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ON HANGING NODE CONSTRAINTS FOR NONCONFORMING
FINITE ELEMENTS USING THE DOUGLAS–SANTOS–SHEEN–YE

ELEMENT AS AN EXAMPLE∗

WOLFGANG BANGERTH† , IMBUNM KIM‡ , DONGWOO SHEEN‡ , AND JAERYUN YIM§

Abstract. On adaptively refined quadrilateral or hexahedral meshes, one usually employs con-
straints on degrees of freedom to deal with hanging nodes. How these constraints are constructed is
relatively straightforward for conforming finite element methods: The constraints are used to ensure
that the discrete solution space remains a subspace of the continuous space. On the other hand, for
nonconforming methods, this guiding principle is not available and one needs other ways of ensuring
that the discrete space has desirable properties. In this paper, we investigate how one would construct
hanging node constraints for nonconforming elements, using the Douglas–Santos–Sheen–Ye (DSSY)
element as a prototypical case. We identify three possible strategies, two of which lead to provably
convergent schemes with different properties. For both of these, we show that the structure of the
constraints differs qualitatively from the way constraints are usually dealt with in the conforming
case.
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1. Introduction. Refining individual cells of a finite element mesh — for
example, in adaptive mesh refinement schemes based on error estimators — creates
faces with so-called hanging nodes, i.e., vertices that are located in the interior of
edges or faces of some of the surrounding elements. On such faces, shape functions
cannot easily be defined without losing some of the properties of the finite element
space that are necessary to show convergence at the appropriate order. However,
there are well-known strategies for resolving this problem, either through the use of
transition elements that entirely remove the hanging nodes (for example, in the red-
green refinement strategy for triangles; see [5]), or through the use of constraints on
degrees of freedom that ensure that the critical property of the finite element neces-
sary for the theory is restored [16, 5, 19, 20]. While both of these approaches can
easily be used for triangular or tetrahedral meshes, a lack of practical and widely
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used transition element strategies requires the use of constraints for quadrilateral and
hexahedral meshes.

When using conforming finite elements, the construction of these constraints is
typically straightforward: we use the constraints to restore the conformity property
for the finite element space. For example, for H1-conforming elements, one needs
to restore the continuity of the finite element space along the affected face with a
hanging node. In the case of conforming bilinear elements, this implies the familiar
constraint that a degree of freedom UH defined on a hanging node needs to satisfy
UH = 1

2UL + 1
2UR, where UL, UR are the degrees of freedom defined at the ends of

the parent edge on which the hanging node lives. Similar constructions are used for
H(curl)- and H(div)-conforming elements where constraints are used to enforce the
continuity of tangential or normal components of the finite element field, respectively.

On the other hand, the situation is not so clear for nonconforming elements.
There, the discrete finite element space is already nonconforming with regard to the
continuous solution space, even on meshes without hanging nodes. Consequently,
there is no point in restoring conformity along faces with hanging nodes, and confor-
mity will not be useful as the guiding principle for construction of constraints. At the
same time, nonconforming elements—sitting somewhere between conforming and en-
tirely discontinuous elements—have enough internal structure that they do not need
the addition of penalty terms to the bilinear form, as is necessary, for example, for the
discontinuous Galerkin (DG) method. Consequently, the guiding principle should be
to come up with some kind of constraint at hanging nodes that restores the critical
property of the discrete space that allows us to avoid penalty terms.

In this contribution, we investigate this situation for the nonconforming Douglas–
Santos–Sheen–Ye (DSSY) element [12] that can be used in the discretization of the
Laplace and related equations. The DSSY element provides optimal convergence
order, but because its degrees of freedom are defined on the faces of cells rather
than their vertices, it has a smaller stencil and consequently sparser system matrix
than the regular, H1-conforming Lagrange elements. Based on analogies with other
elements and knowledge of the proof of convergence of the DSSY element, we will
introduce three possible ways to construct constraints at hanging nodes. While the
most obvious choice (later called “option A”) turns out to not be convergent, the
other two approaches are in fact convergent. One of these (“option B”) is built in
such a way that it restores the critical ingredient in the original proof of optimal
convergence found in [12]. However, this construction of constraints does not just
couple degrees of freedom located on the face with the hanging node (as is the case
for all conforming elements we are aware of) but indeed all degrees of freedom on the
entire larger cell. Because these may in turn be constrained themselves, the stencil of
constrained degrees of freedom may in fact extend far beyond a cell and its immediate
neighbors. This has significant implications for implementations that we will discuss
as well. To address this problem, we investigate a weaker, alternative choice (“option
C”) of constraints that does not share this drawback but requires more work to prove
convergence.

The remainder of this paper is structured as follows. Section 2 provides an
overview of the DSSY element, and section 3 introduces further notation necessary
in the discussions that follow. Section 4 then traces out the proof of convergence on
meshes without hanging nodes and in particular points out the critical pieces that get
lost if a mesh does have hanging nodes; it also presents three possible constructions
of constraints that could reasonably be used at hanging nodes. Sections 5 and 6 then
cover the analysis of the two alternative constructions that are in fact convergent,
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followed by numerical examples in section 7 that quantitatively assess the options
previously identified. We conclude in section 8.

Remark 1.1. While our discussions herein are based specifically on the DSSY
element, we intend the construction of constraints for this element to also provide
guidance for other nonconforming elements, such as the simplicial Crouzeix–Raviart
element [9] or the quadrilateral Rannacher–Turek element [15], for which we believe
that similar principles will apply.

Our discussions below will be restricted to two dimensions because the degree of
notation, as well as the graphics necessary to build intuition, would be too cumbersome
without providing additional insight. However, the extension of our work to three
dimensions is obvious.

Remark 1.2. Neither nonconforming elements nor adaptively refined meshes using
hanging nodes are new. As a consequence, it is perhaps surprising that we have not
been able to find much literature on their combination. Carstensen and Hu [6] make
an assumption that is equivalent to option C discussed in section 4.2 but do not
discuss alternatives, or elaborate on practical implications of this assumption. Huang
and Xie [13] also use a similar assumption, but in the context of avoiding hanging
node constraints when dealing with conforming elements at hanging nodes.

Finally, one of the reviewers of this paper pointed out the Ph.D. thesis of Schmid
[17]. The thesis was published as a book (in German), is now out of print, and is
consequently difficult to access. We have not been able to verify that it contains
material related to our work, though we do not doubt it. An earlier paper by Schmid
and Wagner [18, section 4.3] has a remark that states that nodes on hanging edges
need to be treated differently from those on regular edges—a statement that at the
time may not have been as obvious as it appears today; it does not, however, provide
details on how specifically this treatment should look, nor any analysis.

2. A brief overview of the DSSY element. The DSSY element [12] was
developed for the discretization of second-order elliptic problems such as the Poisson
equation:

−∆u = f in Ω,(2.1a)

u = g on ∂Ω.(2.1b)

For these equations, the appropriate solution space is V = H1(Ω). As a typical
nonconforming finite element discretization, the DSSY element defines a finite dimen-
sional space Vh that does not satisfy the usual condition Vh ⊂ V . Rather, it contains
functions that are discontinuous and consequently not members of V .

More specifically, the DSSY element is defined as follows [4, 12]. Let K̂ = [−1, 1]2

be the reference element and T = {K} a subdivision of Ω into quadrilaterals that are

mapped from the reference cell by bilinear mappings φK . The DSSY space V̂ is then
defined on the reference cell as

V̂ = span{1, x̂1, x̂2, θ(x̂1)− θ(x̂2), x̂1x̂2},(2.2)

where θ can be defined as either

θ(ξ) = ξ2 − 5

3
ξ4 or θ(ξ) = ξ2 − 25

6
ξ4 +

7

2
ξ6.

The choice of these options will be immaterial to the remainder of this paper, but the
additional quartic or sextic term enables the finite element space V̂ to fulfill the mean
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value property1

v̂(m̂ê) = −
∫
ê

v̂(2.3)

for all edges ê of the reference cell K̂; m̂ê denotes the center point of edge ê. Here,
and in what follows, −

∫
s
f = 1

|s|
∫
s
f denotes the average Lebesgue integral of f over

s. The addition of the last shape function in the definition (2.2) (which leads to an

interior bubble function when choosing a set of dual functionals for V̂ ) is necessary
to guarantee the optimal convergence order on general quadrilateral meshes if these
shape functions are mapped from a standard reference cell (see [4, 12]); it can be
omitted on meshes consisting only of parallelograms.2

This space cannot be connected in a continuous way across cells to form a global
space sufficiently rich to approximate the solutions of partial differential equations.
Rather, the DSSY construction only requires that the mean values of functions are
equal on interfaces γ between neighboring cells K(γ)+ and K(γ)−. One can equiv-
alently require continuity at edge midpoints, but using the viewpoint of equality of
mean values will turn out to yield easier-to-understand insights during the proofs
below; we will therefore base our arguments on this perspective.

If we define E i to be the set that consists of all interior edges of the mesh, and
assuming we have a mesh without hanging nodes, then we can construct the global
space as follows:

Vh(T) =

{
uh ∈ L2(Ω)

∣∣∣uh ◦ φK ∈ V̂ ∀K ∈ T,−
∫
e

[uh]e = 0 ∀e ∈ E i
}
.(2.4)

The dual node functionals that define the finite element basis (and consequently the
degrees of freedom; see [2]) for this space are given by the integral averages

ψe(ϕh) = −
∫
e

ϕh ∀e ∈ E i,(2.5a)

ψK(ϕh) = −
∫
K

ϕhwK ∀K ∈ T,(2.5b)

where the function wK(x) is the pushed-forward version of the weight x̂1x̂2 on the

reference cell K̂ = [−1, 1]2 under the mapping φK : K̂ → K.

3. Further notation. In the sections below, we will discuss how to extend the
definitions of the previous section to the case of meshes T with hanging nodes. To
this end, let us introduce the notation we will require below.

Triangulation. Let T0 be a regular triangulation on Ω which consists of quadrilat-
erals so that two closed cells K1,K2 ∈ T0 either share a common vertex, a complete
edge, are identical, or do not touch at all. We can then refine it recursively into
the target triangulation T = TN by ensuring that Tn results from Tn−1 by regular
bisection in both directions of a subset of cells, and ensuring that neighboring cells
never differ by more than one refinement level (i.e., each edge has at most one hanging
vertex).

1In the case of Rannacher–Turek element [15], one chooses θ(ξ) = ξ2. However, for this choice,
(2.3) does not hold.

2Instead of the parametric version of the DSSY element introduced above, there is also a non-
parametric version with four degrees of freedom [14] such that the mean value property (2.3) holds
for general quadrilaterals and optimal convergence is attained.
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ejl elj

ejl
+

ejl
−

ejl
#

ejk

ekj

ejk
+

ejk
−

ejk
#

jK

lK

kK

,

,

Fig. 1. Local notation for edges on cells with a hanging edge. Superscripts #,+, and − to ejk
denote the edges of Kj that lie opposite to ejk, that share a vertex with ekj , and that do not share
a vertex with ekj but are also not opposite to ejk, respectively, and similarly for the superscripted

versions of ejl. Note the equivalences e#jk = e#jl, e
+
jk = e−jl, e

−
jk = e+jl, ejk = ejl.

Vertices and edges. For any element K ∈ T, let N (K) denote its vertices, and
E(K) its edges. The sets of all nodes and edges in the triangulation T are denoted
by N := ∪K∈TN (K) and E := ∪K∈TE(K), respectively. Furthermore, the sets of
all interior and boundary nodes and edges are designated by N i,N b, E i, and Eb,
respectively.

Hanging edges and nodes. We call places where cells of different refinement levels
come together (see Figure 1) hanging edges and the single vertex at their midpoints
hanging nodes. In order to concisely define the finite element space Vh(T) on meshes
with hanging edges, we will need the following terms:

1. (Generation and descendant neighbors) Given an element K ∈ T which is
obtained by (recursive) refinement from element K0 ∈ T0, let the generation
of K, denoted by Gen(K), be the number of bisection steps required to go
from K0 to K [7]. A cell K ′ ∈ T is called a descendant neighbor of K if
K ′ and K are adjacent and Gen(K ′) > Gen(K). The one-hanging-node-per-
edge rule guarantees that for any two neighbors K and K ′, we have that
Gen(K ′)−Gen(K) ∈ {−1, 0, 1}.

2. (Hanging nodes) A vertex z ∈ N i is called a hanging node if there exists an
element K ∈ T such that z ∈ ∂K\N (K). We will denote by NH the set
of all hanging nodes and by NR := N i \ NH the set of all regular (interior)
nodes.

3. (Hanging edges) An edge e ∈ E i is called a hanging edge if there exists a
hanging node z ∈ e that is not one of the end points of e. An edge e′ ∈ E i is
called a child edge if there exists a hanging edge e such that e′ ∩ e 6= ∅. We
will denote by EH the set of all hanging edges, EC the set of child edges, and
ER := E i\(EH ∪ EC) the set of regular edges.

4. (Local description of hanging edge) Let ejk be the edge of cell Kj adjacent
to a neighboring cell Kk. If ejk ∈ ER, then ejk is also a complete edge
ekj of cell Kk. On the other hand, suppose two elements Kj ,Kk ∈ T are
adjacent such that Kk is a descendant neighbor to Kj ; then ejk ∈ EH and
ekj ∈ EC .

We note that hanging nodes are conceptually part of small cells along refined
edges, whereas hanging edges belong to the large cells. We also remark that E i is the
disjoint union of ER, EH , and EC and that N i is the disjoint union of NR and NH .
We consider regular nodes NR and edges ER to be subsets of the interior nodes N i

and edges E i only since boundary nodes and edges will not be of any concern in the
following.

We introduce further notation convention as follows. Let ejk be a hanging edge.

Then let e#
jk denote the edge of Kj which lies opposite to ejk. Among the remaining
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two edges of Kj , let e+
jk and e−jk be the edges that do and do not share a vertex with

ekj , respectively (see Figure 1 for an illustration). It is worth noting that an edge of
cell Kj can be denoted in several different ways depending on which of its neighbors
we currently consider.

Spaces and norms. Let S be a bounded open domain in R2. Denote L2(S) and
H1(S) the standard Sobolev spaces on S with the standard norms ‖ · ‖0,S and ‖ · ‖1,S .
H1

0 (S) is the subspace of H1(S) consisting of functions whose trace on ∂S is zero. Note
that the standard seminorm | · |1,S is a norm on H1

0 (S) provided that the boundary
of S is sufficiently smooth. (·, ·)S and 〈·, ·〉∂S denote the L2(S) and L2(∂S) inner
products, respectively. If S = Ω, the subscript Ω on norms and inner products will
be omitted.

Averages and jumps. Let ω be a two- or one-dimensional measurable subset with
|ω| > 0. For u ∈ L1(ω), denote by −

∫
ω
u := 1

|ω|
∫
ω
u the average integral value of u on

ω. On an edge ejk ∈ E i, we define the jump [u]ejk of u on ejk by

[u]ejk := u|Kk − u|Kj .

Note that the jump [u]ejk depends not only on the location of the edge but also on
its direction. In particular, [u]ekj = −[u]ejk . For an edge ej of Kj on ∂Ω, we define
[u]ej := − u|Kj . We will occasionally write [u]e and omit the subscript of the edge

direction if the jump (or an integral of it) across an edge e is zero.

Throughout this paper, C denotes a generic constant for inequalities. The mesh
parameter h is defined by h := maxK∈T diam(K).

4. Discretization with the DSSY element. We will use the Poisson equa-
tion (2.1a)–(2.1b) to illustrate how we discretize partial differential equations using
the DSSY element described in section 2 and how this informs our approach for con-
structing hanging node constraints for situations such as those described in section 3.
Because the choice of boundary values are immaterial to the discussion herein, let
us assume for simplicity that we use homogeneous Dirichlet boundary conditions,
i.e., g = 0. Then recall that the weak form of problem (2.1) requires us to find
u ∈ V0 = H1

0 (Ω) so that

a(u, v) = (f, v) ∀v ∈ V0,(4.1)

where a(u, v) = (∇u,∇v) =
∫

Ω
∇u · ∇v dx .

The nonconforming Galerkin approximation to (4.1) is to find uh ∈ Vh,0 = Vh,0(T)
so that

ah(uh, vh) = (f, vh) ∀vh ∈ Vh,0.(4.2)

Here, Vh,0(T) is the space of all functions in Vh(T) that have mean value zero on each
boundary face e ∈ Eb of the mesh, and

ah(uh, vh) =
∑
K∈T

(∇uh,∇vh)K .(4.3)

For future use, let us also define the broken energy norm for functions v ∈ Vh(T)+
H1(Ω) that is associated with this bilinear form by

|||v|||h =
√
ah(v, v).
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4.1. Key steps in a priori error estimates on regular meshes. Unlike for
entirely discontinuous finite element spaces, the structure of Vh allows us to solve
this problem without the need for additional penalty terms to treat the discontinuity
of functions in Vh. However, error estimates incur a “nonconformity penalty” [21].
Consequently, if there are no hanging nodes in the mesh, the energy norm error of
the numerical solution consists of the usual best-approximation error plus the penalty
and is bounded as follows:

|||u− uh|||h ≤ C
(

inf
ϕh∈Vh

|||u− ϕh|||h + sup
wh∈Vh

ah(u,wh)− (f, wh)

|||wh|||h

)
.(4.4)

For the purposes of this paper, the first of the two terms on the right-hand side is
not important as we know that it is of optimal order [12]. However, it is necessary to
understand the details of the second term as it will inform us about the properties we
will need of the discrete space in the presence of hanging nodes if we want to ensure
optimality of the convergence order. Integrating its numerator by parts on each cell
and using the strong form (2.1) of the equation, we see that

ah(u,wh)− (f, wh) =
∑
K

(∇u,∇wh)K − (f, wh)K

=
∑
K

(−∆u− f, wh)K + 〈nK · ∇u,wh〉∂K

= −
∑
e∈Ei
〈ne · ∇u, [wh]e〉e .

Here, nK is the unit outward normal to cell K, and ne denotes the unit normal vector
to edge e with a direction consistent with that chosen for the jump [wh]e.

Because the jump [wh]e of a function wh ∈ Vh is zero on average (see (2.4)), we
can subtract any constant from ne · ∇u and leave the result unchanged. Specifically,
denoting ge = −

∫
e
∇u, we get

|ah(u,wh)− (f, wh)| ≤
∑
e∈Ei

|〈ne · (∇u− ge), [wh]e〉e|

≤
∑
e∈Ei

‖∇u− ge‖0,e‖[wh]e‖0,e.

Standard polynomial interpolation estimates imply that(∑
e∈Ei

‖∇u− ge‖20,e

)1/2

≤ Ch1/2‖u‖H2(Ω),(4.5a)

(∑
e∈Ei

‖[wh]e‖20,e

)1/2

≤ Ch1/2|||wh|||h.(4.5b)

Consequently, |ah(u,wh)− (f, wh)| ≤ Ch‖u‖H2(Ω)|||wh|||h, and (4.4) provides us with
an optimal convergence order in the broken H1 norm: |||u− uh|||h ≤ Ch‖u‖H2(Ω).

4.2. Options for extensions to locally refined meshes. Given these argu-
ments, the question before us is how we need to extend definition (2.4) of the finite
element space Vh(T) to the case of meshes with hanging nodes. Our experience with
how this is done for conforming elements, as well as the critical pieces of the theory
outlined above, has led us to three possible options that we will illustrate with the
notation of Figure 1:
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A. Require that

−
∫
ekj

wh = −
∫
ejk

wh and −
∫
elj

wh = −
∫
ejk

wh,(4.6)

i.e., that the average of a function wh on every small edge ekj , elj equals the
average on the long edge ejk = ejl.
This approach constructs constraints that only involve degrees of freedom
defined on the parent edge and its children. However, it does not provide the
key property that −

∫
e
[wh]e = 0 for all edges: while it is true for regular edges

e ∈ ER and parent edges e ∈ EH as a whole, it does not hold for individual
child edges e ∈ EC .
The constraint in (4.6) can be interpreted as constraining the degrees of
freedom on the child edges against the degree of freedom on the hanging
(parent) edge. This is how constraints are typically written for conforming
elements and would allow the use of algorithms and data structures that are
already implemented in common finite element packages. Disappointingly,
however, this advantageous property is entirely negated by the fact that this
choice of constraint construction does not lead to a convergent scheme (see
section 7).

B. Require that

(4.7) −
∫
ekj

[wh]ekj = 0, −
∫
elj

[wh]elj = 0.

Here, the average jump −
∫
e
[wh]e = 0 is zero on all child edges individually and

consequently also on all parent edges. We therefore know that the solution
satisfies the properties required in establishing the a priori error estimates
outlined above, and the convergence proof follows trivially. This formulation
of constraints allows the values on child edges to be different and therefore
imposes a weaker constraint than the first approach above.
Unfortunately, as we will show in the following section, the constraints con-
structed this way couple not only degrees of freedom on a parent edge and its
children but in fact all degrees of freedom on a large cell with those on chil-
dren of its edges. This can then lead to chains of constraints that propagate
beyond a single cell and consequently requires significantly more complicated
data structures and algorithms than the “usual” cases encountered with con-
forming elements.

C. Require that

1

2

{
−
∫
ekj

wh +−
∫
elj

wh

}
= −
∫
ejk

wh,(4.8)

i.e., the average of the averages on the child edges equals the average on the
large edge. This statement is weaker than the one used in (4.7) and can be
interpreted as constraining the degree of freedom on a parent edge against
the two values on the child edges, in a reversion of the way we usually build
hanging node constraints.
As we will show below, this approach constructs constraints only coupling
shape functions corresponding to degrees of freedom located on the parent
edge and its children. It does not satisfy the property −

∫
e
[wh]e = 0 for indi-

vidual child edges e ∈ EC , and consequently we will have to work harder to
prove convergence.
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As we will see numerically in section 7, the first of these three choices results in a
suboptimal convergence order on meshes with hanging nodes. We will therefore not
consider it in any more detail. The second and third turn out to be largely comparable
in accuracy, though option B seems to create smaller L2 errors in some circumstances.
On the other hand, as already mentioned above, option B has more severe practical
consequences in implementations and consequently may be computationally more
expensive. We will therefore consider both options B and C in more theoretical and
practical detail in the following two sections; we start with option B since its analysis
is less involved.

Remark 4.1. None of the three options above inherently rely on the fact that
refinement of cells is done by equal bisection of cells into four children. Rather, the
formulas are easily adapted to the case where one refines a cell into 3× 3 children, or
where edges are not bisected at their midpoints. This would, for example, facilitate
the construction of graded meshes refined toward boundary or internal layers.

Remark 4.2. The approaches above all incorporate the treatment of hanging
nodes into the strong formulation of the discrete problem, i.e., by adjusting the finite
dimensional space. There are, however, alternative approaches. For example, one can
add penalty terms—in the style of DG methods—for hanging edges only (see, e.g.,
[11]). These approaches are not of interest to the current paper, however.

5. Extending the DSSY space to meshes with hanging nodes and edges:
Option B. The discussions of the previous section motivate us to analyze in more
detail the three options for defining the nonconforming space Vh(T) in the presence of
hanging nodes. We will start with the second of the three options (see (4.7)), as this
turns out the simplest in terms of its convergence theory. It leads to the following
space on meshes with hanging nodes and edges:

Vh(T) =

{
uh ∈ L2(Ω)

∣∣∣uh ◦ φK ∈ V̂ ∀K ∈ T,

−
∫
e

[uh]e = 0 ∀e ∈ (ER ∪ EC)

}
,(5.1a)

Vh,0(T) =

{
uh ∈ Vh(T)

∣∣∣−∫
e

uh = 0 ∀e ∈ Eb
}
.(5.1b)

In analogy to (2.5a) and (2.5b), we can define dual functionals

ψe(ϕh) = −
∫
e

ϕh ∀e ∈ (ER ∪ EH)(5.2)

and ψK as defined in (2.5b). These then induce a basis {ϕj}j=1,...,dim (Vh,0(T)) for
Vh,0(T).

We can compute the dimensions of the spaces so defined as follows.

Lemma 5.1. The dimension of Vh(T) is equal to |ER| + |EH | + |Eb| + |T|. The
dimension of Vh,0(T) is equal to |ER|+ |EH |+ |T|.

Proof. Since the space V̂ defined in (2.2) has dimension five, the space

V DG
h (T) =

{
uh ∈ L2(Ω)

∣∣∣uh ◦ φK ∈ V̂ ∀K ∈ T
}

has dimension 5|T|. Because every regular edge e ∈ ER is part of two cells whereas
every edge in EH , EC , Eb is only part of one cell, and because every cell K has four
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edges, we know that 4|T| = 2|ER|+ |Eb|+ |EH |+ |EC |. Consequently, dimV DG
h (T) =

2|ER|+ |Eb|+ |EH |+ |EC |+ |T|.
On the other hand, Vh(T) differs from V DG

h (T) by the imposition of |ER| + |EC |
linearly independent constraints. Consequently, dimVh(T) = dimV DG

h (T) − |ER| −
|EC |, proving the first claim of the lemma.

The result for the case of Vh,0(T) follows immediately from that for Vh(T) by a
similar argument, yielding dimVh,0(T) = dimVh(T) − |Eb|. This, not coincidentally,
also matches the number of dual functionals we have defined in (5.2) and (2.5b).

Theorem 5.2. Using the space Vh,0 defined in (5.1b), the solution of (4.2) sat-
isfies the energy norm estimate

|||u− uh|||h ≤ Ch‖u‖H2(Ω).

Proof. The proof follows without change from the one given in [12] and outlined
in section 4. The key point is that the averages of the solutions on both sides of child
edges are equal, and consequently the key steps in the estimate of the nonconformity
error discussed in section 4 continue to hold.

Let us devote the remainder of this section to a discussion of the constraints we
impose in (5.1a). In the context of adaptively refined meshes with hanging nodes, one
typically considers two points of view that inform us about theoretical and practical
ways to deal with hanging nodes:

• (Global basis functions) The functionals (5.2) and (2.5b) define a basis for
Vh,0(T) in such a way that there is a basis function ϕe for each edge e ∈
(ER ∪ EH) and a basis function ϕK for each cell K so that

ψe(ϕe′) = δe,e′ ∀e, e′ ∈ (ER ∪ EH),

ψe(ϕK) = 0 ∀e ∈ (ER ∪ EH),K ∈ T,

ψK(ϕe) = 0 ∀e ∈ (ER ∪ EH),K ∈ T,

ψK(ϕK′) = δK,K′ ∀K,K ′ ∈ T.

If the mesh T has no hanging node, then each of the ϕe has support on exactly
the two cells adjacent to the edge e and ϕK has support only on K.
However, we will show below that if T does have hanging nodes, the support
of basis functions ϕe associated with an edge e may in fact extend beyond
the boundaries of the cells adjacent to e. In other words, basis functions are
nonlocal in the sense that the extent of their support depends not only on
the local geometry of the cells adjacent to an edge, but also beyond.

• (Constraints) In implementation practice, one never constructs the global
basis functions ϕe and ϕK . Rather, implementations of finite element meth-
ods on adaptively refined meshes with hanging nodes almost always define
intermediate spaces that ignore hanging nodes and then impose additional
constraints during the assembly and solution process [16, 5, 1]. In the current
context, these intermediate spaces would be

Ṽh(T) =

{
ũh ∈ L2(Ω)

∣∣∣ ũh ◦ φK ∈ V̂ ∀K ∈ T,

−
∫
e

[ũh]e = 0 ∀e ∈ ER
}
,(5.3a)

Ṽh,0(T) =

{
ũh ∈ Ṽh(T)

∣∣∣−∫
e

ũh = 0 ∀e ∈ Eb
}
,(5.3b)
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with dual functionals

ψ̃e(ϕ̃h) = −
∫
e

ϕ̃h ∀e ∈ E i,(5.4)

and ψK as defined in (2.5b). These spaces and functionals are designed in
a way so that one can enumerate degrees of freedom on every interior edge,
whether it is a regular, further refined, or child edge. In particular, using this
viewpoint, one defines a basis function both for each hanging edge as well as
its two children.
A function ũh =

∑
j Ũjϕ̃j using this basis is then obviously part of Ṽh,0(T),

but not necessarily Vh,0(T). To force it into the latter space, one needs to
impose constraints

−
∫
e

[ũh]e = 0 ∀e ∈ EC .

This condition can be rewritten in terms of the expansion of coefficients Ũj :∑
j

CejŨj = 0 ∀e ∈ EC ,(5.5)

where (Cej) =
(
−
∫
e
[ϕ̃j ]e

)
is a sparse matrix of size |EC | × dim(Ṽh,0).

With such constraints in hand, one then builds a (rank deficient) linear system

ÃŨ = F̃ using the basis for Ṽh,0 and solves it subject to constraint (5.5) to

obtain a solution uh =
∑
j Ũjϕ̃j ∈ Vh,0.

While it is useful to think in terms of the global basis functions ϕj when analyz-
ing a discretization on a mesh with hanging nodes, the point of view of constraints
prevails when considering implementing a particular element on such a mesh. This
is so because both the assembly of linear systems as well as the computation of the
constraint matrix (Cej) is most easily implemented using the basis functions ϕ̃e, ϕ̃K :
these are the only nonzero basis functions on a cell K, regardless of whether any of
the edges e of K is in EC . Furthermore, knowing (Cej) allows us to construct the
basis {ϕj} from the basis {ϕ̃j}; see [1]. For these reasons, we will in the following
discuss the properties of (Cej) in more detail.

Obviously, (5.5) defines one constraint per child of each hanging edge. As an
example, let us consider edge ekj between large cell Kj and child neighbor Kk from
Figure 1. Then the constraint that corresponds to this edge reads

−
∫
ekj

(
Ũekj ϕ̃ekj

)
= −
∫
ekj

(
Ũejk ϕ̃ejk + Ũe#jk

ϕ̃e#jk
+ Ũe+jk

ϕ̃e+jk
+ Ũe−jk

ϕ̃e−jk
+ ŨKj ϕ̃Kj

)
.

By the definition of ϕ̃ekj , we have that −
∫
ekj

ϕ̃ekj = 1, and we can rewrite the constraint

in the usual form that allows us to eliminate a degree of freedom defined on a child
edge in terms of other degrees of freedom using to the following relation:

Ũekj =

[
−
∫
ekj

ϕ̃ejk

]
︸ ︷︷ ︸

=1

Ũejk +

[
−
∫
ekj

ϕ̃e#jk

]
︸ ︷︷ ︸

=0

Ũe#jk

+

[
−
∫
ekj

ϕ̃e+jk

]
︸ ︷︷ ︸

= 1
4

Ũe+jk
+

[
−
∫
ekj

ϕ̃e−jk

]
︸ ︷︷ ︸

=− 1
4

Ũe−jk
+

[
−
∫
ekj

ϕ̃Kj

]
︸ ︷︷ ︸

=0

ŨKj

= Ũejk +
1

4
Ũe+jk

− 1

4
Ũe−jk

.



1730 W. BANGERTH, I. KIM, D. SHEEN, AND J. YIM

e

e

Fig. 2. Dual points of view for chains of constraints. Left: The coefficient Ũe corresponding to
a degree of freedom defined on an edge e ∈ EC may be constrained against a telescoping set of other
degrees of freedom. The figure shows the supporting edges and cells of the complete set of degrees of
freedom against which Ũe is defined. Right: The extended support of the global basis function ϕe
for one e ∈ ER.

Note that the factors in the first, third, and fourth square brackets on the right are not
zero for the DSSY element because, for example, the shape function ϕ̃e+jk

has mean

value zero on the long edge ejk but not on each of the children ekj , elj of ejk. This is
different from the usual conforming spaces on meshes with hanging nodes where each
degree of freedom defined on a child of a hanging edge e ∈ EC is constrained only
in terms of degrees of freedom defined on the parent of e, but not other parts of the
adjacent (large) cell.

This observation is important because, of course, either of the degrees of freedom
corresponding to the coefficients Ũe+jk

, Ũe−jk
may itself lie on the child of a hanging

edge and consequently be constrained itself. In other words, in actual computations,
we may obtain chains of constraints. In order to eliminate the constrained degree
of freedom corresponding to the coefficient Ũekj we will therefore have to recursively
expand all degrees of freedom that appear on the right-hand side in terms of the
degrees of freedom they may be constrained against. This is similar to situations one
may find in hp adaptive methods in three dimensions (see [1]) and requires the use
of more complex data structures and algorithms than one might use for meshes with
hanging nodes and “usual” finite elements.3

Remark 5.3. The length of these chains of constraints is bounded by the difference
between the maximal and minimal generation of cells in T because it always constrains
degrees of freedom on more refined cells against degrees of freedom on less refined
neighboring cells. Similarly, the recursive expansion of constraints never leads to
circular constraints as long as T originates from a regular mesh T0 without hanging
nodes as discussed in section 3.

To illustrate the extent to which chains of constraints can expand the support
of basis functions, Figure 2 shows both all other degrees of freedom one particular
degree of freedom defined on a child edge is constrained against (left), as well as the
support of an unconstrained basis function in the basis Vh (right). It is worth pointing

3The fact that the constraint weight [−
∫
ekj

ϕ̃
e
#
jk

] for the shape function defined on the opposite

edge of cell Kj happens to be zero is a consequence of putting the hanging node at the midpoint of

edge ejk. Had we chosen an unequal subdivision of the edge, the expansion coefficient Ũekj would

also be constrained against Ũ
e
#
jk

with a nonzero weight.
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out that to get chains of constraints, it is necessary to have vertices in the mesh with
adjacent cells that differ in generation by at least two. On the other hand, widely used
mesh smoothing techniques specifically prohibit this, by flagging additional cells for
refinement; in these cases, chains of constraints cannot happen as long as refinement
bisects edges at the midpoint.

6. Extending the DSSY space to meshes with hanging nodes and edges:
Option C. The discussions of the previous section showed that option B for imposing
hanging node constraints (see section 4.2) allowed for a trivial extension of the proof
of convergence compared to the original one for regular meshes. On the other hand, it
leads to constraints that are very different in structure compared to those one typically
encounters in conforming finite element methods. This observation motivates us to
consider the third option suggested in section 4.2, namely, to require that

1

2

{
−
∫
ekj

wh +−
∫
elj

wh

}
= −
∫
ejk

wh

for each hanging edge ejk. In the following subsections, we will theoretically investi-
gate the convergence properties of this approach and then consider the structure of
these constraints in analogy to the discussion in the previous section.

6.1. Convergence theory. The formulation of constraints at hanging edges
considered in this section implies that −

∫
e
[wh]e = 0 for all parent edges e ∈ EH , but

not the key property −
∫
e
[wh]e = 0 for child edges e ∈ EC ; this property made the

convergence proof in the previous section trivial. Nevertheless, we can still show the
following result.

Theorem 6.1. Let

Vh(T) =
{
uh ∈ L2(Ω)

∣∣∣uh ◦ φK ∈ V̂ ∀K ∈ T, −
∫
e

[uh]e = 0 ∀e ∈ (ER ∪ EH)
}
,

Vh,0(T) =

{
uh ∈ Vh(T)

∣∣∣−∫
e

uh = 0 ∀e ∈ Eb
}
.

Then the solution of (4.2) satisfies the energy norm estimate

|||u− uh|||h ≤ Ch‖u‖H2(Ω).

As in the case of option B in section 5, it is only necessary to consider the
numerator of the consistency error term. It can here be split into the following terms:

ah(u,wh)− (f, wh) = −
∑
e∈ER

〈ne · ∇u, [wh]e〉e +
∑
e∈EH

Ie.

The terms on regular edges are treated as in the case without hanging nodes, for which
we refer to section 4 and [12]. Consequently, we only have to estimate the terms on
hanging edges,

Iejk = −
〈
nejk · ∇u, [wh]ejk

〉
ejk

=
〈
nejk · ∇u,wh

〉
ejk
−
〈
nejk · ∇u,wh

〉
ekj
−
〈
nejk · ∇u,wh

〉
elj
.

As before, ne is the normal to edge e with direction consistent with that chosen to
define the jump [wh]e.
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To show the result of the theorem, let us define three average values:

gejk = −
∫
ejk

∇u, wejk = −
∫
ejk

wh and wekj,lj =
1

2

{
−
∫
ekj

wh +−
∫
elj

wh

}
.

The choice of constraints implies that wejk = wekj,lj , or equivalently −
∫
ejk

[wh]ejk = 0,

for each hanging edge ejk. Consequently,

|Iejk | =
∣∣∣∣〈nejk · (∇u− gejk), [wh]ejk

〉
ejk

∣∣∣∣
=

∣∣∣∣∣ 〈nejk · (∇u− gejk),
(
wh − wejk

)〉
ejk
−
〈
nejk · (∇u− gejk),

(
wh − wekj,lj

)〉
ekj

−
〈
nejk · (∇u− gejk),

(
wh − wekj,lj

)〉
elj

∣∣∣∣∣
≤
∥∥∥∇u− gejk

∥∥∥
0,ejk

∥∥wh − wejk∥∥0,ejk

+

 ∑
ι∈{k,l}

|eιj |
∥∥∥∇u− gejk

∥∥∥2

0,eιj

1/2 ∑
ι∈{k,l}

|eιj |−1
∥∥wh − wekj,lj∥∥2

0,eιj

1/2

.

The difficulty to overcome here is that in the last term, wh − wekj,lj does not have
mean value zero over the child edge eιj , ι ∈ {k, l} we integrate over and consequently
does not provide us with the necessary power of the mesh size.

For the following, let us denote the diameter of the element K ∈ T and of the
edge e ∈ E by hK and he, respectively. Then the following three auxiliary estimates
hold from essential interpolation estimates (the first one mirroring (4.5a)):∥∥∥∇u− gejk

∥∥∥
0,ejk

≤ Ch1/2
ejk
‖u‖2,Kj ,∥∥wh − wejk∥∥0,ejk

≤ Ch1/2
ejk
|wh|1,Kj , ∑

ι∈{k,l}

heιj

∥∥∥∇u− gejk

∥∥∥2

0,eιj

1/2

≤ C

 ∑
ι∈{k,l}

h2
eιj‖u‖

2
2,Kι

1/2

.

The main difficulty of the error analysis is to show the following lemma.

Lemma 6.2. ∑
ι∈{k,l}

h−1
eιj

∥∥wh − wekj,lj∥∥2

0,eιj

1/2

≤ C

 ∑
ι∈{k,l}

|wh|21,Kι

1/2

.(6.1)

For the proof of this lemma, let us first introduce some notation and auxiliary
results. To this end, let

K̂k := [0, 1]× [0, 1], K̂l := [0, 1]× [−1, 0]

be the two reference squares and Fι : K̂ι −→ Kι be the bilinear transformation
onto Kι for ι ∈ {k, l}. See Figure 3 for illustration. Then the piecewise bilinear
transformation F is defined by
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eljljê

ekj
ekj
^

kK̂

lK̂

Γ̂
σ̂

kK

lK

kF

lF

σ
Γ

Fig. 3. Piecewise bilinear mappings Fι : K̂ι −→ Kι, ι ∈ {k, l}, between the reference squares
and genuine quadrilaterals.

x = F(x̂) :=

{
Fk(x̂), x̂ ∈ K̂k,

Fl(x̂), x̂ ∈ K̂l.

It is useful to define the combined reference domain K̂kl := K̂k∪K̂l and the associated
domain Kkl := Kk∪Kl. Denote by êιj the edge of K̂ι associated with eιj for ι ∈ {k, l}
and by σ̂ the edge common to K̂k and K̂l. We will designate by Γ̂ = {0} × [−1, 1]

the part of the boundary of K̂kl. σ and Γ will mean the images under F of σ̂ and Γ̂,
respectively. Geometrically, Γ is identical to ejk and ejl in Figure 1.

We invoke the following standard results derived using shape regularity of T.

Lemma 6.3. There exist constants c, C > 0 such that, for every element K ∈ T,

ch2
K ≤ det

∣∣∣∣∂x

∂x̂

∣∣∣∣ ≤ Ch2
K ,(6.2a) ∣∣∣∣∂xm∂x̂n

∣∣∣∣ ≤ ChK , m, n = 1, 2.(6.2b)

Lemma 6.4. For given wh ∈ Vh,0(T), define ŵh := wh|Kkl ◦ F ∈ L2(K̂kl). Then,
the following statements hold:

1. −
∫
σ̂

[ŵh]σ̂ = 0, 2. −
∫

Γ̂

ŵh = wekj,lj .

We are now ready to prove Lemma 6.2. Trace and Poincaré–Friedrichs inequalities
for piecewise H1 functions on the reference domains [2] imply that we can estimate
as follows:∑
ι∈{k,l}

h−1
eιj

∥∥wh − wekj,lj∥∥2

0,eιj
≤ C

[∥∥ŵh − wekj,lj∥∥2

0,êkj
+
∥∥ŵh − wekj,lj∥∥2

0,êlj

]
≤C

[∥∥ŵh− wekj,lj∥∥2

0,K̂k
+
∣∣ŵh− wekj,lj ∣∣21,K̂k+ ∥∥ŵh− wekj,lj∥∥2

0,K̂l
+
∣∣ŵh− wekj,lj ∣∣21,K̂l]

= C

∥∥ŵh − wekj,lj∥∥2

0,K̂kl
+
∑

ι∈{k,l}

∣∣ŵh − wekj,lj ∣∣21,K̂ι


≤ C

 ∑
ι∈{k,l}

∣∣ŵh − wekj,lj ∣∣21,K̂ι+ (∫
σ̂

[ŵh − wekj,lj ]σ̂ dŝ
)2

+
(∫

Γ̂

ŵh − wekj,lj dŝ
)2


= C

∑
ι∈{k,l}

|ŵh|21,K̂ι ≤ C
∑

ι∈{k,l}

|wh|21,Kι .
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This proves Lemma 6.2. It is worth noting that the inequality constant in the proof
depends on the shape regularity of T only.

All of this together now also allows us to finish the proof of Theorem 6.1. With
the above lemmas, we obtain

|Iejk | ≤ C

hejk‖u‖2,Kj |wh|1,Kj +

 ∑
ι∈{k,l}

h2
eιj‖u‖

2
2,Kι

1/2 ∑
ι∈{k,l}

|wh|21,Kι

1/2


≤ C

 ∑
K∈ω(ejk)

‖hKu‖22,K

1/2 ∑
K∈ω(ejk)

|wh|21,K

1/2

,

where ω(ejk) = {Kj ,Kk,Kl} is the set of elements containing all or parts of ejk as
an edge. This yields the following, order-optimal bound for the consistency error:

sup
wh∈Vh

ah(u,wh)− (f, wh)

|||wh|||h
≤ C

(∑
K∈T
‖hKu‖22,K

)1/2

.

6.2. Structure of the constraints. The constraints discussed in this section
only couple degrees of freedom on the hanging, parent edge and its children, but
not those defined on adjacent edges or the interior of cells. This is different from
the constraints of the previous section; in particular, we no longer have to deal with
chains of constraints.

Using the approach of the current section, we have only one constraint per hanging
edge that contains the degrees of freedom for both child edges. Conceptually, this can
be interpreted as constraining the degree of freedom on the parent edge against those
on all children, a reversal of the situation for conforming elements where we constrain
the degrees of freedom on each child edge separately against those on the parent edge.
Other than the fact that this does not follow the “usual” pattern, implementing these
constraints in software does not present any undue burdens.

6.3. A comparison with the other options. Proving optimal convergence
order for option C required showing that the set of functions satisfying the constraints

(4.8) yields optimal order for the nonconformity error, supwh∈Vh
ah(u,wh)−(f,wh)

|||wh|||h
, in

(4.4). On the other hand, comparing (4.8) with (4.6) and (4.7) shows that functions
that satisfy constraint options A and B also satisfy the constraints of option C. In
other words, the function spaces defined by options A and B are smaller than those
of option C. It is then obvious that the nonconformity error must also be of optimal
order for options A and B.

On the other hand, we will show experimentally in the next section that option
A does not converge. This is because for this option, the best-approximation term in
(4.4) is not of optimal order. This is easy to see: globally linear functions are not in
the discrete space defined by constraint (4.6) if hanging nodes are present.

7. Numerical results. In this section, we will numerically evaluate the perfor-
mance of the three options to impose constraints for the DSSY element outlined in
section 4.2. As proven in sections 5 and 6, the second and third options yield conver-
gent schemes of optimal order, but it is unclear which one may be better in absolute
terms. We here investigate this question numerically and also show that the first op-
tion to define constraints does not yield a scheme that converges in the energy norm.
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Fig. 4. A mesh with the maximal number of hanging nodes. Here, every interior edge contains
a hanging node.
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Fig. 5. Maximally bad meshes, smooth solution: Convergence of the solution uh toward the
exact solution u on a sequence of meshes with the maximal number of hanging nodes, using the
three different options to construct constraints discussed in section 4.2. Left: The energy norm
error |||u− uh|||h. Both options B and C yield a convergence order of O(N−1/2) = O(h). Right:
The L2 norm error ‖u− uh‖0, converging as O(N−1) = O(h2).

7.1. Maximally bad meshes, smooth solution. The worst mesh as far as
hanging nodes are concerned is one in which every other cell is refined, starting from
a uniformly refined mesh; see Figure 4.

We first investigate the convergence of the numerical solution using a test case
with the smooth exact solution u = cos(πx) cos(πy) on the L-shaped domain Ω =
(− 1

2 ,
1
2 )2\[0, 1

2 ]2. Figure 5 shows both the energy and L2 norm errors for the three
options of imposing hanging node constraints. Options B and C both show optimal
order convergence in both norms, and the errors are in fact not substantially different.

Option A does not converge in either norm. The fact that it does not converge
in the energy norm may not be surprising: Figure 6 shows the solution (for the
nonsmooth test case discussed in the next section) and demonstrates that requiring
the values along both child edges to be the same yields a tilted numerical solution
whenever the derivative of the exact solution in the direction of the edge is nonzero.
Consequently, the gradient of the numerical solution does not converge to that of
the exact solution. That the L2 norm does not converge at any appreciable rate
(it does decrease very slowly) is more surprising. A closer investigation shows that
the numerical solution is consistently smaller than the exact one, suggesting that the
imposition of these constraints leads to a discrete problem that is too rigid.

For the mesh used in the current section, constraints are not chained because
no cell has both hanging edges and edges that are children of hanging edges of other
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Fig. 6. Maximally bad meshes, singular solution: Solutions on the same mesh using options A
(left) and C (right) for the imposition of constraints. The solution for option B looks essentially the
same as the picture on the right, with only marginal visible differences for the cells at the reentrant
corner. Color and elevation both show the value of uh(x) at a point x ∈ Ω.

cells. Nonetheless, the three different options of dealing with hanging nodes yield very
different constraints that, if resolved, yield matrices with different numbers of nonzero
entries. To illustrate this, consider a mesh similar to the one in Figure 4 but refined
four more times globally before refining every other cell. The associated finite element
space has 393,216 degrees of freedom before eliminating constrained ones. The three
options of constructing constraints then yield matrices with 2,651,130, 4,996,106, and
3,236,864 entries in the sparsity pattern.4 While we know that option A is not viable,
option B results in a matrix with about 50% more entries than option C. Consequently,
solvers will typically also require more CPU time using this approach.

7.2. Maximally bad meshes, singular solution. A more interesting test case
is to solve a problem with a singular solution on such maximally bad meshes. We again
use the L-shaped domain introduced above and choose right-hand-side and boundary
values in such a way that we reproduce an exact solution that in polar coordinates
reads

u(r, θ) = r
2
3 sin

(
2

3

(
θ − π

2

))
,

π

2
≤ θ ≤ 2π.

The numerical solutions for options A and C for the imposition of constraints are
shown in Figure 6. The fact that for option A all small cells are tilted to accommodate
the constraint that the average values on both child edges are equal explains why we
do not see convergence in the energy norm. (A similar picture, though far less obvious,
could also have been made for the previous example.)

Given the singularity at the origin, we cannot expect to obtain optimal conver-
gence orders. Indeed, as shown in Figure 7, the convergence order is reduced. Options
B and C do not differ in noticeable ways in energy norm. There is a small difference in
the L2 norm whose origin we have not been able to elucidate; in particular, the con-
vergence order for option B depends on whether the checkerboard mesh is created by
refining the “white” fields (O(h1.62)) or the “black” fields (O(h1.5)), whereas option
C does not show any difference in this regard.

7.3. Fully adaptive meshes, singular solution. We conclude our numerical
experiments by comparing results obtained for the singular solution test case above,
but using meshes that are generated by an a posteriori error estimator that takes

4We have verified that asymptotically, the number of entries in the sparsity pattern and the
number of nonzero entries in the matrix are the same.
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Fig. 7. Maximally bad meshes, singular solution: Convergence of the solution uh toward the
exact solution u on a sequence of meshes with the maximal number of hanging nodes, using the
three different options to construct constraints discussed in section 4.2. Left: The energy norm
error |||u− uh|||h. Both options B and C yield a convergence order of O(N−1/3) = O(h2/3). Right:
The L2 norm of the error. Here, option B yields a convergence order of O(N−0.81) = O(h1.62) and
option C a convergence order of O(N−0.69) = O(h1.38). Option A, which does not converge in the
energy norm, still yields a convergence order of O(N−0.5) = O(h1) in the L2 norm.
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Fig. 8. Fully adaptive meshes meshes, singular solution: Convergence of the solution uh toward
the exact solution u on a sequence of adaptively refined meshes, using the three different options
to construct constraints discussed in section 4.2. Left: The energy norm error |||u− uh|||h. Option
B yields a convergence order of O(N−0.51) and option C a convergence order of approximately
O(N−0.5). Right: The L2 norm of the error. Both options B and C yield a convergence order of
approximately O(N−1).

into account both the residuals of the discrete solution as well as the nonconformity
[8, 7, 10]. Because the first option for enforcing constraints yields a solution that
violates the assumptions underlying the error estimator, we obtain nonsensical meshes,
and therefore omit this approach from the current section. The generated meshes
obtained from options B and C show the expected refinement toward the reentrant
corner where the solution is singular and have the familiar appearance for such meshes.

Figure 8 shows the convergence history for all approaches. Both options B and
C yield essentially the same errors. Finally, we show in Figure 9 the growth in the
number of nonzero entries in the system matrix after application of constraints. This
is relevant because, unlike the examples on the meshes of the previous subsections, the
current mesh consists of cells on many levels; consequently, option B may generate
chains of constraints that have the potential to create many more nonzeros in the
matrix. In fact, one can construe sequences of meshes in which the number of nonzeros
grows faster than O(N) where N is the number of degrees of freedom. On the other
hand, the figure shows that in practice, the number of nonzeros averages around 7 per
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Fig. 9. Fully adaptive meshes meshes, singular solution: Number of nonzero entries in the
matrix as a function of the number of unknowns in the problem.

row for option C, and slightly greater than 7 for option B. In other words, there is no
noticeable difference in computational cost between the two approaches. This can be
explained by the fact that on typical, adaptively refined meshes, few hanging edges
give rise to long constraint chains such as those shown in Figure 2. In fact, in our
computations, we had no cases of chained constraints at all, since no vertices existed
with neighboring cells whose refinement levels differed by two or more.

8. Conclusions. For nonconforming finite element methods, the construction
of hanging node constraints is not as obvious as for conforming methods. In this
paper, we have presented a number of options for how hanging nodes can be treated
for one nonconforming element, namely, the DSSY element. We identified two dif-
ferent strategies—both rather different from the structure of constraints typically
encountered for conforming methods—for which we could prove theoretically that
they converge, and also demonstrate this using numerical experiments. They differ in
their implementation complexity, but not substantially in the accuracy they yield.

We expect that considerations similar to those discussed herein can also guide
the derivation of constraints for other nonconforming elements, as well as for hanging
nodes generated by independent refinements [3].
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[11] A. Dedner, R. Klöfkorn, and M. Kränkel, Continuous finite-elements on non-conforming
grids using discontinuous Galerkin stabilization, in Proceedings of Finite Volumes for Com-
plex Applications VII—Methods and Theoretical Aspects, Springer Proc. Math. Statist.,
77, Springer, New York, 2014, pp. 207–215.

[12] J. Douglas, Jr., J. E. Santos, D. Sheen, and X. Ye, Nonconforming Galerkin methods
based on quadrilateral elements for second order elliptic problems, ESIAM Math. Model.
Numer. Anal., 33 (1999), pp. 747–770.

[13] F. Huang and X. Xie, A modified nonconforming 5-node quadrilateral transition finite ele-
ment, Adv. Appl. Math. Mech., 2 (2010), pp. 784–797.

[14] Y. Jeon, H. Nam, D. Sheen, and K. Shim, A class of nonparametric DSSY nonconforming
quadrilateral elements, ESAIM Math. Model. Numer. Anal., 47 (2013), pp. 1783–1796.

[15] R. Rannacher and S. Turek, Simple nonconforming quadrilateral stokes element, Numer.
Methods Partial Differential Equations, 8 (1992), pp. 97–111.

[16] W. C. Rheinboldt and C. K. Mesztenyi, On a data structure for adaptive finite element
mesh refinements, ACM Trans. Math. Software, 6 (1980), pp. 166–187.

[17] W. Schmid, Adaptive gemischte und nichtkonforme Finite-Elemente Methoden und Anwen-
dungen auf die Mehrgruppen-Diffusionsgleichungen, Ph.D. thesis, University of Augsburg,
Germany, 1996.

[18] W. Schmid and F. Wagner, Numerical solution of the neutron diffusion equation—adaptive
concepts in time and space, in Numerical Treatment of Coupled Systems, Notes Numer.
Fluid Mech. 51, Springer, Berlin, 1995, pp. 163–174.
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