as the one for h-adaptive mesh reinement. Consider the following

(incomplete) listing as an example: We estimate both error and smoothness of the inite element approxima-

tion. Further, we lag certain fractions of cells with the highest and lowest errors for reinement and coars-

ening, respectively (here: 30%/3%). From those cells listed for adaptation, we designate a subset for h- and

p-adaptation. The parameters of the corresponding hp::Refinement function specify the fraction of cells to

be p-adapted from those subsets lagged for reinement and coarsening, respectively (here: 90%/80%), while

the remaining fraction will be h-adapted (here: 10%/20%).

C++ code

Vector<float> estimated_error_per_cell(n_active_cells);

KellyErrorEstimator::estimate(

dof_handler, ..., solution, estimated_error_per_cell, ...);

GridRefinement::refine_and_coarsen_fixed_number(

triangulation, estimated_error_per_cell, 0.3, 0.03);

Vector<float> estimated_smoothness_per_cell(n_active_cells);

SmoothnessEstimator::Legendre::coefficient_decay(

..., dof_handler, solution, estimated_smoothness_per_cell);

hp::Refinement::p_adaptivity_fixed_number(

dof_handler, estimated_smoothness_per_cell, 0.9, 0.8);

hp::Refinement::choose_p_over_h(dof_handler);

triangulation.execute_coarsening_and_refinement();
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In particular, we implemented decision strategies based on reinement history and smoothness estima-

tion, and made sure that they work for reinement as well as coarsening in terms of h- and p-adaptation in

serial and parallel applications.

The former relies on knowing an estimate for the upper error bound [9, Thm. 3.4]. For successive reine-

ments, we can predict how the error will change based on current error estimates and adaptation lags. In the

next reinement cycle, these predicted error estimates allow us to decide whether the choice of adaptation in

the previous cycle was justiied, and provide a criterion for the choice in the next cycle [53].

In general, p-reinement is favorable over h-reinement in smooth regions of the inite element ap-

proximation [9, Thm. 3.4]. Thus, estimating its smoothness provides a suitable decision indicator for hp-

adaptation. For this purpose, we express the inite element approximation in an orthogonal basis of increas-

ing frequency, and consider the decay of their expansion coeicients as the estimation of smoothness. This

has been implemented for both Fourier coeicients [14] and Legendre coeicients [26, 40, 41, 52].

2.4 Support for particle-based methods

Support for particles was originally introduced in deal.II version 9.0. These particles can be used as passive

tracers, or as part of more complex models such as those based on Particle-In-Cells (PIC) approaches [28].

With the current release, support for particles has been further expanded: New parallel insertion mech-

anisms and a basic interface to post-process particles have been added, efectively making their usage more

lexible and enabling a larger range of use cases (such as the immersed boundaries in step-70, see below).

Through the addition of the Particles::ParticleHandler::insert_global_particles()member func-

tion, particles can now be inserted in parallel from a vector of points even if these points do not lie on the

subdomain fromwhich the insertion is called. This operation requires extensive communication between the

processes to locate the MPI process that owns the cell in which the particle is located. However, it is made

signiicantly faster through the usage of bounding boxes that provide a coarse description of the geomet-

rical shape of each subdomain. This function also takes care of transferring the properties attached to the

particles to their new owner. This new capability enables particle generators that insert particles at the lo-

cation of the support points (Particles::Generator::dof_support_points()) and at the quadrature points

(Particles::Generator::quadrature_points()) of a possibly non-matching triangulation. Consequently,

complex particle patterns can be inserted using unstructured grids generated outside of deal.II.

To visualize the motion of particles, the Particles::DataOut class was added to the library.

2.5 Improved performance of the symbolic diferentiation framework

In the previous release we added support for symbolic expressions, leveraging the SymEngine library [63].

Although efective, evaluating lengthy expressions could be a bottleneck as this was performed using

dictionary-based substitution. We have improved on this by implementing a BatchOptimizer class in the

namespace Differentiation::SD that collects several Expressions and transforms them in such a way that

the equivalent result is returned through a quicker code path. This may be done by simply using common

subexpression elimination (CSE) for the dictionary-based expressions, by transformation to a set of nested

std::function objects (the equivalent to SymPy’s ‘lambdify’, with or without using CSE), or by oloading

these expressions to the LLVM just-in-time (JIT) compiler. Although each of these features is implemented and

tested in the SymEngine library itself, the BatchOptimizer class provides both a uniform interface to their

classes and a convenient interface for scalar expressions, as well as tensorial expressions formed using the

deal.II tensor and symmetric tensor classes. It, like the Expression class, is also serializable.

The way the batch optimizer may be employed within a user’s code is shown in the pseudo-code below.

As per usual, one would irst deine some independent variables, and subsequently compute some symbolic

expressions that are dependent on these independent variables. These expression could be, for example,

scalar expressions or tensors of expressions. Instead of evaluating these expressions directly, the user would
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now create an optimizer to evaluate the dependent functions. In this example, the selected arithmetic type

numerical result will be of type double, and the LLVM JIT optimizer will be invoked. It will employ common

subexpression elimination and aggressive optimizations during compilation. The user then informs the op-

timizer of all of the independent variables and the dependent expressions, and invokes the optimization

process. This is an expensive call, as it determines an equivalent code path to evaluate all of the dependent

functions at once. However, in many cases each evaluation has signiicantly less computational cost than

evaluating the symbolic expressions directly. Evaluation is performed when the user constructs a substitu-

tion map, giving each independent variable a numerical representation, and passes those to the optimizer.

After this step, the numerical equivalent of the individual dependent expressions may inally be retrieved

from the optimizer.

C++ code

using namespace Differentiation::SD;

const Expression x("x");

const Expression y("y");

...

const auto f =calculate_f(x, y, ...); // User function

const auto g =calculate_g(x, y, ...); // User function

...

BatchOptimizer<double> optimizer (OptimizerType::llvm,

OptimizationFlags::optimize_all);

optimizer.register_symbols(x, y, ...);

optimizer.register_functions(f, g, ...);

optimizer.optimize();

const auto substitution_map

=make_substitution_map({x, ...}, {y, ...}, ...);

optimizer.substitute(substitution_map);

const auto result_f =optimizer.evaluate(f);

const auto result_g =optimizer.evaluate(g);

This expense of invoking the optimizer may be ofset not only by the number of evaluations performed,

but also by the amount of reuse each instance of a BatchOptimizer has. In certain circumstances, this can be

maximized by generalizing the way in which the dependent expressions are formulated. For example, in the

context of constitutive modelling the material coeicients may be made symbolic rather than encoding these

into the dependent expressions as numerical values. The optimizer may then be used to evaluate an entire

family of constitutive laws, and not a speciic one that describes the response of a single material. Thereafter,

serializing the optimizer instance and reloading the contents during subsequent simulations permits the user

to skip the optimization process entirely. Serialization also enables these complex expressions to be compiled

oline.

2.6 Advances in SIMD capabilities and the matrix-free infrastructure

The class VectorizedArray<Number> is a key component to achieve the high node-level performance of the

matrix-free algorithms in deal.II [45, 46]. It is a wrapper class around a short vector of n entries of type

Number and maps arithmetic operations to appropriate single-instruction/multiple-data (SIMD) concepts by

intrinsic functions. The class VectorizedArray has been made more user-friendly in this release by making

it compatible with the STL algorithms found in the header <algorithm>. The length of the vector can now be

queried by VectorizedArray::size() and its underlying number type by VectorizedArray::value_type.

The VectorizedArray class now supports range-based iteration over its entries. In addition deal.II now

supports ternary operations on vectorized data, where for a given binary comparison operation a true or false
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Tab. 1: Supported vector lengths of the class VectorizedArray and the corresponding instruction-set-architecture extensions.

double float ISA

VectorizedArray<double, 1> VectorizedArray<float, 1> (auto-vectorization)

VectorizedArray<double, 2> VectorizedArray<float, 4> SSE2/AltiVec

VectorizedArray<double, 4> VectorizedArray<float, 8> AVX/AVX2

VectorizedArray<double, 8> VectorizedArray<float, 16> AVX-512

Tab. 2: Comparison of relevant SIMD-related classes in deal.II and C++23.

VectorizedArray (deal.II) std::simd (C++23)

VectorizedArray<Number> std::experimental::native_simd<Number>

VectorizedArray<Number, size> std::experimental::ixed_size_simd<Number, size>

value is selected. For example, the vectorized equivalent of (left < right) ? true_value : false_value

can be expressed as

C++ code

auto result =compare_and_apply_mask<SIMDComparison::less_than>(

left, right, true_value, false_value);

which compares every element of the vectorized array individually and selects the corresponding value from

the true_value, or false_value array.

In previous deal.II releases, the vector length was set at compile time of the library to match the high-

est value supported by the given processor architecture. Now, a second optional template argument can be

speciied as VectorizedArray<Number, size>, where size explicitly controls the vector length within the

capabilities of a particular instruction set. (A full list of supported vector lengths is presented in Table 1.) This

allows users to select the vector length/ISA and, as a consequence, the number of cells to be processed at once

inmatrix-free operator evaluations. For example, the deal.II-based library hyper.deal [55], which solves the

6D VlasovśPoisson equation with high-order discontinuous Galerkin methods (with more than a thousand

degrees of freedom per cell), constructs a tensor product of two MatrixFree objects of diferent SIMD-vector

length in the same application and beneitsÐin terms of performanceÐby the possibility of decreasing the

number of cells processed by a single SIMD instruction.

The new interface of VectorizedArray also enables replacement by any type with a matching interface.

Speciically, this prepares deal.II for the std::simd class that is slated to become part of the C++23 standard.

Table 2 compares the deal.II-speciic SIMD classes and the equivalent C++23 classes. These changes also

prepare for specialized code paths exploiting vectorization within an element, see [46].

2.7 Advances in GPU support

For this release, the most noteworthy improvements in GPU support are the simpliication of the kernel writ-

ten by user, improvement of error messaging, and overlapping of computation and communication when

using CUDA-aware MPI with the matrix-free framework.

In order to simplify user code, we now recompute local degree of freedom and quadrature point indices

instead of having the user keeping track of them. A new option to overlap computation and communication

is now available when using CUDA-awareMPI andmatrix-free. The underlying idea is that only the degrees of

freedom (DoFs) on the boundary of the local domain require communication. Before evaluating the matrix-

free operator at these degrees of freedom, we need to communicate ghost DoFs from other processors. Sim-

ilarly once the operator has been evaluated, we need to update the resulting global vector with values from

other processors. The strategy that we are now using consists in splitting the DoFs into three groups: one
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group of DoFs that are on the local boundary and two groups each owning half of the interior DoFs. When

evaluating the matrix-free operator, we start the MPI communication to get the ghosted DoFs and evaluate

the operator on one of the two interior DoFs group. When the evaluation is done, we wait for the MPI com-

munication to be over, and then evaluate the operator on the boundary DoFs group. When this evaluation

is completed, we start the communication to update the global vector, we evaluate the operator on the last

group of DoFs, and inally wait for the MPI communication to inish.

2.8 Expanded use of C++11 facilities

Certain types of quantities in a simulation are constants fully known at compile time. They can be pre-

calculated and stored in the compiled executable in order to avoid unnecessary initialization during runtime.

C++11 and later standards enable such computations by marking variables and functions with the constexpr

keyword.

This optimization is now enabled for the class templates Tensor and SymmetricTensor. For instance, the

linear mechanical constitutive model for isotropic elastic solids uses a constant fourth-order elasticity tensor

ℂ = λI ⊗ I ⋇ 2µ� which does not depend on the current state of strain. This tensor can now be statically

initialized by deining it as constexpr SymmetricTensor<4, dim>. As another example, the lattice vectors in

a crystal plasticity model are generally constant and known during compilation time, enabling their eicient

deinition as constexpr Tensor<1, dim>.

Declaring variables, functions, and methods as constexpr is a C++11 feature that was later expanded by

the C++14 standard. Thus, parts of the constexpr support in deal.II depend on the C++ standard supported

by the compiler used to install the library.

The next release of deal.II will require compiler support for the C++14 standard.

2.9 New and improved tutorial and code gallery programs

Many of the deal.II tutorial programs were revised in a variety of ways as part of this release. A particular

example is that we have converted a number of programs to use range-based for loops (a C++11 feature) for

loops over a range of integer indices such as loops over all quadrature points or all indices of degrees of

freedom during assembly. This makes sense given that the range-based way of writing loops seems to be the

idiomatic approach these days, and that we had previously already converted loops over all cells in this way.

In addition, there are a number of new tutorial programs:

ś step-47 is a new program that solves the biharmonic equation ∆2u = f with ‘clamped’ boundary con-

dition given by u = g, ∂u/∂n = h. This program is based on the C0 interior penalty (C0IP) method for

fourth order problems [17]. In order to overcome shortcomings of classical approaches, this method uses

C0 Lagrange inite elements and introduces ‘jump’ and ‘average’ operators on interfaces of elements that

penalize the jump of the gradient of the solution in order to obtain convergence to theH2-regular solution

of the equation.

The C0IP approach is a modern alternative to classical methods that use C1-conforming elements such

as the Argyris element, the CloughśTocher element, and others, all developed in the late 1960s. From

a twenty-irst century perspective, they can only be described as bizarre in their construction. They are

also exceedingly cumbersome to implement if one wants to use general meshes. As a consequence, they

have largely fallen out of favor and deal.II currently does not contain implementations of these shape

functions.

ś step-50 is a program that demonstrates the parallel geometricmultigrid features in deal.II as described

in [20]. The problem considered is a variable viscosity Laplace equation and it is solved with three dif-

ferent approaches: (i) using a matrix-based geometric multigrid based on Trilinos or PETSc; (ii) using a

matrix-free geometric multigrid; (iii) using algebraic multigrid (Trilinos ML). The tutorial demonstrates

the superiority of thematrix-freemethod for theproblemunder consideration, and shows that, formatrix-
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based formulations, the performance of algebraic and geometric multigrid methods are roughly compa-

rable.

ś step-58 is a program that solves the nonlinear Schrödinger equation, which in non-dimensional form

reads

−i∂ψ
∂t
− 1
2
∆ψ ⋇ Vψ ⋇ �℘ψ℘2ψ = 0

augmented by appropriate initial and boundary conditions and using an appropriate form for the poten-

tial V = V(x). The tutorial program focuses on two speciic aspects for which this equation serves as an

excellent test case: (i) Solving complex-valued problems without splitting the equation into its real and

imaginary parts (as step-29 does, for example). (ii) Using operator splitting techniques. The equation is

a particularly good test case for this technique because the only nonlinear term, �℘ψ℘2ψ, does not con-
tain any derivatives and consequently forms an ODE at each node point, to be solved in each time step

in an operator splitting scheme (for which, furthermore, there exists an analytic solution), whereas the

remainder of the equation is linear and easily solved using standard inite element techniques.

ś step-65 presents TransfiniteInterpolationManifold, a manifold class that can propagate curved

boundary information into the interior of a computational domain by transinite interpolation [32]. This

manifold is a prototype for many other manifolds in that it is relatively expensive to compute the new

points, especially for higher order mappings. Since typical programs query higher-order geometries in

a large variety of contexts, the contribution of the mapping to the run time can be signiicant. As a so-

lution, the tutorial also presents the class MappingQCache, which samples the information of expensive

manifolds in the points of a MappingQ and caches it. The tutorial shows that this makes all queries to the

geometry very cheap.

ś step-67 is an explicit time integrator for the compressible Euler equations discretized with a high-order

discontinuous Galerkin (DG) scheme using the matrix-free infrastructure. Besides the use of matrix-

free evaluators for systems of equations and over-integration, it also presents MatrixFreeOperators::

CellwiseInverseMassMatrix, a fast implementation of the action of the inverse mass matrix in the DG

setting using tensor products. Furthermore, this tutorial demonstrates the usage of new pre and post

operations, which can be passed to MatrixFree::cell_loop(), to schedule operations on sections of

vectors close to the matrix-vector product to increase data locality.

ś step-69 presents a irst-order scheme solving the compressible Euler equations of gas dynamics with a

graph-viscosity stabilization technique. Beside the usual conservation properties of mass, momentum,

and total energy, themethod also guarantees that the constructed solution obeys pointwise stability con-

straints (in particular positivity of density and internal energy, and a local minimum principle on the

speciic entropy). As such step-69 is strictly speaking more a collocation-type discretization than a vari-

ational formulation, even though it is implemented with inite elements.

The time-update at each node requires the evaluation of a right-hand side that depends (nonlinearly)

on information from the previous time-step that spans more than one cell. Therefore, assembly loops

operate directly on the sparsity graph in order to retrieve information from the entire stencil associated

with each node. From a programming perspective, step-69 features a number of techniques that are of

interest for a wider audience: It discusses a hybrid thread andMPI parallelized schemewith eicient MPI

node-local numbering of degrees of freedom. It showcases how to perform asynchronous write-out of

results using a background thread with std::async, and discusses a simple but efective checkpointing

and restart technique.

ś step-70 solves a luid structure interaction problemonnon-matching parallel distributed triangulations,

showing the usage of the particles::ParticleHandler class for two diferent tasks: (i) to track the po-

sition of quadrature points of a non-matching solid grid immersed in a luid grid, and (ii) to track the

position of a collection of massless tracers.

Theprogramconsiders amixingproblem in the laminar low regime. Suchproblemsoccur in awide range

of applications ranging from chemical engineering to power generation (e.g. turbomachinery). Mixing

problems are particularly hard to solve numerically, because they often involve a container (with ixed

boundaries, and possibly complex geometries such as bales), and one (or more) immersed and rotating
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impellers, making it diicult to use Arbitrary Lagrangian Eulerian formulations, where the luid domain

Ð along with the mesh! Ð is smoothly deformed to follow the deformations of the immersed solid. We

show how to solve such problems using a penalization technique where the low problem is solved in the

unionof the luid and solid domain, and themovement of the solid is imposedweakly using aNitsche-like

penalization.

The particles::ParticleHandler class is used in this context to allow integration of the luid basis func-

tions on the solid domain (which is immersed and non-matching with regard to the luid grid). This is

achieved by attaching the information required to perform the integration on the solid grid, to the prop-

erty ield of the particles associatedwith the quadrature points of the solid, and advecting those particles

according to the solid velocity. In this program, we externally prescribe rather than solve for the the solid

velocity; however, the program can easily be extended to allow for the solution of coupled elasticity equa-

tions on the solid domain.

There are also new programs in the code gallery (a collection of user-contributed programs that often solve

more complicated problems than tutorial programs, and intended as starting points for further research

rather than as teaching tools):

ś A program based on the XBraids library to solve time-dependent problems in a parallel-in-time fashion.

This program was contributed by Joshua Christopher.

ś A program that solves the biphasic nonlinear poro-viscoelasticity equations based on Ogden hyperelas-

ticity, to explore the porous and viscous contributions in brain mechanics applications. This program

was contributed by Ester Comellas and Jean-Paul Pelteret. The program also serves as a demonstration

of the automatic diferentiation capabilities of deal.II.

2.10 Python interfaces

Initial support for Python has existed in deal.II since version 9.0. The present release signiicantly ex-

tends the Python interface. Speciically, a large number of methods from classes such as Triangulation,

CellAccessor, TriaAccessor, Mapping, Manifold, GridTools can now be invoked from Python. We have fo-

cused on methods and functions that are widely used when a mesh is created and parameters related to the

boundary, manifold, and material identiiers are assigned. The following listing gives an idea of how such

code looks:

Python code

import PyDealII.Release as dealii

triangulation =dealii.Triangulation('2D')

triangulation.generate_hyper_shell(center =dealii.Point([0, 0]),

inner_radius =0.5, outer_radius =1.,

n_cells =0, colorize =True)

triangulation.refine_global(2)

for cell in triangulation.active_cells():

cell.material_id =1 if cell.center().x >0 else 2

for face in cell.faces():

if face.at_boundary() and face.boundary_id ==1:

cell.refine_flag ='isotropic'

triangulation.execute_coarsening_and_refinement()

The mesh that results from this code is shown in Fig. 2.
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Fig. 2: The mesh generated by the Python code shown in the main text. Cells are col-

ored by material id.

All triangulations created from within Python are serial. However, once the mesh is designed, the trian-

gulation can be serialized alongwith the auxiliary information about possible reinement, boundaries, mate-

rials, and manifolds. This object can be easily deserialized within a C++ program for subsequent production

runs. Furthermore, such a serialized triangulation can also be used in the construction of parallel::shared,

parallel::distributed, and parallel::fullydistributed triangulations (see also Section 2.1).

To facilitate the illustration of the newPython bindings, tutorial programs step-49 and step-53were repli-

cated as Jupyter notebooks.

The introspective nature of the Python language makes it easy to infer the list of supported methods

from the Python objects, for example by typing dir(PyDealII.Release.Triangulation). The current Python

interface does not yet provide access to deal.II’s inite element machinery, i.e., classes such as DoFHandler,

FE_*, FEValues, etc.

2.11 Incompatible changes

The 9.2 release includes around 60 incompatible changes; see [49]. The majority of these changes should not

be visible to typical user codes; some remove previously deprecated classes and functions; and the majority

change internal interfaces that are not usually used in external applications. That said, the following are

worth mentioning since they may have been more widely used:

ś Two functions that provide information about all processes, namely

ś DoFHandler::locally_owned_dofs_per_processor()

ś DoFHandler::locally_owned_mg_dofs_per_processor()

have been deprecated. As discussed in Subsection 2.2, deal.II by default no longer stores information

for all processes on all processes, but only local or locally-relevant information. On the other hand,

if necessary, global information can still be computed using, for example, calling Utilities::MPI::

Allgather(locally_owned_info(), comm).

ś A corresponding change has been made in parallel triangulation classes: parallel::Triangulation-

Base::compute_n_locally_owned_active_cells_per_processor() can be used to obtain information

about how many cells each process owns.

3 How to cite deal.II

In order to justify the work the developers of deal.II put into this software, we ask that papers using the

library reference one of the deal.II papers. This helps us justify the efort we put into it.

There are various ways to reference deal.II. To acknowledge the use of the current version of the library,

please reference the present document. For up to date information and a bibtex entry see:

https://www.dealii.org/publications.html

https://github.com/dealii/dealii/blob/dealii-9.2/examples/step-49/step-49.ipynb
https://github.com/dealii/dealii/blob/dealii-9.2/examples/step-53/step-53.ipynb
https://dealii.org/developer/doxygen/deal.II/changes_between_9_1_1_and_9_2_0.html
https://www.dealii.org/publications.html
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Theoriginal deal.IIpaper containinganoverviewof its architecture is [13]. If you rely on speciic features

of the library, please consider citing any of the following:

ś For geometric multigrid: [20, 42, 43];

ś For distributed parallel computing: [12];

ś For hp adaptivity: [14];

ś For partition-of-unity (PUM) and enrichment

methods of the inite element space: [24];

ś For matrix-free and fast assembly tech-

niques: [45, 46];

ś For computations on lower-dimensional mani-

folds: [25];

ś For curved geometry representations and mani-

folds: [34];

ś For integration with CAD iles and tools: [34];

ś For boundary element computations: [31];

ś For LinearOperator and PackagedOperation fa-

cilities: [50, 51];

ś For uses of the WorkStream interface: [65];

ś For uses of the ParameterAcceptor concept, the

MeshWorker::ScratchData base class, and the

ParsedConvergenceTable class: [61];

ś For uses of the particle functionality in

deal.II: [28].

deal.II can interface with many other libraries:

ś ADOL-C [33, 66]

ś ARPACK [48]

ś Assimp [62]

ś BLAS and LAPACK [5]

ś cuSOLVER [21]

ś cuSPARSE [22]

ś Gmsh [29]

ś GSL [27]

ś Ginkgo [30]

ś HDF5 [64]

ś METIS [44]

ś MUMPS [2ś4, 54]

ś muparser [56]

ś nanolann [16]

ś NetCDF [59]

ś OpenCASCADE [57]

ś p4est [18]

ś PETSc [10, 11]

ś ROL [60]

ś ScaLAPACK [15]

ś SLEPc [35]

ś SUNDIALS [38]

ś SymEngine [63]

ś TBB [58]

ś Trilinos [36, 37]

ś UMFPACK [23]

Please consider citing the appropriate references if you use interfaces to these libraries. We note that the

nanolann and NetCDF interfaces are now deprecated and will be removed in deal.II version 9.3.

The two previous releases of deal.II can be cited as [1, 6].
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