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S U M M A R Y
Computations have helped elucidate the dynamics of Earth’s mantle for several decades al-
ready. The numerical methods that underlie these simulations have greatly evolved within this
time span, and today include dynamically changing and adaptively refined meshes, sophis-
ticated and efficient solvers, and parallelization to large clusters of computers. At the same
time, many of the methods – discussed in detail in a previous paper in this series – were
developed and tested primarily using model problems that lack many of the complexities that
are common to the realistic models our community wants to solve today. With several years of
experience solving complex and realistic models, we here revisit some of the algorithm designs
of the earlier paper and discuss the incorporation of more complex physics. In particular, we
re-consider time stepping and mesh refinement algorithms, evaluate approaches to incorporate
compressibility, and discuss dealing with strongly varying material coefficients, latent heat,
and how to track chemical compositions and heterogeneities. Taken together and implemented
in a high-performance, massively parallel code, the techniques discussed in this paper then
allow for high resolution, 3-D, compressible, global mantle convection simulations with phase
transitions, strongly temperature dependent viscosity and realistic material properties based
on mineral physics data.

Key words: Mantle processes; Numerical approximations and analysis; Numerical mod-
elling; Dynamics: convection currents, and mantle plumes; Dynamics of lithosphere and
mantle; Heat generation and transport.

1 I N T RO D U C T I O N

Computer simulations are at the heart of most attempts at under-
standing the dynamics of the Earth’s mantle as well as the interiors
of other celestial bodies. As such, there is a long tradition in the
investigation of numerical methods that help us solve the equations
that describe mantle convection, dating back many decades (e.g.
Torrance & Turcotte 1971; Richter 1973; McKenzie et al. 1974;
Baumgardner 1985; Tackley et al. 1993, see also May et al. (2013)
and references therein). Many of these articles parallel the general
development of computational science methods, and have moved
from simple, low-order, uniform 2-D mesh discretizations with
fixed-point linear solvers, to using adaptively refined, dynamically
changing 3-D meshes with higher order elements and complicated
linear and nonlinear solvers (Alisic et al. 2010; Stadler et al. 2010;
Davies et al. 2011; Burstedde et al. 2013; Gerya et al. 2013; Rudi
et al. 2015). Indeed, a previous paper (Kronbichler et al. 2012) in
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the current series of publications was devoted to the description of
current, state-of-the-art methods for mantle convection simulations.

At the same time, most of these methods—including the ones in
our earlier paper—were developed, tested and evaluated using rela-
tively simple model problems (e.g. Blankenbach et al. 1989; Busse
et al. 1993; van Keken et al. 1997, 2008; Tackley & King 2003;
Schmeling et al. 2008; Zhong et al. 2008; King et al. 2010; Crameri
et al. 2012; Tosi et al. 2015). Yet, this no longer matches what
our community wants to do today: We want to solve more realistic
problems that use compressible formulations with discontinuous
coefficients, for example. We also want to use more complex ge-
ometries, possibly varying with time. And we may want to include
other physical effects such as latent heat, the transport of chemical
inhomogeneities or tracking of tensor quantities like finite strain.
For these kinds of applications, we have found that the numerical
methods currently used in our community often perform worse than
for the traditional model problems and benchmarks.

The purpose of this paper is therefore to revisit the traditional
choices of numerical methods for mantle convection in light of
complex applications. Specifically, we will consider how time step-
ping, mesh refinement, formulations for compressible materials,
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and other aspects of computational codes are affected when they
are applied to complex problems. In some cases, previous methods
perform poorly and need to be adapted; in others, previous methods
were simply unsuitable, and we are faced with a variety of choices
that allow us to design algorithms that are both well suited to the
problem as well as allow for accurate and fast solutions.

We base our discussions on the five years of experience we have
with the ASPECT code1 since we described many of these meth-
ods in Kronbichler et al. (2012). In this time, we and others have
applied ASPECT to more complex and realistic problems (Auster-
mann et al. 2015; Tosi et al. 2015; Rose et al. 2017; Gassmöller
et al. 2016; Dannberg & Heister 2016; He et al. 2016; Zhang &
O’Neill 2016), and the discussions in the remainder of this paper
reflect the challenges encountered in this process. On the other hand,
the discussions herein are not specific to ASPECT: They are about
the general design of numerical methods for the problems at hand,
and apply equally to any other code that wants to solve them.

We intend this contribution to be of interest to those designing
their own numerical methods for mantle convection, but also for
those interested in understanding more about how modern mantle
convection codes work. Finally, some of the sections below outline
open problems that call for more methodological or mathematical
research; the paper should therefore also be of interest to the nu-
merical methods and numerical analysis community as it outlines
areas requiring better methods.

The remainder of this paper is structured as follows: Section 2 first
lays out the general mathematical formulation of the problem we
want to consider. Section 3 then discusses how time stepping meth-
ods need to be adjusted to more complex problems (Section 3.1);
how approaches can be designed to deal with compressibility (Sec-
tion 3.2), averaging discontinuous coefficients (Section 3.3), and
latent heat (Section 3.4); how mesh refinement can be made to
deal with realistic applications (Section 3.5); and approaches to ad-
vecting along additional quantities (Section 3.6). We show results
for a large and complex application in Section 4, and conclude in
Section 5.

2 F O R M U L AT I O N O F T H E P RO B L E M

Within this paper, let us consider a model for the flow of a com-
pressible, anelastic fluid, such as generally assumed for convection
in the Earth’s mantle (e.g. Schubert et al. 2001). Flow is driven by
buoyancy due to thermal or compositional gradients, and the model
includes the effects of friction and adiabatic heating, radiogenic
heat production and latent heat on the energy balance. However, the
model ignores inertial and elastic effects as we are concerned with
very low velocities and long timescales. Specifically, let us consider
the following set of equations:

−∇ · τ (u) + ∇ p = ρg, (1)

∇ · (ρu) = 0, (2)

ρCp

(
∂T

∂t
+ u · ∇T

)
− ∇ · (k∇T )

= ρH + τ (u) : ε(u) + αT (u · ∇ p) + ρT
DS

Dt
. (3)

1
The ‘Advanced Solver for Problems in Earth ConvecTion’, an open source
project to provide a modern, parallel, extensible code to simulate mantle
convection. ASPECT’s development is supported by the Computational
Infrastructure for Geodynamics initiative, as well as by the National Science
Foundation. See http://aspect.dealii.org.

In this system of equations, u denotes the fluid velocity, p
the pressure, and T the temperature. For the stress we have
τ (u) = 2η

(
ε(u) − 1

3 (∇ · u)I
)

with the rate-of-deformation tensor
ε(u) = 1

2

(∇u + (∇u)T
)
.

In the equations above, η, ρ and Cp are the effective viscosity,
density, and specific heat capacity of the material. k, H, α, g and
S are the thermal conductivity, intrinsic specific heat production,
thermal expansion coefficient, gravity vector, and entropy, respec-
tively. DS

Dt = ∂S
∂t + u · ∇S is the material derivative of the entropy

of a volume of material, and will be discussed in Section 3.4. We
will in the following assume that all of these parameters with the
exception of gravity can depend on the current temperature and
pressure; furthermore, we allow that η can depend on the strain rate
ε(u) and that all parameters may also depend on the location x to
facilitate material parametrizations that are not derived from realis-
tic material models but incorporate a priori modelling assumptions.
In other words, we will henceforth consider η = η(p, T, ε(u), x),
ρ = ρ(p, T, x), κ = κ(p, T, x), H = H (p, T, x), α = α(p, T, x),
g = g(x). Note that we assume the anelastic conservation of mass
eq. (2) and only consider the density to be a dependent variable
of temperature, pressure, and location; in particular, we neglect the
time derivative and thus elastic waves, see Schubert et al. (2001)
for details.

In the remainder of this paper, we will make no assumptions that
coefficients are continuous. In fact, we explicitly allow parameters
to jump discontinuously as commonly happens when using ther-
modynamically consistent models that incorporate phase changes.
Indeed, it is these kinds of difficulties that set apart the model prob-
lems often considered, from the kind of problems that are the subject
of this paper.

There are numerous approximations to eqs (1)–(3) that have been
widely used in the literature, such as the anelastic liquid approx-
imation (ALA), truncated anelastic liquid approximation (TALA)
and Boussinesq approximation (BA), see, for example, Bercovici
et al. (1992), Schubert et al. (2001), King et al. (2010) and Tan
& Gurnis (2007). These can all be derived by assuming that den-
sity variations are small compared to the hydrostatic density in-
crease. We will discuss differences between these approximations of
eqs (1)–(3) in Section 3.2, but these differences are not fundamental
to this paper: Any numerical issues that may arise from describing
the complex phenomena we aim to model would arise using any
of the above formulations; consequently, the solution strategies we
derive are useful for all those cases.

3 N U M E R I C A L M E T H O D S

As discussed in the introduction, the goal of this section is to out-
line areas where the numerical methods commonly employed for
model or simplified problems run into difficulties when applied to
more complex formulations and problems. The methods we com-
pare against are Taylor-Hood finite elements to discretize the Stokes
equations, along with a block-preconditioned GMRES solver for
the resulting linear equations. The temperature equation is also dis-
cretized using the finite element method; the advection is stabilized
via the addition of a nonlinear entropy viscosity. The entire set of
equation is discretized on adaptively refined, dynamically chang-
ing meshes in 2-D or 3-D. All of these methods are described in
detail in a previous paper (Kronbichler et al. 2012). We consider
them state-of-the-art within the computational mantle convection
community.

The focus of the following subsections is, then, on the modifi-
cations necessary as one moves from simpler, model problems to
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the more realistic description of convective transport in the Earth’s
mantle provided in the previous section. Specifically, we will discuss
time stepping; dealing with compressibility; averaging of discontin-
uous coefficients; incorporating latent heat; mesh adaptation; and
advection schemes for additional quantities. On the other hand, we
will not elaborate on the solution of models with nonlinear, strain-
rate dependent rheologies; a discussion and extensive benchmarking
of such cases can be found in Glerum et al. (2017).

All computations in this section are done using the open source
mantle convection code ASPECT (Kronbichler et al. 2012; Bangerth
et al. 2017b), which builds on deal.II (Bangerth et al. 2016), P4EST

(Burstedde et al. 2011), and Trilinos (Heroux et al. 2005); our
test computations were done with ASPECT version 1.5.0 (Bangerth
et al. 2017a) and the setups for all computations are available at
https://github.com/tjhei/paper-aspect-methods-2-data.

3.1 Time stepping for the temperature equation revisited:
explicit, semi-implicit, implicit

In Kronbichler et al. (2012), we have advocated for a semi-implicit
method for the time discretization of the temperature eq. (3). In
this approach, one treats the thermal diffusion term implicitly, but
the advection term explicitly. This choice guarantees that only the
advection term implies a stability limit for the size of the time
step 	t. In particular, the corresponding Courant–Friedrichs–Lewy
condition states that the time discretized problem is only stable if we
choose 	t ≤ minK C hK

pT ‖u‖L∞(K )
, where hK is a measure of the (1-D)

size of cell K, pT the polynomial degree of the finite element used
to discretize the temperature field and ‖u‖L∞(K ) is the maximal
velocity on cell K. C is a constant related to the time stepping
method; it always satisfies C ≤ 1 if some terms of the equation are
treated explicitly, and generally becomes smaller with increasing
convergence order of the chosen time stepping method.

In pursuing this strategy, we were motivated by two observations.
First, the matrix that needs to be inverted in solving the tempera-
ture equation with this choice of terms treated implicitly yields a
symmetric and positive definite matrix for which efficient solution
methods are readily available, in particular the Conjugate Gradient
method combined with multigrid preconditioners. Second, while
fully implicit methods may choose time steps much larger than
minK

hK
pT ‖u‖L∞(K )

and still remain stable, we typically want to choose

the time step around minK
hK

pT ‖u‖L∞ (K )
anyway for accuracy reasons

because this guarantees that information is not transported across
more than the distance between adjacent nodes within one time
step. This is of increasing importance when using adaptive mesh
refinement.

However, in applying this approach to more realistic problems,
one encounters two difficulties:

(i) How exactly should hK be defined?
(ii) How large or small does one have to choose C?

These questions are relatively easy to answer on uniform meshes
for rectangular or box-shaped meshes. There, all possible definitions
of hK – either (i) the diameter of cell K, (ii) the shortest edge of K,
(iii) the minimal distance between any two vertices, (iv) the square or
cube root of the volume of the cell in 2-D and 3-D, respectively—are
all equivalent up to a fixed constant and any choice is valid as long as
the constant C is appropriately adjusted. After choosing any of these
definitions, we can determine a safe value for C experimentally.

On the other hand we desire to solve problems on complex do-
mains that will include cells of varying shapes; examples are meshes

that discretize models on shell segments, but also may have a free
top boundary and/or describe real topography. In such meshes, the
various ways of defining what hK is, are no longer equivalent up
to a fixed constant, and it is not clear what definition is the most
appropriate to allow for the largest choice of time steps.

Second, it may require extensive test simulations to determine
whether a particular choice of C leads to a stable scheme because
a solution may only ‘blow up’ once steep features of the solution
happen to pass a particularly poorly shaped cell, rather than such a
steep feature simply existing.

The consequence of all of this is that in practice, one needs to
choose C rather small to guarantee stability in all circumstances. As
stated in Kronbichler et al. (2012), we needed to choose C = 1

5.9

in 2-D and C = 1
43.6 in 3-D. For any larger value, we could find

geometries and problem setups for which the temperature eventually
became instable, even though the resulting time steps are almost
certainly smaller than necessary for most other cases.

Such small time steps are impractical in practice. While the re-
sulting solution is stable, it is not significantly more accurate than if
we had chosen a fully implicit method with 	t = minK

hK
pT ‖u‖L∞(K )

.

However, using the semi-implicit scheme for the temperature equa-
tion is vastly more expensive: we need 1

C as many time steps for
the semi-implicit method (i.e. roughly one sixth of the number of
time steps in 2-D, and less than one fortieth in 3-D), each including
solving both the Stokes and the temperature equation.

For these reasons, we have come to believe that the better choice
for the time stepping scheme is a fully implicit time discretization—
for example a BDF-2 scheme to discretize the term ∂T

∂t —in which
we choose C = 1 and hK to be the minimal distance between any two
vertices of cell K. Because this choice treats advection implicitly, it
results in a system matrix that is no longer symmetric and positive
definite. This requires more costly solvers and preconditioners, for
example GMRES instead of CG. On the other hand, this effort
is vastly over-compensated by the fact that we have reduced the
number of time steps by a factor of more than 5 (in 2-D) or 40
(in 3-D). Furthermore, even the fully implicit temperature solver
requires less than 10 per cent of the overall run time in realistic
simulations; in other words, having to choose a less efficient linear
solver due to the addition of a non-symmetric term does not affect
the overall computational cost of each time step in a significant way.
What determines the overall computational cost of a simulation,
however, is how many time steps we have to solve.

3.2 Compressibility

Incorporating compressibility into existing codes is likely the most
difficult issue when moving from model problems to realistic de-
scriptions of Earth. This is because compressibility makes the mass
conservation eq. (2) nonlinear, or adds additional terms when us-
ing the ALA or TALA approximation. Furthermore, the divergence
term is no longer adjoint to the gradient of the pressure, and depend-
ing on how it is treated numerically, the matrix resulting from the
Stokes equation after discretization may no longer be symmetric. As
a consequence, how exactly one deals with the compressibility has
significant implications for how nonlinear and linear solvers need
to be written and will perform. On the other hand, there are signif-
icant opportunities for algorithm design whereby one can choose
different re-formulations based on which of these allows for ef-
ficient and accurate implementations. The next sub-section (Sec-
tion 3.2.1) will therefore be about the various trade-offs involved,
before we comment on considerations of the symmetry of resulting
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solvers (Section 3.2.3), making the right hand sides of linear systems
compatible (Section 3.2.2), and finally show numerical results il-
lustrating several of the points previously discussed (Sections 3.2.4
and 3.2.5).

Various forms of compressibility have been incorporated into
mantle convection codes for several decades already, though often
only for particular formulations such as the ALA or TALA in which
the density in the mass conservation equation is explicitly prescribed
as a function of depth. We refer to Baumgardner (1985), Tan &
Gurnis (2007), Leng & Zhong (2008), Tackley (2008) and King
et al. (2010) for details on how other codes deal with these issues.

3.2.1 Reformulating the compressible Stokes equations

Solving compressible models numerically poses a number of chal-
lenges. First, the mass conservation equation ∇ · (ρu) = 0 given in
(2), is nonlinear if ρ depends on the solution variables and has to
be linearized. Second, any linearized version results in an operator
that is no longer adjoint to the term ∇p in the force balance equa-
tion, resulting in a non-symmetric matrix with consequences for
the construction of efficient solvers and preconditioners for the lin-
ear system. This second issue also arises for any approximation of
eqs (1)–(2) that includes a non-constant density in the mass balance
equation, for example the (truncated) anelastic liquid approximation
(T)ALA (King et al. 2010). Because of this universal importance,
we will discuss the difficulties that result from compressible models
in some detail in the following.

There are a number of possible avenues for linearization of (2).
For example, one could instead use the equation

∇ · (ρ∗u) = 0,

where ρ∗ is a known approximation of the density that is computed
from the previous time step’s temperature and pressure, or from a
temperature and pressure that has been extrapolated from previous
time steps to the current time, and might be updated during a non-
linear iteration. Alternatively, in the case of the (T)ALA, ρ∗ = ρ∗(z)
simply is a prescribed density profile that does not change over
time. In all those cases, ρ∗ may still be spatially variable, but it no
longer depends on the quantities u, p that we are currently solving
for. While this resolves the nonlinearity, the operator −∇ · (ρ∗•)
is not adjoint to the gradient operator acting on the pressure in the
force balance equation; direct discretizations of this term therefore
do not lead to a symmetric system matrix.

In addition, the term is not computable in practice because the
product ρ∗u is not a finite element function (or other polynomial)
of which we can compute derivatives during assembly. One way to
make it computable is to multiply out the divergence. In order to
make the equation look similar to the one we have in the incom-
pressible case, we also divide by the density. Two choices that result
from this are then to consider either2

∇ · u + 1

ρ∗ ∇ρ∗ · u = 0, (4)

or

∇ · u = − 1

ρ∗ ∇ρ∗ · u∗, (5)

2
Both of these methods are also implemented in the widely used code
CitcomS (Zhong et al. 2008), though we are not aware of a systematic dis-
cussion of the two options, nor of comprehensive tests of their differences
as we provide below.

In the last equation, we have also frozen the velocity in the right
hand side term to a fixed value obtained from previous time steps. If
ρ depends on the pressure, either of these approaches then require
a nonlinear iteration to converge to the desired solution.

These two formulations are also not without difficulty. First, the
replacement ∇ · (ρu) = ∇ρ · u + ρ∇ · u strictly only makes sense
if the density is continuous. If it is not, for example when taking into
account phase changes, then ρu is a continuous function of which
we can take derivatives, whereas we cannot of its components ρ

and u.3 While the traditional approach to dealing with undesirable
derivatives is to multiply with test functions and integrate by parts,
this is not possible here because the pressure test functions with
which this equation is multiplied are only in L2 and consequently
not sufficiently smooth to allow for integration by parts.

Second, there are also difficulties from the perspective of finite
element approximations when using a density ρ = ρ(p, T) that
depends on the primary variables pressure and temperature (and
possibly other variables such as the chemical composition) in eq.
(4) or (5). In this case, ∇ρ(p, T ) = ∂ρ

∂p ∇ p + ∂ρ

∂T ∇T, and likewise,
for the finite element approximation (indicated by the index h),
∇ρ(ph, Th) = ∂ρ

∂p ∇ ph + ∂ρ

∂T ∇Th . On the other hand, the theory of
the Stokes equations yields that in general, the pressure is only a
function in L2, see for example Ern & Guermond (2004). In prac-
tice, this means that one does not usually get a better approximation
than ‖p − ph‖L2 = O(h) for the finite element approximation ph of
the pressure, unless the solution happens to be smooth. Indeed, if
the viscosity is discontinuous or has large gradients, one often gets
an even lower convergence order; for example, the SolCx test case
yields a convergence order ‖p − ph‖L2 = O(h1/2) (see Kronbichler
et al. 2012). This implies that, assuming we use a continuous finite
element space to approximate the pressure, we can at best hope
that ∇ph converges to ∇p as h → 0 in some average sense, but
that we cannot expect this to happen with any particular order; in
other words, the best one might hope for is a statement of the form
‖∇ p − ∇ ph‖L2 = o(1), but the approximation will likely be very
poor and probably not converge in a pointwise sense. (Indeed, we
demonstrate this experimentally in Section 3.3.) Pointwise conver-
gence can obviously not be expected at all if one uses discontinuous
finite element spaces for the approximation of the pressure. Conse-
quently, any practical scheme that replaces ∇ρ(ph, Th) by terms that
include ∇ph will likely yield a rather poorly approximated density
gradient, resulting in degradation in convergence of the velocity
and temperature. We therefore would like to avoid the occurrence
of ∇ph in our scheme.

To this end, we replace ∇ p ≈ ρg. This is motivated by the obser-
vation that for the hydrostatic pressure ps that dominates the total
pressure in the Earth mantle, by definition we have ∇ ps = ρadig
with the adiabatic reference density ρadi; indeed, in the (T)ALA
approximations, one chooses ρ∗ = ρadi. We can then approximate
∇ρ(p, T ) ≈ ∂ρ

∂p ρg + ∂ρ

∂T ∇T . Using this allows us to re-state the
equations above as

∇ · u +
(

∂ρ

∂p
g + 1

ρ∗
∂ρ

∂T
∇T ∗

)
· u = 0, (6)

or

∇ · u = −
(

∂ρ

∂p
g + 1

ρ∗
∂ρ

∂T
∇T ∗

)
· u∗. (7)

3
This is, however, a theoretical consideration since the finite element spaces
we use will not allow us to represent discontinuous velocities anyway.
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In the following, we will call these two options the implicit and
explicit approximation, because they either include the velocity
implicitly or explicitly in the term that contains the gradient of the
pressure.

Both of these approximations introduce errors that depend on
(i) how accurately ρ∗ = ρ(p∗, T∗) approximates ρ(p, T), which
can be controlled by small time steps and accurate extrapolations
from previous time steps; and (ii) how good the approximation for
∇ p ≈ ρg is, which is related to how small the velocity is, and
consequently how appropriate the choice of the eqs (1)–(2) was to
begin with. The more relevant question is therefore which of these
approximations one wants to use for practical considerations.

To understand this, it is instructive to recall that discretizations of
the force balance eq. (1) together with the approximations (6) and
(7) lead to system matrices with the following structure:(

A BT

B + C 0

)
,

(
A BT

B 0

)
.

Which one we choose has consequences for available choices of
linear solvers and preconditioners that are important since in most
realistic simulations, 70 per cent or more of the overall run time is
spent in solving the discretized velocity-pressure system. Further-
more, since we linearize the equation we really want to solve, we
will have to iterate out the nonlinearity, and the two choices will
require different numbers of outer, nonlinear iterations. Predictably,
the choice that keeps the velocity entirely implicit, (6), and can
therefore be expected to converge more quickly in the nonlinear
iteration, will also lead to more difficult-to-solve linear systems due
to the lack of symmetry. Consequently, the choice between (6) and
(7) is not a priori clear.

3.2.2 Correcting the right-hand side

When using the explicit approximation (7), we end up with an
equation that is rank deficient if the fluid flow is enclosed in a
domain where the normal component b = n · u of the fluid velocity
is prescribed on all parts of the boundary (a typical example being
either no-slip or tangential flow). In those cases, integrating over
the domain and using the divergence theorem yields∫

∂


b = −
∫




(
∂ρ

∂p
g + 1

ρ∗
∂ρ

∂T
∇T ∗

)
· u∗.

The left-hand side of this equation is fixed and known based on
the given boundary conditions. On the other hand, the right-hand
side may be whatever it is, based on our choice of approximations
T ∗, u∗ as well as the choice of quadrature formula and geometric
approximation of the domain. Thus, it may or may not equal the
fixed value on the left, and if it does not, then (7) will not allow for
a solution. On the other hand, it is clear that the difference between
the two sides will be small if T ∗, u∗ are well chosen and if the
assumptions that went into (7) are valid. Thus, we can make the
system solvable again by replacing (7) by the equation

∇ · u = −
(

∂ρ

∂p
g + 1

ρ∗
∂ρ

∂T
∇T ∗

)
· u∗ − δ, (8)

where δ is chosen so that the invariant is always satisfied:

δ = − 1

|
|
∫

∂


b − 1

|
|
∫




(
∂ρ

∂p
g + 1

ρ∗
∂ρ

∂T
∇T ∗

)
· u∗.

This correction δ is easily computed before assembling the linear
system that results from the linearization of the Stokes equation,

and amounts to slightly correcting the compressibility everywhere
to ensure global mass conservation.

We note that in the case of an incompressible material, we have
∂ρ

∂p = ∂ρ

∂T = 0, and mass conservation of course implies that the sum

of influxes and outfluxes has to balance, that is,
∫

∂
b = 0. Conse-
quently, for incompressible materials, δ always evaluates to zero; no
correction is necessary in this case. (However, for inhomogeneous
boundary conditions one has to be more careful, see Heister et al.
(2016).) Likewise, if the material is compressible but the setup of
the problem has a part of the boundary where only a normal stress
of the fluid is prescribed, then fluid velocity and pressure can adjust
independently to allow any right hand side to the mass conserva-
tion equation, and the correction above is neither necessary nor
desirable.

3.2.3 Cost evaluation of the two formulations

It is not a priori clear which of the two formulations, (6) or (8), is
preferable from a practical perspective: The first is ‘more implicit’
and consequently likely requires fewer nonlinear iterations; the sec-
ond yields a symmetric system matrix and consequently likely re-
quires fewer linear GMRES iterations because we can formulate a
better preconditioner.4 To resolve the question, we have performed
a number of numerical experiments.

Specifically, our test problem consists of a unit box, uses the
truncated anelastic liquid approximation (TALA), and a spatially
variable adiabatic density of the form

ρ̄(z) = 1.6 + arctan (c(z − 0.5)) ,

where we will vary the coefficient that describes the deviation from
a constant density in the set c ∈ {0, 1, 10, 30} (see Fig. 1). The
density’s derivative has a peak at z = 0.5 with dρ

dz (0.5) = c. We use
the non-dimensional Rayleigh number Ra = 104 and dissipation
number Di = 0.1, and prescribe constant inflow at the top boundary,
u = (0, −1), free slip at left and right boundaries, and open outflow
at the bottom.

We show a comparison of the number of GMRES iterations in
Table 1. The numbers there show that indeed a single implicit solve
(using (6)) is more expensive in terms of GMRES iterations than a
single explicit solve (using (8)) for all choices c > 0 of the com-
pressibility parameter. In fact, iterations for a single solve of the
explicit formulation are independent of c. On the other hand, the
explicit formulation requires a Picard iteration to iterate the non-
linearity, and the number of linear GMRES iterations accumulated

4
A discussion of the pre-conditioner we use can be found in Kro-
nbichler et al. (2012). Specifically, for linear systems of the form(

A BT

B + C 0

)
, we use the preconditioner proposed by Silvester and

Wathen for the symmetric Stokes system (see Silvester & Wathen 1994;

Elman et al. 2005, for a derivation): P−1 =
(

Ã−1 Ã−1 BTS̃−1

0 −S̃−1

)
,

where a tilde indicates an approximation and S = BTA−1B is the
Schur complement of the symmetric part. This pre-conditioner does
not include the matrix C and can therefore be expected to deterio-
rate if the compressibility in the implicit formulation becomes large.

We have spent a significant amount of time testing preconditioners that
include C in some way, but have not been able to find ones that improve on
the one shown above.
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Figure 1. Density profiles used in the comparison between implicit and
explicit formulations.

Table 1. Total linear GMRES solver iterations for implicit and explicit for-
mulations. The explicit formulation requires an outer fixed-point iteration;
the second set of numbers denotes the sum of linear iterations over all non-
linear iterations, whereas the third set of numbers denotes the number of
linear iterations for the first nonlinear solver iteration.

Mesh DoFs c = 0 c = 1 c = 10 c = 30

Implicit
32 × 32 9539 43 43 52 64
64 × 64 37507 46 48 62 75

128 × 128 148739 50 52 65 72
256 × 256 592387 56 62 79 114

Explicit

32 × 32 9539 43 125 257 334
64 × 64 37507 46 133 289 388

128 × 128 148739 50 132 267 328
256 × 256 592387 56 140 303 407

Explicit (first nonlinear iteration)
32 × 32 9539 43 43 43 43
64 × 64 37507 46 46 46 46

128 × 128 148739 50 50 50 50
256 × 256 592387 56 56 56 56

over these Picard iterations is significantly larger than for the im-
plicit formulation.

The result of these experiments is that for stationary computa-
tions, the implicit formulation is both computationally cheaper and,
likely, more stable. On the other hand, for time dependent prob-
lems the explicit formulation may be cheaper since one will already
have a good approximation for u∗ and one may only need a single
nonlinear iteration.

3.2.4 Benchmark for the compressible Stokes flow solver

We have verified our implementations of the compressible Stokes
and temperature formulations (Section 3.2.1) using a number of
benchmarks. In particular, we have reproduced the results from
the community benchmark described in King et al. (2010) (see
Section 3.2.5). We have also reproduced the benchmark given in
the appendix of Tan & Gurnis (2007) and will describe our re-
sults in the following. This latter benchmark consists of an an-
alytical solution for an instantaneous compressible Stokes flow
problem (with a given temperature). Using Fourier decomposi-
tion, the problem can be reduced to a boundary value ordinary
differential equation that can be solved numerically up to machine
precision.

Table 2. Convergence of velocity and heating terms for the benchmark
problem defined in Tan & Gurnis (2007). The exact values u∗, W ∗, φ∗ are
known from the exact solution of the problem.

1/h ‖u − u∗‖0 rate |W − W∗| |φ − φ∗|
Boussinesq approximation (BA)

8 9.0721e-06 –
16 1.1103e-06 3.03
32 1.3806e-07 3.01
64 1.7242e-08 3.00

Truncated anelastic liquid approximation (TALA), a = 0
8 1.2109e-05 – 4.5439e-07 2.2179e-07
16 1.4840e-06 3.03 2.9067e-08 1.4130e-08
32 1.8459e-07 3.01 1.6974e-09 5.5979e-10
64 2.3056e-08 3.00 6.2599e-11 2.9021e-10

Truncated anelastic liquid approximation (TALA), a = 2
8 8.7973e-06 – 2.1267e-07 1.4399e-07
16 1.1207e-06 2.97 1.3707e-08 9.3239e-09
32 1.4078e-07 2.99 8.0734e-10 4.9389e-10
64 1.7638e-08 3.00 2.6633e-12 6.6108e-11

The test case in Tan & Gurnis (2007) is defined in terms of the
non-dimensional Rayleigh and dissipation numbers,

Di = αgL

Cp
, Ra = α	Tρ2

0 gL3Cp

ηk
,

where L a characteristic length scale, 	T a characteristic tempera-
ture difference, ρ0 a reference density, and all other parameters as
introduced in Section 2. We then use the benchmark in the form
discussed in Tan & Gurnis (2007), but with eq. (B4) corrected to
read

Di

Ra
σ : ε = Di

Ra
η

(
4k2U 2

x + 10

9
β2U 2

z − 4βkUxUz

)
cos2(kx)

+ Di

Ra

1

η
(�xz)

2 sin2(kx).

We implement the benchmark in the setting of eqs (1)–(3) by
fixing all of the above material constants to 1, except for α = Di
and η = Di/Ra. We then test both the Boussinesq approximation
(BA) and the truncated anelastic liquid approximation (TALA), and
compute the L2 error of the velocity, and errors of the integrals
of shear (W = τ (u) : ε(u)) and adiabatic heating (φ = αρT (u · g)).
The problem is instantaneous, so we perform a nonlinear iteration
with the explicit formulation of the compressibility for a single
time step. Alternatively, one can use the implicit formulation and
perform a single Stokes solve, which gives very similar results.

The results are shown in Table 2 and show optimal third order
convergence for the L2 error of the velocity. Both heating terms
show less regular, but equally fast convergence to the exact values,
with the total shear heating converging at an even higher order than
the velocity.

3.2.5 Benchmark for 2-D Cartesian compressible convection

In order to verify that our approaches to solving compressible prob-
lems also work for more complex applications, we also evaluate the
correctness and accuracy of the re-formulations of the equations in-
troduced in Section 3.2.1 using the community benchmark defined
in King et al. (2010). The model domain for this benchmark is a
2-D square box cooled from the top and heated from the bottom.
This setup corresponds to the benchmark given in Blankenbach
et al. (1989), except that the material is no longer assumed to be
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Table 3. Parameters for the benchmark defined in King et al. (2010).

Expression Value

	T temperature change across the domain 3000 K
Tsurf surface temperature 273 K
γ Grueneisen parameter 1
L width and height of the box 1 m
g gravitational acceleration in negative z direction 1 m s−2

α thermal expansivity Di
cp specific heat 1 J kg−1 K−1

ρ0 surface density 1 kg m−3

η viscosity Di/Ra
k thermal conductivity 1 W m−1 K−1

incompressible and instead different approximations for the com-
pressible mass conservation equation are tested. All material proper-
ties are approximated as constants, with the exception of the density,
which varies around a reference state

ρ̄ = ρ0 exp

(
z

Di

γ

)
. (9)

A constant temperature is prescribed at the top (z = 0) and bottom
(z = L) of the domain, with

Ttop = Tsurf

	T
, Tbot = Tsurf + 	T

	T

and no flux conditions at the side walls. This temperature increase
across the model domain includes both the contribution of the adi-
abatic temperature profile,

T̄ = Ttop ez Di, (10)

and the non-adiabatic temperature variations across the boundary
layers. The initial temperature is a linear profile that matches these
boundary conditions, plus a small perturbation:

Tt=0 = z

L
+ 0.01 cos

(πx

L

)
sin

(π z

L

)
+ Ttop.

We then let the model evolve until steady state is reached.
Analogous to the procedure described in Section 3.2.4, we repro-

duce the non-dimensional formulation of the benchmark by setting
all material constants to 1, except for α = Di and η = Di/Ra. In the
different benchmark cases, Di is varied between 0.25 and 1, and Ra
is chosen as 104 and 105. All parameters are given in Table 3.

We have tested both the anelastic liquid approximation (ALA)
and the truncated anelastic liquid approximation (TALA) using our
reference implementation of our algorithms in the ASPECT code
(Kronbichler et al. 2012). Because we are only interested in the
steady-state limit, rather than accurate intermediate values, we re-
port results for the explicit formulation (7) with the modification
in (8), without actually iterating out the nonlinearity in every time
step. (However, we have also verified that the implicit formulation,
(6), yields essentially the same results.) Table 4 provides an excerpt
of results for the ALA, with full results for both ALA and TALA
given in Tables A1 and A2. Specifically, we compare the Nusselt
number Nu, root mean square velocity Vrms, average temperature
〈T〉, the total shear heating φ and adiabatic heating W to the results
given in King et al. (2010). As can be seen from the table, there
is excellent agreement between our results and those previously re-
ported. In other words, the re-formulations in Section 3.2.1 do not
only allow us to efficiently solve compressible problems, but also
accurately.

3.3 Averaging of material properties

Geophysical models are often characterized by abrupt and large
jumps in material properties, in particular in the viscosity. An ex-
ample is a subducting, cold slab surrounded by the hot mantle:
Here, the strong temperature-dependence of the viscosity will lead
to a sudden jump in the viscosity between mantle and slab. Another
example are phase transitions, where the density and viscosity of
rocks change abruptly between the stability field of different min-
erals. The length scale over which this happens will be a few or
a few tens of kilometres. Such length scales cannot be adequately
resolved in 3-D computations with typical meshes for global com-
putations. In other words, the viscosity field is, for all practical
purposes, discontinuous, with jumps of possibly several orders of
magnitude from quadrature point to quadrature point.

Having large viscosity variations in models poses a variety of
problems to numerical computations. First, they lead to very long
compute times because solvers and/or preconditioners break down
(see Rudi et al. (2015) for a proposed preconditioner for large
viscosity variations). This may be acceptable if it would at least lead
to accurate solutions, but large viscosity variations also lead to large
pressure gradients, and this in turn leads to over- and undershoots in
the numerical approximation of the gradient. We will demonstrate
both of these issues experimentally in Sections 3.3.2 and 3.3.3
below.

One can mitigate some of these effects by averaging material
properties in some form on each cell (see e.g. Deubelbeiss & Kaus
2008; Schmeling et al. 2008; Duretz et al. 2011; Thielmann et al.
2014; Thieulot 2015). At the same time, replacing the correct vis-
cosity at each quadrature point by an averaged one implies solving
a different problem, and one would expect this to affect the accu-
racy of the solution. In cases where the viscosity (and consequently
the solution) is smooth, averaging could be assumed to be harm-
ful to the overall accuracy. On the other hand, if the solution has
essentially discontinuous gradients and kinks in the velocity field,
then at least at these locations we cannot expect a particularly high
convergence order anyway, and the averaging will likely not hurt
very much either. This section therefore explores these issues and
shows numerical results.

3.3.1 Implementation

In implementations, averaging first evaluates the material model
at every quadrature point of a cell, given the temperature, pres-
sure, strain rate, and other quantities at these points, and then ei-
ther (i) uses these values as is in the assembly of contributions to
the system matrix and right hand side, or (ii) replaces the val-
ues by their arithmetic average x̄ = 1

N

∑N
i=1 xi , harmonic aver-

age x̄ =
(

1
N

∑N
i=1

1
xi

)−1
, geometric average x̄ =

(∏N
i=1

1
xi

)−1/N
,

or largest value over all quadrature points on this cell. Alterna-
tively, one may project the values from the quadrature points to a
bi- (in 2-D) or trilinear (in 3-D) Q1 finite element space on every
cell, and then evaluate this finite element representation again at
the quadrature points; in this case, one may also limit the computed
values at quadrature points by the minimum and maximum value
of the coefficient before averaging. These operations are applied to
all quantities that the material model computes, that is, in partic-
ular, the viscosity, the density, the compressibility, and the various
thermal and thermodynamic properties.

A priori, we know of little guidance from the literature on the
analysis of numerical discretizations of partial differential equations
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Table 4. Excerpt of benchmark results for ALA as defined in King et al. (2010). The ASPECT computations are highlighted in grey and
were obtained using extrapolation from a 1/128 mesh. Acronyms for the different codes used in King et al. (2010) are UM—University
of Michigan (Sepran); VT—Virginia Tech (ConMan); CU—University of Colorado at Boulder (Citcom). See the Appendix for the full
results.

Di Ra Nu Vrms 〈T〉 φ W

0.25 104 ASPECT 4.4145 39.9568 0.5149 0.8496 0.849
King UM 4.406 39.952 0.515 0.847 0.849
King VT 4.4144 40.0951 0.5146 0.849 0.849
King CU 4.41 40 0.5148 0.8494 0.8501

1 104 ASPECT 2.446 24.6809 0.5114 1.3427 1.354
King UM 2.438 24.663 0.512 1.343 1.349
King VT 2.4716 25.0157 0.51 1.3622 1.3621
King CU 2.47 24.9 0.5103 1.3627 1.3638

0.25 105 ASPECT 9.2334 178.0751 0.5322 2.0525 2.0517
King UM 9.196 178.229 0.532 2.041 2.051
King VT 9.2428 179.7523 0.5318 2.0518 2.0519
King CU 9.21 178.2 0.5319 2.0503 2.054

1 105 ASPECT 3.8699 84.3678 0.5298 2.7519 2.7692
King UM 3.857 84.587 0.53 2.742 2.765
King VT 3.878 85.5803 0.5294 2.761 2.7614
King CU 3.88 84.6 0.5294 2.7652 2.7742

regarding the question which of these averaging options is best.
Indeed, it is also not quite clear what the appropriate metric would be
to determine ‘best’—for example, one could consider various norms
of the errors, run time of solvers, or other metrics. Consequently,
in the following sections we will consider a simple test case and
evaluate the options above with regard to discretization error and
the time necessary to solve the linear system associated with each.

3.3.2 Influence of averaging on numerical accuracy

We experimentally evaluate the question which of the introduced
averaging operations may in fact be best by considering the ‘sinker’
benchmark. This benchmark is defined by a high-viscosity, heavy
disk at the centre of a 2-D box. Both density and viscosity are there-
fore discontinuous along the interface of the disk, and in particular
not aligned with the mesh. We use ρ = 1, η = 1 outside the disk,
and ρ = 10, η = 106 inside the disk to simulate a realistic viscosity
contrast; the contrast in the density is immaterial as it is only a
(global) scaling factor for the solution.

For three of the averaging options introduced above, and for
different levels of mesh refinement, Fig. 2 shows pressure plots
that illustrate the problem with oscillations of the discrete pressure,
without and with averaging. The important part of these plots is not
that the solution looks discontinuous—in fact, the exact solution
is discontinuous at the edge of the circle—but the spikes that go
far above and below the ‘cliff ’ in the pressure along the edge of
the circle. Without averaging, these spikes are far larger than the
actual jump height. Importantly, the spikes also do not disappear
under mesh refinement nor averaging; in other words, the discrete
pressure does not converge in the L∞ norm to the exact pressure.
(Further investigations also show that the maximal and minimal
pressures continue to grow with mesh refinement, although slowly,
with or without averaging.) On the other hand, the pressure spikes
become far less pronounced with averaging.

The results shown in the figure do not allow to draw definitive
conclusions as to which averaging approach is the best. This is
in line with previous discussions of this question, for example, in
Schmeling et al. (2008), Deubelbeiss & Kaus (2008), Duretz et al.
(2011) and Thielmann et al. (2014). On the other hand, we can
investigate this by evaluating the error in the solution for the closely

Figure 2. Visualization of the pressure field for the ‘sinker’ problem. Left
to right: no averaging, arithmetic averaging, harmonic averaging. Top: on a
mesh with 128 × 128 cells. Bottom: on a mesh with 256 × 256 cells. The
minimal and maximal pressure values are indicated below every picture.
This range is symmetric because we enforce that the average of the pressure
equals zero. The colour scale is adjusted to only show values between p = −3
and p = 3. (Geometric averaging, choosing the largest value on each cell, and
projecting the coefficient to a Q1 space yields similar pictures, with pressure
ranges [−3.57, 3.57], [−1.80, 1.80], and [−3.58, 3.58] for the coarser of
the two meshes, and [−5.18, 5.18], [−5.20, 5.20], and [−7.99, 7.99] for the
finer one.)

related ‘Pure shear/Inclusion’ benchmark (see Duretz et al. 2011)
for which we know the exact solution. To this end, Fig. 3 shows
the L2 errors in velocity and pressure for a variety of averaging
options and as meshes are refined. The figures clearly show that
all averaging schemes improve the pressure approximation, though
some deteriorate the velocity approximation. In light of Figs 2 and 3,
using harmonic averaging appears to be a reasonable compromise.
This is again in agreement with previous statements in the literature.

One may follow the problem with discontinuous pressures in a
different direction and suggest that the pressure could be better
approximated by using a discontinuous pressure space. This is in
fact possible for the Stokes equations, by choosing a discontinuous
Pk pressure space instead of the common continuous Qk space of the
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Figure 3. L2 errors in velocity (left) and pressure (right) with a variety of averaging schemes as a function of the number of unknowns in the discretization.
The figures shown here use the usual Taylor-Hood Qd

2 × Q1 element.

Figure 4. Visualization of the pressure field for the ‘sinker’ problem. Like
Fig. 2 but using the Stokes element with discontinuous pressures.

Taylor-Hood pair, without losing the inf-sup stability of the discrete
problem (Kronbichler et al. 2012). Disappointingly, however, this
makes no real difference: the pressure oscillations are no better (in
fact, they are worse) than for the standard Stokes element (Fig. 4)
and the L2 errors are generally worse for both velocity and pressure
(Fig. 5).

3.3.3 Influence of averaging on solver speed

A very pleasant side effect of averaging is that solutions are not
only better behaved, but are also cheaper to compute. For example,

Table 5. Number of outer GMRES iterations to solve the Stokes equations
with continuous pressure on a sequence of globally refined meshes and for
different material averaging operations. Geometric averaging, picking the
largest viscosity value on each cell, and projecting the viscosity field to a
piecewise Q1 space yields very similar numbers as the other two averaging
options. For an interpretation of the data see the main text.

Mesh size No averaging Arithmetic Harmonic
averaging averaging

16 × 16 60 25 20
32 × 32 89 24 22
64 × 64 129 24 24

128 × 128 138 26 24
256 × 256 277 25 25

the total run time for the sinker testcase of the previous section (see
Fig. 2), using a 256 × 256 mesh and the Taylor–Hood element,
is reduced from 5870s without averaging to 240s for harmonic
averaging—a speed-up of a factor of around 25!

Such improvements carry over to more complex and realistic
models. For example, in a simulation with large viscosity hetero-
geneities using approximately 17 million unknowns and run on 64
processors, the wall-clock run time is reduced from 145 to 17 hr
and the computed solutions do not differ in any significant way.

We attempt to quantify this effect in Table 5 by looking at the
number of outer GMRES iterations necessary to solve the vari-
able viscosity Stokes system. We use a preconditioner that involves

Figure 5. L2 errors in velocity (left) and pressure (right) with a variety of averaging schemes as a function of the number of unknowns in the discretization.
Compared to Fig. 3, the graphs shown here use a Stokes element with a discontinuous pressure Qd

2 × P−1.
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an inner solver with an algebraic multigrid preconditioner for the
elliptic top-left block of the matrix (corresponding to the ‘expen-
sive’ option discussed in Kronbichler et al. (2012)). Using this
scheme, the number of GMRES iterations rises steeply with mesh
refinement without averaging, see Table 5. On the other hand, with
(any kind of) averaging, the number of iterations remains much
lower. The effect is even more dramatic when using the discon-
tinuous pressure element mentioned in the previous section: there,
without averaging, the number of iterations grows from 389 on a
16 × 16 mesh to 1174 on a 256 × 256 mesh, while the num-
ber of iterations with averaging are very similar to those shown in
Table 5.

We can also quantify how many fewer outer GMRES iterations
one needs with averaging for the complex model mentioned above:
There, the number of iterations is reduced from 169 to 77.

However, the number of outer GMRES iterations is only part
of the problem. Depending on the choice of pre-conditioner for
the Stokes system, one has to also iteratively invert the elliptic
top-left block of the Stokes matrix, and/or a pressure mass matrix.
These ‘inner’ solves also become vastly cheaper with averaging,
requiring 2 to 5 times fewer Conjugate Gradient iterations than
without averaging per preconditioner application. Together with the
reduction in outer iterations, overall run time for the Stokes solver is
reduced by the factors discussed at the beginning of the subsection.

3.4 Latent heat

When incorporating phase transitions into realistic mantle convec-
tion models we are not only faced with abrupt changes of material
properties across these transitions as discussed in Section 3.3, but
also with a relatively sudden change in internal energy of the ma-
terial. This means that latent heat is consumed or released over a
sharp interface as material crosses a particular phase boundary. In
the energy balance (3), this is expressed as a heating term describ-
ing the changes of the entropy S in terms of its material derivative.
As the entropy of a given material depends only on temperature
and pressure (assuming a constant chemical composition), we can
rewrite the corresponding heating term in (3) as

ρT
DS

Dt
= ρT

(
∂S

∂T

DT

Dt
+ ∂S

∂p

Dp

Dt

)
= ρT

(
∂S

∂T

(
∂T

∂t
+ u · ∇T

)
+ ∂S

∂p

(
∂p

∂t
+ u · ∇ p

))
Together with the approximation that the fluid is anelastic (see Sec-
tion 2)—that is, assuming ∂p

∂t = 0, and when moving all advection
terms involving the temperature to the left-hand side, the energy
balance (3) can be rewritten in the following form:(

ρCp − ρT
∂S

∂T

)(
∂T

∂t
+ u · ∇T

)
− ∇ · k∇T

= ρH + τ (u) : ε(u) +
(

α + ρ
∂S

∂p

)
T (u · ∇ p) . (11)

3.4.1 Implementation

Different approaches for how to implement this equation have been
suggested in the literature:

(i) One may describe a number of prominent phase transitions
using the Clapeyron slope γ , density change 	ρ and an analytic

phase function X, such as a hyperbolic tangent, that describes the
stability field of each phase and varies between 0 and 1,

∂S

∂T
= 	S

∂ X

∂T
= γ

	ρ

ρ2

∂ X

∂T
,

see for example Christensen & Yuen (1985).
(ii) One may use a thermodynamic calculation package, such as

Perple_X (Connolly 2009) or BurnMan (Cottaar et al. 2014) to com-
pute p-T tables of material properties, including the enthalpy H (or
its pressure and temperature derivatives), which describes the en-
ergy changes associated with phase transitions. Between data points
of these tables, one may then interpolate continuously (yielding a
smoothed out approximation of the true p-T diagram) and compute
derivatives ∂S/∂T and ∂S/∂p based on this interpolation.

(iii) One may use a modified version of (ii) that involves using
the pressure and temperature derivatives of the enthalpy to compute
an ‘effective’ thermal expansivity

αeff = 1

T

[
1 − ρ

(
∂ H

∂p

)
T

]
and specific heat

Cp,eff =
(

∂ H

∂T

)
p

,

respectively, which are then used in the energy conservation equa-
tion in place of the original quantities and account for latent heat
effects (see e.g. Nakagawa et al. 2009).

All of these methods have in common that they introduce rel-
atively narrow regions where latent heat is consumed or released.
Even though phase changes generally occur over a range of pres-
sures and temperatures, and are also not instantaneous, their width
is often below the grid resolution of geodynamic computations.
Hence, strategies have to be designed for smoothing out sharp
transitions so that they can be treated numerically, but still yield
a high accuracy. In addition, narrow zones of latent heat release
lead to strong temperature gradients with consequent difficulties
for numerical schemes that have to be addressed by stabilization as
discussed in Kronbichler et al. (2012).

3.4.2 Numerical results

We numerically evaluate the reformulation of latent heat processes
in (11) by using the benchmark described in Schubert et al. (2001,
part 1, p. 194). It provides an analytical solution for the latent
heat that is released or consumed when material undergoes a phase
transition. An important consideration in practice is to assess by
how much the temperature can deviate from the correct solution if
the phase transition is not properly resolved. Our experiments are
therefore targeted at estimating how many mesh cells across a phase
transition are required to accurately model the temperature change.

The basic setup is a pipe with prescribed material inflow at con-
stant velocity and temperature at the top, outflow at the bottom, and
a univariant phase transition (occurring at a single value of tem-
perature and pressure) approximately in the centre of the domain
(Fig. 6). As initial condition, the model uses a uniform temperature
field; however, when material crosses the phase transition, latent
heat is released. In the steady state limit, this leads to a temperature
profile with a higher temperature in the bottom half of the domain,
which can be calculated by solving the energy equation (eq. (11),
using approach (i) above) for 1-D downward flow with (constant)
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Figure 6. Setup of the latent heat benchmark together with the expected
temperature profile across the phase transition. Material flows in with a
prescribed temperature and velocity at the top, crosses the phase transition
in the centre and flows out at the bottom.

vertical velocity vz:

ρCpvz
∂T

∂z
= ρT 	Svz

∂ X

∂z
+ ρCpκ

∂2T

∂z2
.

Here, ρCpκ = k with k the thermal conductivity and κ the thermal
diffusivity. The latent heat generation is the product of the temper-
ature T, the entropy change 	S across the phase transition divided
by the specific heat capacity and the derivative of the phase function
X, which indicates the fraction of material transitioned from phase
1 to phase 2. If the velocity is smaller than a critical value (see also
Schubert et al. (2001) part 1, pp. 193–195), this latent heat term
will be zero everywhere except for the one depth ztr where the phase
transition occurs discontinuously.

This means that there are two one-phase regions, one above ztr

with only phase 1, and one below ztr with only phase 2, where the
equation above (using the boundary conditions T = T1 for z → −∞
and T = T2 for z → ∞) can be solved as

T (z) =
{

T1 + (T2 − T1)e
vz (z−ztr )

κ , z < ztr,

T2, z > ztr.

As we consider only the steady state, and the solution given above
tells us that for z > ztr (the region downward of the phase transi-
tion) the temperature is constant (see also the temperature profile in
Fig. 6), there is no net downward transport of heat from the phase
change interface. In other words, the amount of heat generated at
the phase transition is the same as the heat conducted upwards from
the transition:

ρvz T 	S|z=ztr− = κ

ρCp

∂T

∂z

∣∣∣∣
z=ztr−

= ρCpvz(T2 − T1).

Figure 7. Results of the latent heat benchmark: error of the modelled tem-
perature T2 at the bottom of the model domain as a function of mesh
resolution for different widths of the phase transition. If the resolution is
too low to resolve the phase transition, errors are large (>5 K) and do not
vary in a systematic way, as grid points lie on random points on the phase
transition (or even exclude the phase transition). If the phase transition is
at least four cells wide (the grey area indicates models with exactly four
cells across the phase transition width), it is resolved properly and errors
are much smaller (<5 K). In this case, the error mainly depends on the
width of the phase transition and converges for the width going to zero. The
‘outlying’ blue and purple data points with unexpectedly small error result
from models where the temperature change across the phase transition was
larger than the analytically predicted one (instead of smaller, as for all the
other models), and hence are by chance closer to the analytical solution.

Rearranging this equation and using T(ztr) = T2 gives

T2 = T1

1 − 	S
C p

.

In the numerical model, we cannot exactly reproduce the be-
haviour of a Dirac delta function as would result from taking the
derivative ∂ X

∂z of the discontinuous phase function X(z) that is con-
sidered in the benchmark. Rather, we use a hyperbolic tangent with
a (small) finite width to model X(z). This leads to a deviation of the
numerical from the analytical solution that is dependent on how well
the mesh resolves the transition zone and how large one chooses
the transition zone width to be. Both the mesh size and the width
of the transition zone can be chosen independently for numerical
purposes.

Fig. 7 shows numerical results that demonstrate this interplay: If
the resolution is high enough to resolve the phase boundary (which
requires approximately 4 mesh cells across the phase transition,
using bi-quadratic finite elements, in our experiments), the error is
small and is dominated by the phase transition width—the deviation
of the approximate, smoothed model from the exact one. On the
other hand, while the mesh is too coarse to resolve the transition
zone, neither mesh refinement nor reducing the size of the transition
zone have a significant effect.

Hence, for modelling discontinuous phase transitions (or phase
transitions that are too narrow to be resolved in the numerical
model), to reach the highest accuracy the phase transition width
should be chosen as approximately four times of the smallest cell
size. This corresponds to the first data point after the kink of each
line in Fig. 7, that is, the area highlighted in grey, thus demonstrating
predictable convergence.
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3.5 Mesh refinement

Many finite element codes supporting adaptive mesh refinement
use the ‘Kelly’ refinement criterion (Gago et al. 1983) to refine
and coarsen the mesh in response to the computed solution (for an
overview of other error indicators used in computational geody-
namics simulations, we refer to May et al. (2013), Burstedde et al.
(2013) and Davies et al. (2011)). In the case of time-dependent
problems such as the one discussed here, one would perform this
adaptation every few time steps. The ‘Kelly’ criterion computes a
numerical approximation to the second derivative of a finite element
function vh, times a power of the mesh size, by evaluating for every
cell K the quantity

ηK =
(

hK

∫
∂K

|[n · ∇vh]|2 dx

)1/2

,

where [ · ] denotes the jump of the enclosed quantity across the
interface between cell K and its neighbours, n is the normal vector
to the boundary of cell K, and hK is the diameter of K.

This criterion was originally developed as an error estimator for
the Laplace equation (Kelly et al. 1983), but has been found widely
useful in adaptive meshing because it also estimates the polynomial
interpolation error on every cell. It has thus been used for many
different equations to generate good meshes, even if no provably
accurate error estimators are available for these equations.

In the context of mantle convection, it therefore seems appropriate
to drive mesh refinement by applying this criterion to either the
temperature or velocity field. Indeed, we advocated for this approach
in Kronbichler et al. (2012) based on the observation that this should
help reduce the error in the natural energy norms for these two
solution variables.

On the other hand, in actual applications, one is often interested
in a variety of quantities that are, at best, tangentially related to
the energy norm error and whose approximation is not always im-
proved by choosing a mesh based on an energy error indicator. A
typical example would be simulations that investigate the impor-
tance of phase changes on the dynamics of convection: While the
coefficients in the equations (e.g. density, viscosity) and possibly
other derived quantities such as seismic velocities are discontin-
uous at these interfaces, the solution fields (e.g. temperature and
velocity) may vary in ways that do not make such interfaces ob-
vious. Consequently, only refining based on velocity and temper-
ature may not yield meshes that reveal these phase boundaries in
sufficient detail to really capture their small-scale influences. Fur-
thermore, the meshes so generated would not allow to extract inter-
faces with sufficient resolution to account for the dynamic effects
of phase changes, latent heat transfer as discussed in Section 3.4,
or for comparison against observations like seismic tomographic
models.

3.5.1 A practical approach

Despite the fact that we have well over a decade of experience
with mesh adaptation algorithms, it is not clear to us how one can
devise methods that automatically take into account what one may
be interested in. Dual Weighted Residual methods such as those
discussed in Bangerth & Rannacher (2003) may be appropriate but
are unwieldy to implement for time-dependent problems. Instead,
the best solution we can come up with is a complex but flexible,
two-tiered system for adaptive mesh refinement that is primarily
driven by letting users choose what information they think is most
important for their purposes. In a first step, we compute refinement

indicators η
(1)
K , . . . , η

(L)
K by choosing among a list of indicators that

include the following:

(i) The ‘Kelly’ indicator applied to the velocity or temperature.
(ii) A weighted discrete approximation of the gradient,

ηK = h1+d/2
K |∇hvh(xK )|.

Here, xK is the centre of K, d the space dimension, and the factor
h1+d/2

K is chosen so that indicators converge to zero as the mesh
size h → 0 even for discontinuous discretizations vh of otherwise
continuous exact solutions v. This criterion is then applied to derived
quantities vh such as the density, the viscosity, or the thermal energy
density ρCpT.

The criteria η
(�)
K are then scaled or normalized to yield η̃

(�)
K ,

and the final refinement indicators are obtained by either comput-
ing the maximum of (scaled or normalized) error indicators,
ηK = max1≤�≤L η̃

(�)
K , or the sum of these indicators,

ηK = ∑
1≤�≤L η̃

(�)
K . Cells are then marked for coarsening or

refinement based on ηK.
There are also cases where refinement needs to be driven algo-

rithmically, rather than based on criteria derived from solution or
derived values. For example, we have found that it is often useful to
only refine in a region of particular interest, even though the model
is larger; in these cases, one can think of the larger model (with a
relatively coarse mesh) as providing self-consistent boundary val-
ues for the smaller region of interest (with a finer mesh). Another
example is to ensure a minimal refinement level for all cells at the
surface, or at a particular depth.

This approach provides great flexibility in defining how and
where the mesh is refined, as necessary, and thereby provides high
accuracy where it is important for the particular question one wants
to investigate in a simulation. At the same time, there is little the-
oretical underpinning that this approach is ‘optimal’ (however one
may want to define this).

3.5.2 Mesh refinement in 2-D spherical convection

We demonstrate the flexibility provided by the mesh refinement
procedure using an example of 2-D mantle convection that includes
phase transitions and the associated discontinuities of density and
viscosity. The geometry is a spherical shell, and the mantle is heated
from the bottom, where the temperature is fixed to 2600 K, and
cooled from the top, where the temperature is 273 K. No additional
heating processes (such as shear heating, adiabatic heating, or latent
heat) are included, and the initial temperature is constant at 1600 K
except for the two thermal boundary layers.

We model two phase transitions at depths of 410 km and
660 km (reflecting the olivine-spinel and spinel-perovskite transfor-
mations), where both viscosity and density change discontinuously.
Specifically, we use a viscosity

η = η0e
−E

T −Tref
Tref , (12)

where η0 = 1021 Pa s in the upper mantle, η0 = 1022 Pa s between
410 km and 660 km depth, and η0 = 1023 Pa s in the lower mantle;
we choose the dimensionless activation energy E = 15, and the
reference temperature Tref = 1600 K.

Our density model satisfies

ρ = ρ0(1 + κp)(1 − α(T − Tref ))

+
⎧⎨⎩

0, depth < 410 km
	ρ410, 410 km < depth < 660 km
	ρ410 + 	ρ660, depth > 660 km

. (13)
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with ρ0 = 3300 kg m−3, κ = 5.124 × 1012 Pa−1,
α = 4 × 10−5 K−1, and density increases of 	ρ410 = 100 kg m−3

and 	ρ660 = 200 kg m−3 at the 410 km and 660 km phase tran-
sitions. Velocities at the outer boundary are prescribed, using the
present-day plate velocities along the equator projected onto the
2-D slice used in our model (Gurnis et al. 2012).

Fig. 8 shows the temperature distribution in this model after 260
million years, together with the corresponding meshes generated
using different criteria for the adaptive refinement. The figure illus-
trates how a refinement criterion based solely on the temperature
almost entirely misses the phase transitions in favour of resolv-
ing only the boundary layers and plumes. It would therefore not
yield sufficiently resolved fields for comparisons with tomographic
models of Earth. On the other hand, refining based on weighted
approximate gradients of either the thermal energy density ρCpT or
the viscosity η allows the resolution of phase boundaries.

Which of these meshes yields the ‘best’ solution cannot be quan-
tified without specifying what the ‘goal’ of the simulation is. It is
possible that the meshes refined based on the thermal energy den-
sity or the density have a larger energy norm error in the velocity
and/or temperature. On the other hand, their accuracy in predicting
tomographically visible interfaces is certainly much higher.

3.6 Tracking chemical compositions and other quantities

In many complex simulations of mantle convection, it is necessary
to track not only the flow of thermal energy (described by eq.
(3)), but also how the chemical composition, trace or radiogenic
elements, isotope ratios, water content—or other quantities such as
grain sizes—are transported along with the velocity.

In mantle convection codes, this has traditionally (and success-
fully) be done using tracer particles (Poliakov & Podladchikov 1992;
Gerya & Yuen 2003; McNamara & Zhong 2004; Popov & Sobolev
2008; Thielmann et al. 2014). However, it is not trivial to implement
tracers efficiently and scalably in the context of large-scale paral-
lel codes with dynamically changing, adaptively refined meshes, as
opposed to globally refined, statically partitioned, fixed meshes. A
number of these challenges—and possible solutions—are discussed
in more details in Gassmoeller et al. (2016).

On the other hand, many of the applications that have tradition-
ally motivated the use of particles can equally well be done by
using a field-based description of the quantities one wants to advect
along. The advantage in using this approach is the well-developed
numerical infrastructure for solving advection equations, and the
ease with which these can then be evaluated at quadrature points
when computing material properties; highly efficient tools are also
available in many of the available finite element libraries to facilitate
data movement upon mesh refinement and repartitioning (see e.g.
Bangerth et al. 2011).

Using field-based approaches then requires advecting any number
of ‘compositional fields’ Ci along with the velocity field, by solving
the advection equations

∂Ci

∂t
+ u · ∇Ci = Qi for i = 1...n, (14)

where Qi are source terms that may depend on velocity, pressure,
temperature, and the compositional fields Ci themselves. Through
appropriate choices of these source terms, one can also model reac-
tions among fields, for example to describe compositional changes
upon partial melting or freezing of material. On the other hand,
entirely different reactions can equally easily be modelled, and we
will outline one example in Section 3.6.2 below.

Figure 8. Temperature distribution and mesh in a 2-D mantle convection
model, using different refinement criteria: The Kelly error estimator for the
temperature field, an error indicator based on the magnitude of the approx-
imate gradient of the thermal energy density ρCpT, and the approximate
gradient of the viscosity.
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In practice, the compositional fields are easily evaluated at
quadrature points, and can therefore be used to affect the description
of material parameters such as the density and viscosity.

3.6.1 Implementation

As stated, eq. (14) does not contain any diffusion, in line with the fact
that chemical species do not diffuse at appreciable rates on length
scales of the Earth mantle. Consequently, the numerical solution
of (14) presents challenges when modelling sharp gradients—for
example, when tracking chemical heterogeneities, or when using the
fields Ci to track where material that originates from one particular
area is transported over time. To stabilize the numerical solution,
one typically employs one of many artificial viscosity schemes, such
as the SUPG formulation (Brooks 1981; Brooks & Hughes 1982) or
schemes based on the residual of an entropy equation (Guermond
et al. 2011; Kronbichler et al. 2012). This is of course also necessary
for the temperature eq. (3).

In practical applications, it has proven useful to allow descriptions
of the source terms Qi that may consist both of finite but time depen-
dent components, and of impulse functions in time. An example for
the use of impulse functions is where the Ci describe the chemical
composition of rocks; if these compositions change due to partial
melting and melt extraction that happen instantaneously (compared
to the size of a time step) as a rock moves through the p − T phase
diagram, the compositions Ci also need to change instantaneously,
rather than continuously. Allowing both continuous and impulse
components can be achieved by providing the functions that com-
pute Qi with current values of strain rate, temperature, pressure,
compositions, and spatial location, along with a time increment 	t,
and require them to return

∫ t+	t
t Qi (ε(u), p, T, C, x, τ ) dτ . If Qi

contains impulse components, then the functions’ return value will
simply have a contribution that is not proportional to 	t.

3.6.2 Tracking finite strain

We demonstrate the flexibility of using compositional fields using
the example of a Cartesian convection model that tracks the ac-
cumulated finite strain at every location of the domain. For this
purpose, we define Ci as the components of the deformation gra-
dient (or deformation) tensor F, which represents the deformation
accumulated over time by idealized little grains of finite size. This
is done in such a way that (in 2D) C1 = Fxx , C2 = Fx y, etc. The
time derivative of F can be computed as

∂ F

∂t
= G F, (15)

where G = ∇uT is the velocity gradient tensor (McKenzie & Jack-
son 1983; Dahlen & Tromp 1998; Becker et al. 2003). The initial
deformation is F0 = I , with I being the identity tensor.

This means that the Qi on the right-hand side of eq. (14) can be
computed as the product of the current velocity gradient G and the
accumulated deformation F at the previous time step.

A direct visualization of F is not intuitive, because it contains
rotational components that represent a rigid body rotation with-
out deformation. Following Becker et al. (2003) we can polar-
decompose the tensor into a positive-definite and symmetric ten-
sor L, and an orthogonal rotation tensor R, as F = L R, therefore
L2 = LLT = F FT . The left stretching tensor L then describes the
deformation we are interested in, and its eigenvalues λi and eigen-
vectors ei describe the length and orientation of the half-axes of the

Figure 9. Temperature (top) and accumulated natural strain (bottom) in a
2-D Cartesian convection model at a time of 67.6 Ma. Black crosses represent
the scaled eigenvectors of the stretching tensor L, showing the direction of
stretching and compression the material has experienced.

finite strain ellipsoid. Moreover, we will represent the amount of
relative stretching at every point by the ratio ln (λ1/λ2), called the
natural strain (Ribe 1992).

The model we present here as an example for tracking of finite
strain features a box with an aspect ratio of three and dimensions
of 2900 × 8700 km. The mantle is cooled from the top (where
the temperature is 293 K) and heated from the bottom (where the
temperature is 2780 K) with no additional heat sources in the form
of internal heating or latent heat. The density is modelled as

ρ = ρ0 (1 − α(T − Tref )) , (16)

with ρ0 = 3400 kg m−3, α = 2 × 10−5 K−1 and the reference
temperature Tref = 1600 K. Thermal conductivity and gravity are
set to k = 4.7 W m−1 K−1 and g = 9.81 m s−2. We choose the
temperature-dependent viscosity as

η = η0e
−E

T −Tref
Tref , (17)

with η0 = 5 × 1021 Pa s and E = 7. Hence, the bottom thermal
boundary layer, where viscosities are lower, becomes unstable first,
and plumes start to rise towards the surface, see Fig. 9 (top). Material
moves to the sides at the top of the plume head, so that it is shortened
in vertical direction (short black vertical lines in Fig. 9, bottom) and
stretched in horizontal direction (long horizontal lines). The sides
of the plume head show the opposite effect. Shear occurs mostly at
the edges of the plume head, in the plume tail, and in the bottom
boundary layer (black areas in the natural strain distribution).

4 A P P L I C AT I O N T O A C O M P L E X
P RO B L E M

In order to present the methods discussed in the previous sections in
practice, we here show results of a global mantle convection model
that combines a compressible formulation with earth-like material
properties, a strongly temperature dependent viscosity, chemical
heterogeneities tracked by compositional fields, and prescribed sur-
face velocities.

In particular, the model geometry resembles Earth’s mantle,
and starts from an undisturbed, motionless state. A layer of dense
basaltic material with initially uniform thickness of 150 km covers
the core–mantle boundary, and the initial temperature profile fol-
lows an adiabat of 1613 K computed with the material properties
that are provided by the Perple_X software (Connolly 2005) based
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on a database of mineral properties (Stixrude & Lithgow-Bertelloni
2011), overall a method similar to Nakagawa et al. (2009). This
approach yields realistic, earth-like material properties, but also
entails several challenges, such as discrete sampling in pressure–
temperature space, and quasi-discontinuous jumps due to phase
transitions. The viscosity is based on a published viscosity model
incorporating constraints from mineral physics, geoid deformation
and seismic tomography (Steinberger & Calderwood 2006). It is
depth- and temperature dependent with a depth-dependent activa-
tion enthalpy of 200–500 kJ mol−1 and would lead to viscosity
variations of at least eight orders of magnitude over the model tem-
perature range. In order to limit the maximal velocity, and thus the
number of time steps and computational cost, we artificially restrict
the viscosity to the range 5 × 1019–1.5 × 1023 Pa s by cutting
off values outside of this range. As has been shown elsewhere, see
Dannberg & Heister (2016) and Tosi et al. (2015), our Stokes solver
is capable of solving larger viscosity contrasts up to at least seven
orders of magnitude. Surface velocities in the model are prescribed
using published plate reconstructions (Seton et al. 2012), and are
prepared by the GPlates software (Boyden et al. 2011) at discrete
positions, and interpolated to the adaptively refined mesh within
ASPECT. Boundary temperatures are prescribed to 273 K (at the
surface) and 3700 K (at the core–mantle boundary). The resolution
of the finest mesh cells is 23 km (large portions of the model are
adaptively coarsened), and the overall computation has about 100
million degrees of freedom in each time step. The model requires
3700 time steps, within which we iterate out the nonlinearity with
on average about 2 subiterations (for a total of 6000 nonlinear iter-
ations). The model required a computing time of 24.5 hr on 1536
processes, that is, 37 600 CPU hours.

The model results presented in Fig. 10 demonstrate the complex-
ities that arise in realistic mantle convection models as discussed in
this paper. The strongly temperature dependent viscosity leads to
narrow upwelling plumes (with diameters around 100 km) that rise
from the edges of the dense basal piles and reach the surface close to
observed hotspot locations on Earth as observed in many other stud-
ies (Davies et al. 2012; Steinberger & Torsvik 2012; Bower et al.
2013; Hassan et al. 2015). Due to its low viscosity the plume mate-
rial moves with velocities larger than 10 cm yr−1 in the upper mantle
thus limiting the time-step length of the model. The mineral physics
based material properties contain sharp gradients in density, ther-
mal expansivity, and specific heat capacity; these are particularly
prominent in the mantle transition zone and at the Bridgmanite-
Postperovskite transition close to the core–mantle boundary in the
lower left panel of Fig. 10.

The more complex setup of our model compared to earlier
studies—including compressibility, highly temperature-dependent
viscosity, and more complex material parameters—does not change
the basic results of the computation. However, the setup focuses
the plumes into narrower structures, and the higher accuracy pos-
sible with our methods allows additional use cases for the model
results: Velocities, temperature and compositions can be used as
constraints for regional high-resolution models investigating partic-
ular processes such as the interaction between rising mantle plumes
and mid-ocean ridges (Gassmöller et al. 2016), or the generation
and ascent of chemically zoned plumes that are thought to be re-
sponsible for the generation of zoned hotspot tracks (Weis et al.
2011). Consistent temperature and pressure profiles of compress-
ible models also allow for a more straightforward comparison be-
tween geodynamic and seismic models, for example by converting
the geodynamic model results to a synthetic tomography model
(Ritsema et al. 2007), or by using the created seismic velocity field

Figure 10. Final state of a global mantle convection simulation after 250 Ma
of model time. Top panels: Isosurfaces of −150 K (white to blue) and +300 K
(rainbow coloured) temperature deviation from an adiabatic temperature
profile for the African hemisphere (left) and the Pacific hemisphere (right).
Colours visualize height above the core–mantle boundary, and coastlines
are shown in black outlines. Centre and bottom panels: Equatorial slices
through the model showing temperature deviation and finite-element mesh
(centre left), viscosity (centre right), thermal expansivity (bottom left), and
velocity (bottom right). In all slices the Greenwich meridian is ‘up’ and the
view is directed from the North pole to the South pole.

to forward-model seismic wave propagation (Nissen-Meyer et al.
2014).

5 C O N C LU S I O N S

Mantle convection codes have provided a great deal of insight into
the dynamics of the mantles of Earth and other rocky planets. Yet, to
deepen their veracity requires both increasing the complexity of the
models they solve (e.g. in dealing with highly variable coefficients
and latent heat), as well as the scale at which they can discretize these
models for a computational solution (e.g. in devising adaptively
refined meshes). Both of these challenges require going beyond the
ways in which most codes have so far operated.
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In this contribution, we have summarized some of the lessons
we have learned over the past years in solving complex mantle
convection problems using state-of-the-art computational methods.
Specifically, we have discussed effective ways for dealing with time
stepping, compressibility, discontinuous coefficients, latent heat,
adaptively refining finite element meshes, and advecting additional
quantities. None of these techniques by themselves are sufficient to
deal with the most complex models we have encountered, but jointly,
and in concert with the methods previously discussed in Kronbich-
ler et al. (2012), they help solve some of the most complex mantle
convection models we know of on large-scale compute clusters. We
believe that they will also be useful in using even more compli-
cated models—for example with material models that utilize grain
size evolution, track finite strain, consider diffusion and dislocation
creep, plasticity effects, and other inputs—to accurately predict out-
puts that can be compared to available data via seismic imaging,
surface heat fluxes, plate velocities, and other measurements.
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A P P E N D I X A : K I N G R E S U LT S

Given how widely used the benchmark defined in King et al.
(2010) is, Tables A1 and A2 provide a full account of our re-
sults for this benchmark using the strategy to solve compressible
equations discussed in Section 3.2. In particular, the tables show
convergence as the mesh size goes to zero, and extrapolated val-
ues that can be compared against the values that were reported in
King et al. (2010).

Table A1. Compressible results using the ALA formulation of convection corresponding to the benchmark defined in King et al. (2010)
(see Section 3.2.5). The ASPECT results were obtained by running the benchmark on increasingly finer meshes, and extrapolating from
the 1/128 mesh using Richardson extrapolation. Acronyms for the different codes are as in Table 4.

Di Ra 1/h Nu Vrms 〈T〉 φ W

0.25 104 16 4.53819 40.02007 0.51514 0.85213 0.85157
0.25 104 32 4.45192 39.96357 0.51496 0.84984 0.84928
0.25 104 64 4.42482 39.95753 0.51494 0.84960 0.84903
0.25 104 128 4.41735 39.95684 0.51494 0.84957 0.84901

extrapolated 4.41450 39.95676 0.51494 0.84957 0.84900
0.25 104 King UM 4.406 39.952 0.515 0.847 0.849
0.25 104 King VT 4.4144 40.0951 0.5146 0.849 0.849
0.25 104 King CU 4.41 40 0.5148 0.8494 0.8501
0.5 104 16 3.91228 35.98789 0.52271 1.38719 1.38541
0.5 104 32 3.84891 35.94470 0.52245 1.38402 1.38225
0.5 104 64 3.82932 35.93997 0.52241 1.38368 1.38190
0.5 104 128 3.82399 35.93943 0.52241 1.38364 1.38187

extrapolated 3.82200 35.93936 0.52241 1.38363 1.38186
0.5 104 King UM 3.812 35.936 0.522 1.381 1.381
0.5 104 King VT 3.8218 36.0425 0.5214 1.3812 1.3812
0.5 104 King CU 3.82 35.9 0.5217 1.3818 1.383
1 104 16 2.47804 24.69538 0.51160 1.34460 1.35568
1 104 32 2.45507 24.68259 0.51145 1.34286 1.35415
1 104 64 2.44835 24.68113 0.51143 1.34270 1.35399
1 104 128 2.44659 24.68096 0.51142 1.34268 1.35398

extrapolated 2.44596 24.68094 0.51142 1.34268 1.35397
1 104 King UM 2.438 24.663 0.512 1.343 1.349
1 104 King VT 2.4716 25.0157 0.51 1.3622 1.3621
1 104 King CU 2.47 24.9 0.5103 1.3627 1.3638
0.25 105 16 9.83522 179.93650 0.53284 2.09314 2.09246
0.25 105 32 9.53887 178.40376 0.53247 2.05964 2.05880
0.25 105 64 9.33472 178.11210 0.53220 2.05331 2.05248
0.25 105 128 9.26701 178.07926 0.53216 2.05260 2.05177

extrapolated 9.23341 178.07510 0.53216 2.05251 2.05168
0.25 105 King UM 9.196 178.229 0.532 2.041 2.051
0.25 105 King VT 9.2428 179.7523 0.5318 2.0518 2.0519
0.25 105 King CU 9.21 178.2 0.5319 2.0503 2.054
0.5 105 16 8.02846 156.42656 0.54891 3.28922 3.28780
0.5 105 32 7.77804 155.33598 0.54847 3.24554 3.24386
0.5 105 64 7.63386 155.14464 0.54809 3.23782 3.23615
0.5 105 128 7.58838 155.12248 0.54805 3.23693 3.23526

extrapolated 7.56741 155.11957 0.54804 3.23682 3.23514
0.5 105 King UM 7.532 155.304 0.548 3.221 3.233
0.5 105 King VT 7.5719 156.5589 0.5472 3.2344 3.2346
0.5 105 King CU 7.55 155.1 0.5472 3.233 3.2392
1 105 16 4.01908 84.62206 0.53004 2.77354 2.78862
1 105 32 3.91951 84.38966 0.52998 2.75378 2.77104
1 105 64 3.88354 84.37059 0.52983 2.75208 2.76937
1 105 128 3.87364 84.36817 0.52981 2.75189 2.76918

extrapolated 3.86988 84.36782 0.52980 2.75187 2.76916
1 105 King UM 3.857 84.587 0.53 2.742 2.765
1 105 King VT 3.878 85.5803 0.5294 2.761 2.7614
1 105 King CU 3.88 84.6 0.5294 2.7652 2.7742
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Table A2. Compressible results using the TALA formulation corresponding to the benchmark defined in King et al. (2010). All other
data as in Table A1.

Di Ra 1/h Nu Vrms 〈T〉 φ W

0.25 104 16 4.54966 40.11121 0.51292 0.85535 0.85306
0.25 104 32 4.46241 40.05425 0.51276 0.85304 0.85075
0.25 104 64 4.43490 40.04816 0.51274 0.85279 0.85050
0.25 104 128 4.42730 40.04747 0.51273 0.85277 0.85047

extrapolated 4.42440 40.04738 0.51273 0.85276 0.85047
0.25 104 King UM 4.416 40.043 0.513 0.85 0.85
0.25 104 King VT 4.43 40.2 0.5127 0.8535 0.851
0.25 104 King CU 4.42 40.1 0.5129 0.8539 0.8521
0.5 104 16 3.95543 36.36149 0.51906 1.41082 1.39596
0.5 104 32 3.88987 36.31653 0.51882 1.40750 1.39267
0.5 104 64 3.86941 36.31161 0.51879 1.40714 1.39232
0.5 104 128 3.86383 36.31105 0.51879 1.40710 1.39228

extrapolated 3.86173 36.31098 0.51879 1.40710 1.39227
0.5 104 King UM 3.851 36.307 0.519 1.404 1.391
0.5 104 King VT 3.86 36.4 0.5188 1.41 1.393
0.5 104 King CU 3.86 36.3 0.5191 1.4103 1.3948
1 104 16 2.60286 26.04904 0.50879 1.46096 1.40373
1 104 32 2.57654 26.03180 0.50864 1.45907 1.40188
1 104 64 2.56869 26.02986 0.50862 1.45886 1.40168
1 104 128 2.56661 26.02964 0.50862 1.45883 1.40166

extrapolated 2.56586 26.02961 0.50862 1.45883 1.40165
1 104 King UM 2.556 26.007 0.509 1.459 1.396
1 104 King VT 2.57 26.1 0.5088 1.465 1.4
1 104 King CU 2.57 26 0.5092 1.4651 1.4019
0.25 105 16 9.85211 180.27625 0.53099 2.09904 2.09486
0.25 105 32 9.55792 178.73582 0.53064 2.06534 2.06106
0.25 105 64 9.35214 178.44234 0.53038 2.05898 2.05470
0.25 105 128 9.28366 178.40932 0.53035 2.05826 2.05399

extrapolated 9.24951 178.40514 0.53034 2.05817 2.05390
0.25 105 King UM 9.211 178.56 0.53 2.046 2.053
0.25 105 King VT 9.26 180.2 0.5303 2.06 2.055
0.25 105 King CU 9.23 178.6 0.5303 2.0597 2.0573
0.5 105 16 8.09115 157.65389 0.54628 3.32727 3.30146
0.5 105 32 7.84156 156.53900 0.54587 3.28255 3.25680
0.5 105 64 7.69385 156.34222 0.54551 3.27460 3.24890
0.5 105 128 7.64696 156.31949 0.54546 3.27368 3.24800

extrapolated 7.62514 156.31653 0.54545 3.27357 3.24788
0.5 105 King UM 7.588 156.503 0.545 3.258 3.245
0.5 105 King VT 7.63 157.93 0.5454 3.279 3.25
0.5 105 King CU 7.61 156.5 0.5455 3.2779 3.2552
1 105 16 4.07456 85.14137 0.52985 2.83063 2.77505
1 105 32 3.97234 84.89394 0.52980 2.81369 2.75800
1 105 64 3.93521 84.87353 0.52966 2.81193 2.75626
1 105 128 3.92499 84.87099 0.52964 2.81173 2.75606

extrapolated 3.92110 84.87063 0.52964 2.81170 2.75604
1 105 King UM 3.907 85.105 0.529 2.802 2.75
1 105 King VT 3.92 86.08 0.5297 2.821 2.757
1 105 King CU 3.92 85.1 0.5297 2.8278 2.7725
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