
Quo Vadis, Scientific Software?
January 23, 2014

Wolfgang Bangerth and Timo Heister

A large majority of the papers published in SIAM journals, and elsewhere in
our community, show a computational result of some kind---either as the
main point (e.g., in SIAM Journal on Scientific Computing), for backing up
theoretical claims about numerical methods (e.g., in SIAM Journal on
Numerical Analysis), or in modeling experimental observations. Indeed, the
discipline that brings us these computations---computational science---is
accepted today as the third leg of science, next to theory and
experimentation. Yet, although we talk a lot about the underlying methods
and algorithms, we almost never talk about their incarnation in real life:
software.

Alas, this is an important omission, as much remains to be improved in this
area.

First, whereas science prides itself on building on the shoulders of giants,
this is not the case with software. Having moved past the Bourbaki
movement, we readily accept a reference to a previously proven theorem
rather than proving it anew.

By contrast, many of our graduate students write the codes that illustrate
their algorithms essentially from scratch. These codes themselves are rarely
published. This is the equivalent of publishing a theorem and claiming that a
proof exists, but not including it in the paper. Grad students in pure math
can't get away with that, and ours should not either!

Secondly, as a community we hold the authors of papers and books in high
esteem, but rarely give credit to those who make software available or
contribute to open-source projects. Few in our community can forge a
career on scientific software, even if their results affect and enable the work
of hundreds of other scientists. This is remarkable---writing widely usable
software is a rare skill (a claim easily verified by looking at the average
graduate student's programs), a skill belittled as "just coding" only by those
who don't possess it.

In other words, as a community we ought to have a conversation on how to
move forward with regard both to the software that underlies our work and to
those who write it. This article is an attempt to start that conversation.

Software: Where We Are and Where We Are Going
The software we use today is vastly more complex than its antecedents.
Papers discuss algebraic multigrid methods on thousands of processors,
discretizations of the magnetohydrodynamics equations on adaptively
refined unstructured meshes, and simulations of processes in geology and
astronomy that require billions of unknowns. None of this is possible without
a significant investment in software.

Even papers limited to one small computational aspect of a larger problem
can require thousands of lines of code. Yet most of the time, authors do not
make these codes available. We could think of this as merely regrettable,

In This Section

SIAM News

Current Issue

Subscribe

Archives

All Conferences and Events

Announcements and Online
News

Professional Opportunities

SIAM: Quo Vadis, Scientific Software? https://www.siam.org/news/news.php?id=2131

1 of 4 01/30/2014 03:32 PM

something that prevents others from learning from and building on these
codes.

But this habit also causes serious problems for our community: If every
graduate student writes the code for a new discretization from scratch, we
will be stuck forever solving "toy problems" (like the proverbial "Laplace
equation on the unit square"), because that's what's possible in three years
of work. Unfortunately, this is no longer sufficient to convince our colleagues
in the applied sciences (who moved past this stage a long time ago) that the
new algorithm is also applicable to their vastly more complex problems. The
risk is that we will isolate applied mathematics and numerical analysis: If we
can't convince our friends in the sciences and engineering that what we do
is worthwhile, using examples they can relate to, then all we really do is
dabble in esoteric corners.

There are solutions to this problem. Over the past 15 years, we have seen
the development of large libraries (e.g., PETSc [1,2] and Trilinos [5,6] in
linear algebra; deal.II [3,4] and FEniCS [8,9] for finite elements; Clawpack
[7] for hyperbolic conservation laws) that already cover many of the
standard techniques. These libraries typically come with extensive tutorials
that graduate students can take as the basis for their own work. To take the
example of deal.II, our own contribution: It is realistic for a graduate student
to develop a new discretization and demonstrate its qualities on a nonlinear
problem, using parallel algebraic multigrid solvers on adaptively refined
unstructured meshes for complex geometries. The student can do this in
three years of research, because all the building blocks are already there,
often combined in an existing and available program in which only the
discretization has to be changed.

The challenge is to change the habits of our community. We should no
longer encourage or even allow our graduate students to write their
programs from scratch; rather, they should build on what's already there.
And they in turn should make their own codes available so that others can
build on them---just as we expect students to use others' theorems and
make their own proofs available.

Motivations
Part of the problem is our reward structure: Making code available to others
is typically seen as a waste of time, given that it requires at least a modest
amount of documentation and code cleanup. We have impact factors and
citation counts for papers, but no established way to give credit for software
or means for evaluating the relevance of software. Consequently, it is often
overlooked in decisions of hiring, tenure, and promotion.

While this may be something of an obstacle for the leaders of widely used
open-source software packages, it is a real problem for younger contributors
of, say, a few thousand lines of often good code for one of these packages.
This code represents a significant investment of their time, and they benefit
the community by making their results available to everyone. Yet, with the
exception of the principals of a project, few late-comers will generate name
recognition or other tangible benefits by contributing their work. It is not that
the principals want all the credit for themselves (all the projects mentioned
earlier have pages that give credit to contributors, listing, in the case of
deal.II, around 70 people who have made substantial contributions). The
problem is that we currently have no way for others to claim this credit,

SIAM: Quo Vadis, Scientific Software? https://www.siam.org/news/news.php?id=2131

2 of 4 01/30/2014 03:32 PM

beyond providing a link to a web page. Given this lack of widely accepted
recognition, it is difficult to motivate the best people to put their time into
making software available to everyone; in fact, they may jeopardize their
careers by doing so.

Of course it is difficult for outsiders to evaluate and quantify someone's
contributions to a project, especially if the project has been the work of
dozens of contributors over many years. But surely, as a community we can
come up with ways to give credit where credit is due, devising a system that
is at least as good as citation counts and impact factors. Some
projects---PETSc is a good example---provide bibtex entries for their web
pages or user manuals that list all significant contributors over the years.

Solutions?
If we accept the premise that our current system of writing software is at
least not optimal, then steps toward improvement must include defining
better metrics and ensuring that incentives are aligned. Some often heard
suggestions along these lines are the following:

We need better ways to credit those who write software. If you use a
particular open-source project in a publication, you should say so,
and reference the most relevant publications describing it.

Hiring committees and grant proposal panels need to recognize the
role of software. Writing successful software is a creative process; it
is also---if the authors provide user support---a lot of continuing work.
Yet most departments consider it less valuable than proving
theorems. This rules out academic careers for many of the best
authors of scientific software. Even worse, it deprives our students of
the opportunity to learn to write software, something almost all of
them will need to do in their professional lives.

We need to find better ways to credit people who contribute
significant amounts of code to existing projects. Few options are now
available, and creative solutions will be necessary.

Publication of code used to obtain the results presented in a paper
needs to be made the default. There has been a recent push toward
reproducibility, as laid out recently in these pages [10]. Full
reproducibility is a high hurdle, but it will already be a step forward if
the code that accompanies a paper solves one of the problems
shown in it.

Ultimately, as a community we need to come to grips with these issues.
Otherwise, we will never move beyond solving toy problems, detached from
what our applied colleagues need to see if they are to adopt the methods we
are so good at developing!

References
[1] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik,
M.G. Knepley, L.C. McInnes, B.F. Smith, and H. Zhang, PETSc Users
Manual, Tech. Rep. ANL–95/11---Revision 3.3, Argonne National
Laboratory, 2012.
[2] S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C.
McInnes, B.F. Smith, and H. Zhang, PETSc web page, 2013;

SIAM: Quo Vadis, Scientific Software? https://www.siam.org/news/news.php?id=2131

3 of 4 01/30/2014 03:32 PM

http://www.mcs.anl.gov/petsc.
[3] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II---A general purpose
object oriented finite element library, ACM Trans. Math. Softw., 33:4 (2007),
24/1–24/27.
[4] W. Bangerth, T. Heister, and G. Kanschat, deal.II Differential Equations
Analysis Library, Technical Reference, 2013; http://www.dealii.org/.
[5] M.A. Heroux, R.A. Bartlett, V.E. Howle, R.J. Hoekstra, J.J. Hu, T.G.
Kolda, R.B. Lehoucq, K.R. Long, R.P. Pawlowski, E.T. Phipps, A.G. Salinger,
H.K. Thornquist, R.S. Tuminaro, J.M. Willenbring, A. Williams, and K.S.
Stanley, An overview of the Trilinos project, ACM Trans. Math. Softw., 31
(2005), 397–423.
[6] M.A. Heroux et al., Trilinos web page, 2011; http://trilinos.sandia.gov.
[7] R.J. LeVeque and M.J. Berger, Clawpack Software 4.6, 2013;
http://www.clawpack.org/.
[8] A. Logg, Automating the finite element method, Arch. Comput. Meth.
Eng., 14 (2007), 93–138.
[9] A. Logg and G. Wells, DOLFIN: Automated finite element computing,
ACM Trans. Math. Softw., 37 (2010), 1–28.
[10] V. Stodden, J. Borwein, and D.H. Bailey, "Setting the default to
reproducible" in computational science research, SIAM News, 46:5 (2013), 4
and 6.

Wolfgang Bangerth is a professor in the Department of Mathematics at
Texas A&M University. Timo Heister is an assistant professor in the
Department of Mathematics at Clemson University.

See more news from this issue

Copyright © 2014, Society for Industrial and Applied Mathematics
3600 Market Street, 6th Floor | Philadelphia, PA 19104-2688 USA
Phone: +1-215-382-9800 | FAX: +1-215-386-7999
site map | privacy policy | webmaster@siam.org | suggestions
Banner art adapted from a figure by Hinke M. Osinga and Bernd Krauskopf (University of
Auckland, NZ).

SIAM: Quo Vadis, Scientific Software? https://www.siam.org/news/news.php?id=2131

4 of 4 01/30/2014 03:32 PM

