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Clone and graft:
Testing scientific applications as they are built

Bruno Turcksin* Timo Heister! Wolfgang Bangerth?
August 31, 2015

This article describes our experience developing and maintaining automated tests for scientific applica-
tions. The main idea evolves around building on already existing tests by cloning and grafting. The idea is
demonstrated on a minimal model problem written in Python.

This article was originally planned as part of a book on testing scientific software'. The code and sources
for the article are available at https://github.com/tjhei/clone-graft-paper.

1 Introduction

Our group has been building scientific software for more than a decade and a half by now. Over the years
we have developed many procedures that help us test our software extensively but our expertise was mostly
in the development of libraries for numerical methods — specifically, the DEAL.II library for finite element
computations (see http://www.dealii.org/ and [BHK07, BHK15]). Libraries are of course the foundation
of almost every single scientific code, starting with “simple” ones such as BLAS and LAPACK to very much
more complex ones such as PETSc, TRILINOS, or DEAL.IT [PET15, HBHT05, H*15].

Developing testing schemes for libraries is reasonably well understood. So, when we ventured in the area
of building applications for scientific purposes on top of the libraries we had created, we had initially thought
that one can use the same approaches as one uses for libraries — but this turned out to not work.

Libraries are relatively easy to test. They export large numbers of functions; one can write a simple
main() function that sets up a couple of data structures, calls one of these functions individually, and
verifies the correctness of the output; do this for every function or class in the library and you’ve got a good
testsuite. Such tests are often called unit tests and are typically complemented by integration tests to verify
that combinations of classes work well together. Over the years we have written about 3,000 of these that are
run in multiple configurations with every single commit to DEAL.IT — on multiple machines, with different
compilers and dependencies, and several times a day. Despite all of the experience we have gained building
this machinery around DEAL.II, the same strategy does not work for whole applications because applications
do not usually export many possible entry points. Rather, they usually only present a single interface —
the command line, a graphical user interface, or input files — and then run through a large fraction of the
entire code base in computing output. One cannot typically just call a single function in an application by
presenting a magic input file, in the same way as one would call a function in a library by presenting a magic
main() function in a unit test. There are of course more advanced ways of testing features of an application
in isolation by replacing other parts of the code during testing by so-called mock or stub objects. We will
not discuss this here though.

Consequently, different approaches are necessary. In the following, we will lay out what we have learned
from building and testing the ASPECT code for the geodynamics community over the past few years. In
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the following, let us first talk briefly about what ASPECT does and how the way it is used is prototypical
for scientific codes (Section 2). At the same time, ASPECT is a very complex code and just installing it
is non-trivial; consequently, it does not serve the purpose of this book well and we will present a simple
model problem and model code in Sections 3 and 4 that we will then use throughout the rest of the chapter.
Sections 5 and 6 discuss how we write tests for whole applications, and how this process happens as we
continue to develop the code — using the clone and graft technique of creating test cases. Section 7 then
deals with how real practice interferes with the ideas discussed in previous sections, and we conclude and
summarize in Section 8.

2 Aspect: the Advanced Solver for Problems in Earth’s Convec-
Tion

The code that made us think about how to test whole ap-
plications is called ASPECT — short for the Advanced Solver
for Problems in Earth’s ConvecTion [KHB12, BHT15b,
BH*15a]. It is a program that simulates how material
moves around the Earth mantle (i.e., the region between
the metallic core of Earth and the plates at the surface
on which we live). While the material in the mantle is
solid rock, it is hot and under enormous pressure and can
deform with velocities of a few centimeters per year. On
time scales of millions of years, it therefore behaves like a
fluid. Since it is heated from below and cooled from above,
it shows the same kind of behavior as a pot on the stove:
blobs of hot material rise up, cool at the surface, and blobs
of cool material fall down. In other words, it convects. The
details of trying to simulate this on a computer go beyond
what we want to discuss here, but it is worth showing a
picture and linking to the videos at http://www.youtube.
com/embed/j63MkECORRw and http://www.youtube.com/
embed/EJJ6f4hmDPU, if only because they are pretty.

ASPECT is a large code: At the time of writing this
chapter, it has 297 source files with 69,704 lines of code.
What’s more, it builds on the DEAL.II library that has some 500,000 lines of code, the TRILINOS library
with 3,500,000 lines, and a few other but smaller libraries. At the same time, this size is not uncommon for
large scientific codes, and certainly not for commercial codes.

Like many academic codes, ASPECT has no graphical user interface but instead is driven by input files; it
is also designed in such a way that it is easy to add functionality through plugins, i.e., self-contained source
files that simply implement a class derived from some base class and that is then registered in ASPECT’s
plugin registry at run time. Because this is the way users interact with this code, it is also the framework
within which we have to approach testing: tests need to consist of specially crafted input files and/or plugins.
Plugins go beyond what we can discuss here, but we will show you that it is actually quite simple to write
tests using input files.

Figure 1: Snapshot of the temperature field of an
ASsPECT simulation showing convection in the
Earth mantle.

3 Make it simple for me: A model problem

We’re not going to try demonstrating our approach using ASPECT — that would be far to complex to install
and deal with. Rather, we’re going to show how it works with a much simpler code that just deals with
a model problem but that we will write with the same approach towards input handling and testing as
ASPECT.
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So this is what we're going to consider: Imagine you are dealing with two baseballs that are connected
by a spring. If you throw them, what are their trajectories? Newton’s law says that for each of the two balls,
mass times acceleration equals the force on the body. Let’s assume for a moment that there is no air friction
and that the spring is massless, then the ordinary differential equation (ODE) that describes the motion of
each of the two bodies (i = 1,2) is

mi X;(t) = mig — D(|Ixz(t) —x1(t)] - L) d; , (1)
~—~— ~~ ~~
acceleration  gravity magnitude of spring force direction of spring force
x;(0) = X0, (2)
x;(0) = vy, (3)

where x;(t) is the position of the ith body at time ¢, g = (0,0, —g)7 is the gravity acceleration, D is the spring
constant of the spring that connects the two balls, and L is the rest length of the spring. The direction vector

s _ xa(t)—x1(t) _ xi(t)—xa(t) _ : :
d;isd; = IEGE0I and C.IQ. = @@l — d; for.the tw9 masses: The second and thlrd equat'l(.)ns
are the necessary initial conditions for this second order differential equation and denote the initial position
X;,0 and initial velocity v; g.

4 A first program

Let’s implement a program that can solve this problem. Because we want it to be simple and accessible, we’re
going to use Python as it’s widely used and because it comes with a number of tools that are going to make
our life simpler by keeping the program short.? Note that testing is even more important in dynamically
typed languages like Python, because you do not have the compiler to help you find bugs at compile time.
The program we’ll show you in a second reads its input parameters from a file in JSON format® (see http:
//en.wikipedia.org/wiki/JSON). Here is an example that you can find in the file tests/testcase-1. json:

”initial _position” [ [1,2,3], [4,5.,6] ],
initial_velocity” [ [0,0,0], [1,1,1] ],
”masses” [ 13.5, 29.75 ],
”spring._constant” 42,
”spring.rest.length” 2.25

}

In JSON, the name of a parameter is to the left of the colon and its value is to the right; name/value pairs
are separated by commas. The value of a parameter can be a plain number, or it can be an array if enclosed
in brackets. Arrays can also be nested, which is what we use here for the initial positions and velocities of
our two bodies, each of which lives in three-dimensional space. With this explanation, it is clear that the
input file specifies properties of the two masses as x10 = (1,2,3)7,x20 = (4,5,6)7,v1,0 = (0,0,0)7, vy g =
(1,1,1)7,m; = 13.5,mo = 29.75 and D = 42, L = 2.25 for the spring that connects them, thereby completely
determining everything in equations (1)—(3).

To implement a program that can deal with this input, we first need to describe how Python solves
ODEs. Basically, it requires us to reformulate it as a first order system y’(t) = f(¢,y),y(0) = yo, and tell
the integrator about f and yo. We do this by introducing variables for the velocities v, = x} and then setting
y = (T11,%12,--.,%23,V1,1,01,2,..-,023) . f then consists of the v; and the right hand sides of (1) divided
by the m;. With this, the code looks like this:

2In order to run this program, you will have to have the Python NumPy, SciPy, and matplotlib packages installed on your
system, along with the basic Python interpreter.

3While certainly more sane compared to XML, JSON is not the prettiest format to write input files in and we don’t
recommend you use it for your programs (it is typically intended for exchange of data between programs, not between humans
and computers). But it will serve for our purposes here primarily because Python has a built-in parser for it that makes our
program pleasantly free of the tedium of parsing input files.
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import sys

import json

import numpy

import scipy.integrate

# Read the mame of the input file from the command line, and read options from

# the file:
assert len(sys.argv) =— 2, ’Please.provide.an.input.file.’
with open(sys.argv[l], ’r’) as f:

settings = json.loads(f.read())

# Then retrieve the wvarious parameters from what we just read:
D = settings[’spring._constant’]
L = settings [’ ’spring_rest_length’]
m = settings [ masses’]

[x1.0, x2_0] = settings[’initial_position’]

[v1.0, v2_.0] = settings[’initial_velocity ]

# describe the differential equation as a first order ODE:
y0 = [x1.0[0], x1.0[1], x1.0[2], x2.0[0], x2.0[1], x2_0[2],
v1_.0[0], v1-0[1], v1_.0[2], v2_0[0], v2_.0[1], v2.0[2]]

def f(t, y)

pl = y[0:3]

p2 = y[3:6]

vl = y[6:9]

v2 = y[9:12]

g =[0., 0., —9.81]

dist = numpy.linalg .norm(p2—pl)

al = g — Dx(dist—-L) % (pl—p2)/dist/m[0]

a2 = g — Dx(dist—-L) * (p2—pl)/dist/m[1]

return numpy.concatenate ([vl, v2, al, a2])
# Next create an object that can integrate the ODE numerically:

start_time = 0.

end_time =5

integrator = scipy.integrate.ode(f)

integrator.set_integrator (’vode’, rtol=le—6)

integrator.set_initial_value(y0, start_time)

# With this, do the integration step by step, appending values to an array in

# each step:

t_-values = [start_-time]

y-values = numpy.array ([y0])

while integrator.successful () and integrator.t < end_time:
integrator.integrate (end_time, step=True)
t_-values.append(integrator.t)
y_values = numpy.vstack ((y-values, integrator.y))

Having done so, output the number of time steps and the final positions:
g

print ”time.steps:”, len(t_values)

print ”final_position:”, y_values[—1,0:3], y-values[—1,3:6]

When you run the program on this data, it will compute the trajectory of the two connected balls over a
number of seconds and print their final positions to the console. Of course, having a plot of their trajectories
would be nice too, and you can get that by adding the following lines to the bottom of the script:

import matplotlib.pyplot

from mpl_toolkits.mplot3d import Axes3D
fig = matplotlib.pyplot.figure ()

canvas = fig.gca(projection="3d")




—_

O © 00U

N O Ut WN

canvas.plot (y-values[:,0], y-values[:,1], y-values|[:,2],
label="body.1")

canvas.plot (y-values[:,3], y-values|[:,4], y-values|[:,5],
label="body.2")

canvas.legend ()

matplotlib.pyplot.show ()

The output this creates is shown in Fig. 2.

5 Testing for perpetuity

So how does one test a code like this? There are really two answers to
this. The first has to do with ensuring that the functionality we have just

implemented is correct. The second is how we can ensure that the func- o
tionality we have implemented today will still work correctly tomorrow
after implementing more features. —20

We often have an intuitive idea of how to do the former. For example,
we could note that the center of mass at the end time T' = 5 should have
fallen a distance of §z = %gT2 = %m ~ 123m, well in agreement
with what Fig. 2 shows. We could also compare with another code. Or
we could look at special cases for which we have an analytic solution. For  _go
our model problem, one could for example prescribe initial velocities so

that the bodies are at rest and initial positions so that the two bodies are 104 )
separated by the rest length of the spring; the two bodies then simply fall 432
straight down and we can easily compute on a piece of paper where they 2 5

should be at time ¢t. The following input file (tests/testcase-2.json)
does this:

Figure 2: Trajectories for the
{ ) two balls with the input file from

”initial_position” 0,0,0], [1,0,0 s X

"initial_velocity” % {0’070}’ {07070% % Section 4. Note that axes are not
" masses” [ 1, 2], shown at the same scale.
”spring.constant” 1,

?spring._rest._length” 1

}

In the end, verifying whether the program is correct is problem dependent. Let us not go too deep into
this because the second answer — how to ensure that functionality continues to work — is actually much more
important in practice even though few people realize this when they start developing software. The issue
essentially boils down to this: We need mechanisms that ensure that the functionality we have verified works
correctly today, does not break when we implement new functionality tomorrow. This is necessary because
good programmers understand that they will make mistakes; what makes them good programmers is that
they develop ways to minimize the impact by helping them find problems quickly.

There is a lot of research on bugs in programs. Fundamentally, the essence of this research is that it
cannot be avoided altogether when programming. On the other hand, the best programs are those that make
it easy to spot bugs and fix them quickly. The worst programs are those that are not tested; an empirically
true statement is that programs that are not tested produce wrong answers — where the emphasis is on
the fact that they do produce wrong answers, not that they may produce wrong answers. Experienced
programmers all attest to this statement. Only bad or inexperienced programmers will assume that they do
not introduce new bugs in old parts of their programs.*

The importance of testing relies in the cost of fixing problems. If we keep implementing new functionality,
eventually some old feature will stop working. If we have no tests that detect this quickly, this may go

4In fact, what seems to set good programmers apart more than many other factor is not that they create fewer bugs — which
they do, though not dramatically so — but that they understand that they create bugs and that they change their behavior to
accommodate for it, for example by developing a habit of rigorous testing that helps them find these bugs quickly.



unnoticed for a while but eventually we will try to re-run an old computation with the new version of the
code and it will not work any more. So where to start? What have we changed in the intervening months
that may cause this? There is likely a lot of new code we have written since then, and we may have forgotten
about a fair share of the details since then. It will take a long time to figure out where exactly the problem
is. On the other hand, if we had a testsuite that we run after essentially every change, we will be notified
immediately that something stopped working — with a relatively small number of changes made since the
test last worked, and everything still fresh on our mind, finding the bug should be a much quicker issue.

So how do we achieve this? The general idea is that we save the test cases we have previously used to
convince ourselves that a new part of the program was correct. To make this work, we have to have three
things:

1. The input file for a previously verified testcase.

2. The output when running the code on this input file; having verified the feature, we know or at least
believe that this output is correct.

3. A way to run a new version of the code on the output file, to compare its current output against the
stored output, and to raise a flag if they are not the same.

The first two are really not very complicated — create a directory tests/ in your project and create two files
in it, say testcase-1.json and the corresponding output testcase-1.reference. When it comes time to
test at a later time, step 3 above can be as easy as running commands such as

python spring.py testcase —1l.json > testcase —l.output
diff testcase —1l.reference testcase —1l.output

You would repeat all of this for testcase-2. json, of course. If the diff program produces no output, then
the two files are the same and your program computed the same answer on this input file as it did back when
you created the testcase-1.reference file. If there is a difference, then you know that you just broke one
of the testcases. If you purposefully changed it — for example because you changed the output format, or
because you fixed behavior you know was erroneous and have verified that it is now correct, then copy the
new output over the old reference file. If you did not purposefully change what the program computes, then
you know it’s time to break out the debugger.

6 More functionality

We write tests because we expect that our code base will continue to change — to implement new functionality,
or to fix existing bugs. So let’s do this: assume we now also want to include air friction on the two balls, and
we will use that the air friction force is proportional to the square of the speed and in the opposite direction
of the velocity. Then our model (1) needs to change to the following:

mix; (t) = mig — D ([x2(t) = x1 (W) = L) di =C; ||x; ()] x4(t) . (4)

friction force

The new term contains constants C; that denote air friction coefficients of the two balls. These coefficients
can be computed from the cross section of the ball, their surface roughness, the viscosity of the air, and
other factors, but this is not important here — we will simply read them from the input file.

If we now require that every input file contains an array of friction coefficients C;, we can no longer use
old input files. A better strategy is to define default values for all non-required parameters and overwrite
them with the values in the input file if specified. A backward compatible choice of input parameters for the
C; is to give them a default value of zero because in that case equation (4) equals the previous version, (1).

Implementing all of this leads to the following extension of the program shown above®, with the new
parts in lines 19-20 and 35-36:

5This is the file spring.py in the directory corresponding to this paper.
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im
im
im
im

port sys

port json

port numpy

port scipy.integrate

# Read the mame of the input file from the command line, and read options from

# the file:
assert len(sys.argv) =— 2, ’Please.provide.an.input.file.’
with open(sys.argv[l], ’r’) as f:

settings = json.loads(f.read())

Then retrieve the wvarious parameters from what we just read:

= settings [’ ’spring_rest_length’]

#
D = settings[’spring._constant’]
L
m

= settings [ masses’]

[x1.0, x2_0] = settings[’initial_position’]
[v1.0, v2_.0] = settings[’initial_velocity ]
# the default friction is zero for both objects:
[C1, C2] = settings.get( air_friction_coefficient’, [0, 0])
# describe the differential equation as a first order ODE:
y0 = [x1.0[0], x1-0[1], x1-0[2], x2-0[0], x2-0[1], x2-0[2],
v1.0[0], v1.0[1], v1.0[2], v2.0[0], v2.0[1], v2.0[2]]
def f(t, y):
pl = y[0:3]
p2 = y[3:6]
vl = y[6:9]
v2 = y[9:12]
g=[0., 0., —9.81]
dist = numpy.linalg .norm(p2—pl)
al = g — Dx(dist—L) % (pl—-p2)/dist/m[0] — Clsnumpy.linalg.norm(pl)*pl
a2 = g — Dx(dist—L) % (p2—pl)/dist/m[1l] — C2%numpy.linalg .norm(p2)*p2
return numpy.concatenate ([vl, v2, al, a2])
# Next create an object that can integrate the ODE numerically:
start_time = 0.
end_time =5
integrator = scipy.integrate.ode(f)
integrator.set_integrator (’vode’, rtol=le—6)
integrator.set_initial_value(y0, start_time)
# With this, do the integration step by step, appending values to an array in
# each step:
t_values = [start_time]
y-values = numpy.array ([y0])

while integrator.successful () and integrator.t < end_time:

integrator.integrate (end_-time, step=True)
t-values.append(integrator.t)
y-values = numpy.vstack ((y-values, integrator.y))

# Having done so, output the number of time steps and the final positions:

pr
pr

#
if

int "time_steps:”, len(t_values)
int "final_position:”, y_values[—1,0:3], y_values[—1,3:6]

graphical output:

False:

import matplotlib.pyplot

from mpl_toolkits.mplot3d import Axes3D
fig = matplotlib.pyplot.figure ()
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canvas = fig.gca(projection="3d")

canvas. plot (y_-values[:,0], y-values|[:,1], y_values|[:,2],
label="body._1")
canvas. plot (y-values[:,3], y-values|[:,4], y-values|[:,5],

label="body.2")
canvas.legend ()
matplotlib.pyplot.show ()

How do we test this new functionality? First, we should check whether the old input files still work:

python spring.py testcase —1.json > testcase —l.output
diff testcase —1l.reference testcase —1l.output
python spring.py testcase —2.json > testcase —2.output
diff testcase —2.reference testcase —2.output

With the code that accompanies this paper, diff reports no difference between the old and the new output
files, so this is reassuring.

Next, we need to write new tests for the new functionality. This is where the clone and graft technique
finally comes into play: take one of the existing tests (i.e., clone it) and add to it the minimal number of
parameters to exercise the new functionality (i.e., graft onto it). So let’s take the simpler of the two previous
testcases, tests/testcase-2. json, copy it to tests/testcase-3. json and add to it something about air
friction:

{
”initial _position” [ [0,0,0], [1,0,0] ],
7initial.velocity” [ [0,0,0], [0,0,0] ],
” masses” [ 1, 17,
”spring._.constant” 1,
”spring.rest.length” 1,

[

?air_friction_coefficient?”

}

To verify that the results we get are correct, we can use that in this test case the masses and friction
coeflicients of the two balls are the same, the two balls are separated by a distance equal to the rest length
of the spring, and they start at rest. Then they will simply fall as if there was no spring, and we know that
they will approach a terminal speed v = y/mg/C where downward gravity and upward air friction cancel.
For the current case, this would be v = v/9.81 because we have chosen m =1,9 =9.81,C = 1.

Is one new testcase enough? The answer is rarely yes. For example, it is easy to make indexing errors
and choosing masses and friction coefficients equal would not allow us to detect errors where, for example,
we used friction[1] in the code where we intended to use friction[i]. So let’s copy testcase-3. json
to testcase-4. json:

{
”initial _position” [ [0,0,0], [1,0,0] ],
”initial _velocity” [ [0,0,0], [0,0,0] ],
”masses” 1, 2],
”?spring.constant” 1,
”spring._rest._length” 1,

(

7air_friction.coefficient”

}

Here, the second ball has a greater mass, but the same air friction coefficient (think of it as denser but with
the same diameter). How do we know whether our code is correct for this case as well? This may be more
difficult to establish, but it isn’t always necessary. For example, we could look at the output and realize that
the second ball falls faster and, because it is connected to the first by a spring, then starts to drag the first
behind it as it falls. Such qualitative verification is sometimes the best one can do. At the same time, while
it may not guarantee that the code is indeed correct, it will nonetheless serve as a useful test in the future
to ensure that existing functionality does not break as a result of further development — in the long term the
more important of the two reasons to write tests.
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Because it is so easy to create tests, it may be worthwhile cloning testcase-3. json a second time into
testcase-5. json where now we just set the friction coefficients differently:

{
”initial _position” [ [0,0,0], [1,0,0] ],
7initial.velocity” [ [0,0,0], [0,0,0] ],
”masses” [ 1, 1],
”spring._constant” 1,
”spring.rest.length” 1,

[

?air_friction_coefficient?”

}

Now the two balls have the same mass but the second one has a higher drag coefficient (think of the first
ball as smooth and the second one as covered in fur). Our “smell check” would now be to verify that the
second ball drags behind the first.

If we’re reasonably convinced that the output is correct, then save the output in files tests/testcase-3.reference

through tests/testcase-5.reference for use in future testing.

7 Practical considerations

7.1 When clone and graft fails

The scheme outlined above represents an inheritance relationship where every test is °
based on a previous one. For the 5 testcases discussed above, the inheritance graph

is shown in Fig. 3. It is, of course, a tree graph. 0
But this does not always work. There are cases where you will have to write a

new test from scratch. To give an example of where this was necessary, consider °

ASPECT: Imagine that at the beginning, it could only compute convection in a box.

We would have testcases that described different temperature boundary conditions ° °

on this box, and various other things. But when implementing a spherical geometry,
none of these testcases quite fit: they all had to say what the temperature is on the
six faces of the box, they made the implicit assumption that gravity points downward
instead of inward, etc. It was time to start with a new testcase. If, at a later time you
then clone and graft from this new testcase, then it becomes the root of a separate
tree (let’s call it an ezemplar testcase) and the inheritance graph will turn into a
forest graph (a collection of tree graphs).
e, Finally, there are cases where you copy-paste pieces
from multiple existing tests into a new one, for example

Figure 3: Inheritance
graph for the 5 tests
discussed in previous
sections.

. - . because you want to test the combination of features for
" “tae . . which you have already written individual testcases. At

* ': * : o e this point, the metaphor of inheritance graphs starts to

P . 5:.{: '!‘: * break down. However, in practice, most tests are still

Coe ::: I ¢ closely related to some others. A visualization of this for

. Wtee the 144 tests that are part of ASPECT, each represented

AR e by a dot, is shown in Fig. 4 where we draw tests farther

apart if there are more textual differences between the
Figure 4: Connection graph of the 1/ tests that input files. Many tests come in groups of 2, 3 or 4 that
are part of the ASPECT code base. only differ in a few lines of input — simple modifications
such as those between testcases 3, 4 and 5 above. On the
other hand, other group are further apart and are derived from different examplars.
The message from this section, though, is that in almost all cases writing a new testcase is actually really
easy: find a good starting point, copy it, make minor modifications and additions, and verify the output.
Testing scientific codes really doesn’t have to be hard!
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7.2 Dealing with many tests

In practice, once you have accumulated a number of testcases, you will encounter practical difficulties.
First, when you try to find the right starting point to clone and graft a new testcase, you will not recall
if testcase-3.json or testcase-5.json is the one that’s closest to the situation you have in mind (for
example, if you want to augment your model and you are looking again for a testcase with equal masses and
friction coefficients).

In our experience, using more descriptive filenames for the input files has helped, as is placing comments
at the top of each input file describing what the test does or, if appropriate, how it differs from a previ-
ous testcase. Many of our testcases in ASPECT have names like tests/melt-fraction-peridotite.prm
and comments at the top of the form “Like the melt-fraction.prm test, but using the peridotite material
parameters.”

Second, running and comparing many tests by hand using the commands above becomes unwieldy. In
such cases, it is useful to write little Makefiles that do this automatically, or to use one of the tools available
as open source — for example, the CTest program. It also becomes more difficult to display tests that create
differences when, for example, you run the 7,000 tests of the DEAL.II testsuite. Again, there are freely
available systems such as CDash that present graphical overviews of all succeeding and failing tests in a
browser.

In practice, you're not likely to quickly get to a project size where learning to use tools like CTest and
CDash are important considerations. In practice, the point where using such tools becomes indispensible is
when your code has several 10,000 lines of code or more — several years worth of work. When you get to this
point, your project will have all sorts of other growing pains as well, such as having to deal with external
users, running mailing lists, portability, managing complexity and other issues. Some of these are discussed
in [BH13]. The point simply is that there is no need to worry too much about testing tools for programs
of this size: care about writing tests from the beginning and if the number of tests becomes too unwieldy,
there will be professional-grade tools you can switch to that can manage this for you. In the meantime, a
little shell script such as the following will do just fine:

# loop owver all .json input files

for jsonfile in x.json ; do
# execute our program on it and pipe the output into a file
testname=‘basename $jsonfile .json ¢
python ../spring.py ${jsonfile} > ${testname }.output

# then compare output; only ask ’diff’ to report whether the

# files are the same or mnot, and create output depending on this:

# print an X’ if there is a difference, a ’.’ if there isn’'t. this
# ensures that test failures are easily wvisible

if (diff ${testname}.reference ${testname}.output > /dev/null) ; then

echo 7...._..${jsonfile}”
else
echo 7. .X_._.__${jsonfile}”
fi
done

If you call this script, say, tests/compare.sh, then running it using the command cd tests/ ; bash -e
compare . sh should produce output like this:

testcase —1.json
testcase —2.json
testcase —3.json
testcase —4.json
testcase —5.json

On the other hand, if your output looks like this

testcase —1.json
testcase —2.json
testcase —3.json
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X testcase —4.json
testcase —5.json

then you know that you just broke some functionality that testcase-4.json checks. Given how easy it is
to run this script, you want to run this script often to find new bugs as early as possible.

7.3 Dealing with overlapping tests

In an ideal world, every testcase would only check a single feature (such testcases are then often called unit
tests). This way, if something goes wrong with a change to the source code, a single test will fail and it will
be easy to identify what went wrong.

In practice, this is often difficult to achieve. For example, if we change the implementation of the function
that provides f(t,y) above and break it, it is likely that all testcases will start to fail. Similarly, if you build
testcases by cloning and grafting onto existing ones, whenever the old one fails, the new one will likely do
so as well.

From experience, it turns out that this is not often a real problem. The vast majority of patches concern
just small, isolated pieces of the software and in those cases, only one or a few testcases will start failing.
It is then easy to identify the simplest one of these (assuming that they were given useful names, see above
in Section 7.2), and that is the one we will then use for debugging. If one breaks fundamental functionality
somewhere in the core of the software, a large number of tests will start to fail but in those cases you will
either be able to quickly find out what is happening, or be able to debug the problem by choosing any simple
test that was among those that broke. In summary, from a practical perspective, we have found that it is
not usually a problem to have testcases that check overlapping parts of the software. Rather, we have come
to the conclusion that it is best to have as many tests as possible, regardless of overlap.

7.4 Dealing with round-off

Scientific computing deals, at a fundamental level, almost always with floating point numbers. Unfortunately,
floating point arithmetic suffers from some rather annoying oddities that can make testing scientific codes
more challenging than code that doesn’t use floating point numbers.

At the base of the problem is the fact that floating point numbers do not enjoy the same mathematical
properties as integers (or, in fact, as real numbers). For example, if you take into account round-off,
then (a + b) + ¢ is in general not the same as a + (b + ¢) or (a + ¢) +b. You can try this out with
a=1.0,b=—1.0,c = 1le—20: in double precision, you will get (a+b)+c = le—20, a+ (b+c) = (a+c)+b = 0.
This matters because if you make changes to the code base, upgrade the compiler, switch from one processor
or machine to another, or change compiler optimization level, floating point operations will be executed in
different order and the results will be different at the level of roundoff. In other words, your tests will fail
even though nothing fundamentally changed.

Over the past 15 years, we have played with many ideas how to address this problem. For example,
we tried to just never output numbers to their full 16 digits of double precision. The idea is that if you
only output 5 digits, then roundoff surely can’t play a role. The problem is that the numbers 1.234 549
9999999999 and 1.234 5500000000001 only differ by round-off, but when rounded to 5 digits, you either
get 1.2345 or 1.2346. One could think that this is a contrived example, but it turns out that this happens
with rather frustrating regularity if you just output enough numbers — as one often does in scientific codes.

A second area that creates problems is that codes often try to compute zeros, but because of roundoff what
is actually produced are numbers like 4.863e-19. A human recognizes that this is a zero and, consequently,
equal to 2.489e-19 if all of the numbers around it are on the order of one. But the diff command will
complain, and consequently signal a difference.

The solution to these problems that we have ultimately come to use is a program called numdiff.6
numdiff works essentially like diff but it recognizes if the text it compares in two files is actually a number.
If two numbers differ by less than some relative or absolute tolerance, then they are considered equal even if

6See http://www.nongnu.org/numdiff/.
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the characters by which they are represented in an output file are different. For example, you would replace
the diff command used previously by the following to ensure that numbers a and b compare as equal if
la —b] <107° or |a — b| <1078 min{|al, |b|}:

1 ‘ numdiff —a le—6 —r le—8 testcase —l.reference testcase —l.output

Using this trick, numbers that are written into the output file testcase-1.output on one machine with
slight differences to the ones originally saved in testcase-1.reference will still be considered the same,
and the comparison will succeed.

8 Summary

When we talk to students who just start writing their own codes, then they typically understand the im-
portance of testing in some abstract sense. But almost all of them have two fundamental misconceptions:
First, that their codes are either written well enough or will not be changed in ways fundamental enough to
suggest that these changes might break existing functionality. And second, that doing adequate testing is
just too hard and cumbersome to be a justifiable expense of time.

The first of these two points is empirically false. Only bad programmers expect that they will not break
existing functionality, no matter how trivial a change might be. All experienced programmers will know this
to be wrong. The reason is that over the lifetime of a scientific code — say, over the course of the 3 years a
graduate student does research, and maybe even beyond this if the code is handed on to the next student, or
if you go on to be a postdoc — a code starts out small but is constantly developed into something much larger
with much more functionality in all sorts of directions. You’re not going to create one essential version of
the code that you can verify to be correct and then just round off some edges; you’re in fact going to replace
the linear by a nonlinear model, replace the direct solver by an iterative one, add terms to the equation,
and make other very fundamental changes that will require you to edit all throughout your code. There is
no other way than systematic testing to ensure that the computation you ran today will still run tomorrow.
And you will have to run it again tomorrow: your adviser or boss may ask you to redo a computation with
some slight changes, a reviewer of a paper might ask to do additional simulations, you may have forgotten
the exact parameters for a data set you want to use in your thesis and will have to redo it to verify, etc. You
may think that once you have created the data for some particular simulation, that the issue is done and
will not have to repeated — i.e., that you might in fact just throw away the code — but this is not typically
true.

The second of the points above — that testing is hard and time consuming — is also empirically false.
Once you start to do it systematically, all you have to do is morph an existing input file into a new one that
tests the aspect you have just implemented, and add it to your testsuite. It doesn’t take very long, you just
have to do it right from the start. Once you do this, you will find how much faster it suddenly becomes to
debug codes. To us, one of the most surprising facts of developing stringent testing procedures is not just
how much better our codes become, but in fact how much safer we feel making changes in central places of
our code: without tests, we always felt insecure and wondered what a change might do to the code, whether
it is correct in all cases, and if we might be forgetting some cases. With tests, we find ourselves a lot more
at ease: just make a change, run the 140 or so tests and see what happens — if it all continues to work, then
that may not be a guarantee that a change is correct, but it sure makes you sleep better at night. It really
isn’t all that hard to find peace of mind!
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