
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2016; 105:416–439
Published online 6 August 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nme.4977

Efficient numerical methods for the large-scale, parallel solution of
elastoplastic contact problems

Jörg Frohne1,*,† , Timo Heister2 and Wolfgang Bangerth3

1Institute of Applied Mathematics, Technische Universität Dortmund, 44221 Dortmund, Germany
2Mathematical Sciences, Clemson University, O-110 Martin Hall, Clemson, SC 29634-0975, USA

3Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA

SUMMARY

Quasi-static elastoplastic contact problems are ubiquitous in many industrial processes and other contexts,
and their numerical simulation is consequently of great interest in accurately describing and optimizing pro-
duction processes. The key component in these simulations is the solution of a single load step of a time
iteration. From a mathematical perspective, the problems to be solved in each time step are characterized by
the difficulties of variational inequalities for both the plastic behavior and the contact problem. Computa-
tionally, they also often lead to very large problems. In this paper, we present and evaluate a complete set of
methods that are (1) designed to work well together and (2) allow for the efficient solution of such problems.
In particular, we use adaptive finite element meshes with linear and quadratic elements, a Newton lineariza-
tion of the plasticity, active set methods for the contact problem, and multigrid-preconditioned linear solvers.
Through a sequence of numerical experiments, we show the performance of these methods. This includes
highly accurate solutions of a three-dimensional benchmark problem and scaling our methods in parallel to
1024 cores and more than a billion unknowns. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Elastoplasticity is a phenomenon that refers to the fact that materials initially deform elastically in
reaction to forces, but deformation becomes plastic if the internal stresses exceed a certain thresh-
old. Plastic deformation does not revert to the original frame of reference once the external forces
are removed, unlike elastic deformation. Consequently, plastic deformation is purposefully used in
many industrial forming processes [1–4], and their control is important to achieve material shapes
close to the desired ones. Elastoplasticity is also important when it happens inadvertently, for exam-
ple, in the investigation of the long-term deformation of machine components under external loads
[5–7], in the case of geophysical deformation processes such as plate deformation on long-time
scales [8–10] or the response of soil to nearby buildings, dams, or earthquakes [11].

Given this importance in both the control of industrial processes and in understanding natural
phenomena that are difficult to investigate experimentally, it is not surprising that a large body of
work has been devoted to the development of methods for the computational simulation of elasto-
plastic processes. Like many other practically important cases, this has proven to be a difficult area
characterized by at least the following obstacles.
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� The realistic simulation of almost all purposeful industrial forming processes as well as
the investigation of geophysical problems requires full three-dimensional simulations. This
immediately yields problems that have millions of unknowns, and often many more than
that. Consequently, efficient computational methods are indispensable for any realistic use of
computational tools.
� Plasticity is mathematically described as a variational inequality in which the properties of the

material depend in a non-smooth manner on the stress and other possible internal variables
like the plastic strain at any given point. This results in a solution that is typically not smooth,
and highly accurate simulations can only be achieved by adequately resolving the boundaries
of the plastic region, for example, using fine meshes or adaptive mesh refinement. The non-
smoothness of the material behavior also requires sophisticated nonlinear solvers.
� Most practical forming methods—rolling, drilling, machining, and cutting—are in fact contact

problems in which the desired deformation is affected by a tool that exerts external forces to the
surface of the body under deformation. Where these two bodies that are in contact are a priori
unknown and are only a result of the deformation of one body or both bodies. The mathematical
description of contact problems is again a variational inequality with the resulting need for
adequate mesh resolution and nonlinear solvers.

In this article, we propose an integrated set of computational methods based on the finite ele-
ment method that addresses these difficulties and apply them to examples of elastoplastic contact
problems. The motivation of our study is the development of methods that are capable of solving
problems of realistic complexity. In particular, this means that we need to be able to resolve the
solution adequately and that we are able to solve problems that may require many millions or up to
billions of unknowns. The building blocks of our approach will be the following:

� Mesh adaptation. Resolving the boundaries of the contact area as well as of the plastic zone
is indispensable for accurate computations. However, given that these are lower dimensional
objects, it is inefficient to do this using global mesh refinement. Furthermore, the locations to
be resolved with a finer mesh are not known a priori but must be determined as part of the
solution process. Optimal algorithms therefore must incorporate local mesh adaptation, and
the remainder of the numerical methods—for example, the partitioning strategy for parallel
computations—must be able to cope with locally adaptive and dynamically changing meshes
without penalty on speed of convergence.
� Efficient linear and nonlinear solvers. Solving large problems requires linear and nonlinear

solvers that do not degrade as the problem size grows. We will base our implementation on
a damped Newton method for the plastic material behavior and show experimentally that the
number of iterations remains constant with increasing problem sizes if the plastic regions are
sufficiently resolved (Section 4). Our treatment of the contact conditions uses a primal–dual
active set method that we can reformulate as a semi-smooth Newton method; this gives rise to
a problem that can be transformed into a linear system that is amenable to multigrid solvers
and, thus, to a more or less constant number of inner linear iterations.
� Massive parallelization. In order to solve the largest problems, we need to rely on clusters with

hundreds or more processor cores. This places tight limits on the algorithms we can use. For
example, preconditioners that only work on the part of the matrix that is available locally on a
processor will not be able to scale adequately.

The point of this paper is to evaluate an integrative approach in which we show that the compo-
nents we choose for each of the aforementioned steps interact well and form a combination that is
capable of solving complex, realistic problems with almost optimal scalability up to the very largest
problem sizes. These building blocks will be discussed in detail in the following sections. We will
demonstrate their performance experimentally in Section 4 where we also compare them with other
established and currently used methods.
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The implementation of these algorithms is available under an open source license as the step-42
tutorial program ‡ of the DEAL.II finite element library [12, 13]. It uses the TRILINOS library [14,
15] for its parallel linear algebra and P4EST [16] for parallel mesh handling.

Literature overview. In this paper, we consider a unilateral contact problem with a rigid obstacle
impinging on a deformable, three-dimensional body. The material of the body is modeled by an
elastoplastic constitutive law with linear isotropic hardening. The mathematical description of such
problems results in two nonlinearities: the obstacle condition and material behavior.

There is a great deal of literature on such problems. The best and most efficient ways to deal with
the plastic behavior are typically variants of Newton’s method; see, for example, [17–23]. Recently,
a total finite element tearing and interconnect (TFETI) domain decomposition solver was introduced
in [24]. To make these methods more robust, one needs to globalize them, for example, using a
line search for a damping parameter [4, 23, 25] and we will describe such a method in Section 3.5.
Another strategy to choose the damping parameter can be found in [25] and the references therein.

For the contact problem, many methods have been proposed. An overview can be found in the
book [26] and in [27–33], which also discuss the primal–dual active set algorithms we will use in the
succeeding text. For scalable finite element tearing and interconnect (FETI) domain decomposition
methods on this topic, see [34, 35] for example. In contrast, references [4, 36] discuss conjugate
gradient-based projected Gauss–Seidel methods (CGPSSOR), which are very efficient for problem
sizes up to a few 100,000 degrees of freedom. However, we will here consider problems that are
much bigger and we will demonstrate the lack of efficiency of CGPSSOR for such problems in
Section 4.4.

The combination of the two preferred algorithms—Newton’s method for the nonlinear material
law and the primal–dual active set strategy based on a semi-smooth Newton interpretation for the
contact problem—has previously been shown to be effective [22, 31, 37], and we will therefore
follow this approach here as well. However, previous studies have only considered problems sev-
eral orders of magnitude smaller than our target and it is not a priori clear that they will scale well
to large problem sizes or processor counts. We will show that, with careful consideration of how
one reformulates the basic methods, an implementation can indeed scale to very large problems.
This aspect and its implications on how one needs to choose the combination of basic algorithms
and their various reformulations has, to our knowledge, not been investigated in the available
literature. To the best of our knowledge, the literature also does not contain demonstrations of algo-
rithms for elastoplastic contact problems applied to problems as large as the ones we will use in
this paper.

We base our implementation on the DEAL.II, TRILINOS, and P4EST libraries for which scalability
to large problem sizes has previously been demonstrated for entirely different applications (e.g.,
[38–40]). We will demonstrate that excellent scalability is also possible in the current context.

Overview. The structure of this paper is as follows. In Section 2, we present the mathematical model
we will consider in this paper. The interplay of the numerical methods to compute efficient and
accurate numerical solutions is described in Section 3. The efficiency of our approach is demon-
strated using numerical examples in Section 4, where we also define a benchmark problem. Finally,
we will conclude in Section 5.

2. MATHEMATICAL DESCRIPTION OF THE PROBLEM

In this section, let us give an overview of the mathematical formulation of the problem. We imagine
a body that is being elastoplastically deformed through contact with an obstacle that we consider
to be rigid; see Figure 1. In practice, the motion of the obstacle is often slow compared with the
speed of sound in the body and we can then describe the process as quasi-static; that is, we can

‡See http://www.dealii.org/developer/doxygen/deal.II/step_42.html. We will make the programs (all of them are simple
variations of step-42) used in the computations shown in Section 4 available as Supplementary Information of this
article.
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Figure 1. Left: starting configuration. Right: deformed body. In each load step, we only consider static
deformations and therefore solve for the static deformation corresponding to the right picture.

consider a sequence of ‘load steps’ where the solution of each load step only depends on the previous
one through the accumulated strain and its hardening effect on the plastic behavior. Consequently,
the key component to a numerical solution is a procedure that can solve a single load step effi-
ciently. In the following, we will therefore outline the mathematical formulation for the problem
that corresponds to one such load step and point out the places where the solution of previous time
steps enters.

To describe the variables that appear in the formulation, consider the situation in Figure 1. Let
there be an obstacle that we imagine is pressed into a deformable, bounded polygonal body �,
where contact may happen on a subset �C of its boundary. We can describe the relative positions of
obstacle and body by defining, for every point x 2 �C of the undeformed object, the closest point
of the obstacle as ˆO.x/ and by ˆ�.x/ D x C u.x/ the position of the deformed object where
u is the deformation field. For small displacements, the contact (non-penetration) condition then
requires that ˆO.x/ � n > ˆ�.x/ � n where n D n.x/ is the outward normal to �C at x. We rewrite
this condition as g.x/ � u.x/ � n > 0 where g D .ˆO.x/ � ˆ�.x// � n is the commonly used gap
function indicating the distance between obstacle and undeformed object. Note that on the other
hand, g � u � n is the distance between obstacle and deformed object. The latter is consequently the
quantity that is constrained. For more information, see [27].

In the following description, we will first discuss the strong form of the equations and inequal-
ities we intend to solve. As is common in formulating plastic deformations, this formulation will
involve both displacements and stresses (i.e., it is a mixed formulation). However, many numer-
ical methods are most efficient for symmetric and positive definite operators, and consequently,
we reformulate the problem so that it only involves the displacement variable by eliminating the
stress and using a nonlinear radial-return mapping to replace the plasticity inequalities. Similarly,
we will show that the contact inequalities can be replaced by a semi-smooth nonlinearity, result-
ing in a formulation that only contains (nonlinear) variational equations and that is amenable to a
Newton iteration.

2.1. Classical formulation

Elastoplastic contact problems are formulated as partial differential equations with inequalities for
the plastic behavior of the medium and the contact condition. In particular, plastic materials are
only capable of carrying internal stresses �.x/ limited by some maximal stress, i.e., that satisfy an
inequality F.�/ 6 0 at every point x. The simplest example of such a function F is the von Mises
flow function F.�/ D j�Dj��y where �y is the yield stress, �D D �� 1

3
trace.�/I is the deviatoric

part of the stress tensor, and j � j denotes the Frobenius norm of a tensor. If the stress increases to �y ,
the material ceases to be elastic, and plastic yielding occurs.

Given this setup, let us first consider the classical formulation of the problem for a single load step
starting from the stress-free, undeformed rest configuration (we will comment on the quasi-static
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time-dependent case at the end of this section). Its formulation then reads as follows (e.g., [4]). Find
a displacement u D u.x/, a stress � D �.x/, and a tensor-valued Lagrange multiplier "p D "p.x/
in a domain � � R3 so that

".u/ D A� C "p in�; (1)

� div � D f in�; (2)

"p W .� � �/ > 0 8� withF.�/ 6 0; "p� D 0 in�; (3)

u D 0 on�D; (4)

�n � Œn � .�n/�n D 0; n � .�n/ 6 0 on�C ; (5)

.n � .�n//.n � u � g/ D 0; n � u � g 6 0 on�C : (6)

Here, (1) defines the relationship between strain ".u/ D 1
2

�
ruCruT

�
and stress � via the fourth-

order compliance tensor A; "p provides the plastic component of the strain to ensure that the stress
does not exceed the yield stress. In the remainder of this paper, we will only consider isotropic
materials for whichA can be expressed in terms of the Lamé moduli � and� or alternatively in terms
of the bulk modulus 	 and �. Equation (2) is the force balance; we will here not consider any body
forces and henceforth assume that f D 0. The complementarity condition (3) implies that "p D 0 if
F.�/ < 0 but that "p may be a nonzero tensor if and only if F.�/ D 0, and in particular that in this
case "p must point in the direction @F.�/=@� . In physical terms, this inequality corresponds to the
maximum plastic work principle for time-dependent deformation problems. Equation (4) describes a
fixed, zero displacement on �D , and (5) prescribes that on the surface �C D @�n�D where contact
may appear, the normal force �n D n � .�.u/n/ exerted by the obstacle is inward (no ‘pull’ by the
obstacle on our body) and with zero tangential component � t D �n�� nn D �n� Œn � .�n/�n. Zero
tangential stresses are often used to describe well-lubricated contact interfaces. The last condition,
(6), is again a complementarity condition that implies that on �C , the normal force can only be
nonzero if the body is in contact with the obstacle; the second part describes the impenetrability
of the obstacle and the body. The last two equations are commonly referred to as the Signorini
contact conditions.

Materials change their atomic structure as they deform plastically, and consequently also their
material properties. For metals, this typically results in a stiffening. This ‘hardening’ effect is
described by letting the yield stress depend on the norm of the plastic strain, j"pj. § We will
describe this in the simple von Mises flow function by using a linear isotropic hardening law where
�y D �0 C 


isoj"pj and consequently F iso.�; j"pj/ D j�Dj � .�0 C 

isoj"pj/ with the isotropic

hardening parameter 
 iso > 0.

2.2. Formulation as a variational inequality

Our algorithms for the solution of the problem outlined in the previous section will be based on
a variational formulation. There are numerous variational formulations (e.g., primal mixed, dual
mixed, and primal). In the following, we will only state the primal-mixed formulation that corre-
sponds to the problem outlined earlier and then, in the next section, reformulate it as a nonlinear
primal one.

§For some materials, such as brittle or ductile rocks as well as soil, material models typically also increase the yield stress
with the pressure. However, for the case of metals we are interested in here, experimental data suggest that hydrostatic
pressure causes no plastic flow [41] and should thus not be included in the definition of the yield stress.
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To this end, let us introduce the following spaces (our examples will all be in dimension d D 3):

V D
°

u 2
�
H 1.�/

�d
W u D 0 on�D

±
;

V C D ¹u 2 V W n � u 6 g on�C º ;

W D L2
�
�;Rd�dsym

�
;

….W � L2.�;R// D
®
.�; �/ 2 W � L2.�;R/ W F iso.�; �/ 6 0

¯
:

With these spaces, our problem is defined by the following primal-mixed variational formulation
[42]. Find ¹.�; �/;uº 2 ….W � L2.�;R// � V C so that

.A� � ".u/; � � �/C 
 iso.�; � � �/ > 0; 8.�; �/ 2 ….W � L2.�;R//; (7)

.�; ".'/ � ".u// > 0; 8' 2 V C: (8)

While not immediately obvious, this formulation introduces a function � 2 L2.�;R/ that is zero
wherever F iso.�; �/ < 0, i.e., in the elastic part of the domain. In the plastic regions of the domain
where F iso.�; �/ D 0, following the normality principle as presented in physics and applying our
yield function F iso.�; �/, we obtain that � D j"pj D jA� � ".u/j. See [42] for more details.

2.3. Reformulating plasticity as a nonlinear equality

The mixed formulation (7)–(8) mentioned earlier, when used as the basis of the finite element
method, yields a saddle point problem with all the usual consequences for solving the associated
linear systems. For computational purposes, we prefer to transform the formulation into one that
only includes the displacement variable u and from which the stress � has been eliminated. Such a
primal problem can be obtained by making use of the projector onto the set of admissible stresses
[4, 43, 44]. For the case of isotropic materials with isotropic linear hardening, it is defined as

P….�/ WD

8<
:
�; if j�Dj 6 �0;�


 iso

2�C 
 iso
C

	
1 �


 iso

2�C 
 iso



�0

j�Dj

�
�D C

1

3
trace.�/I; if j�Dj > �0;

(9)

where � is the shear modulus of the material. We have also absorbed the hardening behavior into
the nonlinearity, using the fact that we have assumed a linear growth of the yield stress with the
plastic strain.

Introducing the stress–strain tensor C D A�1, we can use this projector to define the desired
primal formulation. Find the displacement u 2 V C so that

.P….C".u//; ".'/ � ".u// > 0; 8' 2 V C: (10)

Note that this formulation has moved the plasticity inequality into a (non-smooth) nonlinearity and
now only contains the contact problem as an inequality. This formulation can be shown to have a
unique solution; see [45].

We could in principle reformulate the problem again to also include the contact inequality as
a (semi-smooth) nonlinearity [46]. We will in fact use this approach in the succeeding text when
solving linearized problems in each Newton step using a primal–dual active set strategy. However,
it is not necessary to introduce this formalism here yet, so we will defer the discussion until we have
introduced the discrete problem.

2.4. Quasi-static, time-dependent deformation

In reality, deformation is always a time-dependent process. While history plays no role in quasi-
static elastic deformation, it is important in plastic deformation because the amount of accumulated
plastic strain affects whether the material at a given point deforms elastically or plastically.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 105:416–439
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Using a simple backward Euler time discretization of this process, one typically formulates the
problem in terms of displacement increments 
un WD un � un�1 that, in analogy to (10), have to
satisfy the following set of equations in time step n:�

P….�
n�1 C C".
un//; ".'/ � ".
un/

�
> 0; 8' 2 V C;n; (11)

where V C;n is the set of feasible displacement increments in load step n; �n is updated at the end
of each step using the formula

�n D P….�
n�1 C C".
un//; (12)

and we introduce a variable � D �.x/ that depends on the load history and that describes the
accumulated plastic strain [4, pp. 70–72]

�n D
1

2�C 
 iso

�
j.�n/Dj � �0 C 2��

n�1
�
: (13)

Compared with (9), the projector used here is then defined as

P….�/ WD

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

�; if j�Dj 6 �0 C 
 iso�n�1;�

 iso

2�C 
 iso
C

	
1 �


 iso

2�C 
 iso

	
1 �

2�

�0
�n�1




�0

j�Dj

�
�D

C
1

3
trace.�/I

; if j�Dj > �0 C 
 iso�n�1:

(14)

The similarity of (11), (14) to (10), (9) implies that solving a quasi-static load step is essentially
equivalent to solving a single load step from scratch with a body force and a different yield stress.
For simplicity of notation, we will therefore in the following discuss only the single load step case
(9)–(10). We will, however, show time-dependent computations in Section 4.5.

2.5. Nonlinear isotropic hardening

The aforementioned model used is easily generalized to nonlinear isotropic hardening where the
yield stress no longer has the form �y D �0 C 
 isoj�j but satisfies a more general relationship
�y D �y.�/. In such cases, the projector is defined as

P….�/ WD

8̂<
:̂
�; if j�Dj 6 �y.�n/;

�y.�
n/
�D

j�Dj
C
1

3
trace.�/I; if j�Dj > �y.�n/;

(15)

and it is no longer possible to have an explicit update expression for the plastic strain as in (13).
Instead, it is necessary to solve a scalar nonlinear equation at each point where the projector is
evaluated (see also [17, 47]). However, while cumbersome to implement, this does not present any
additional conceptual problems. We show a numerical example using a nonlinear hardening law in
Section 4.5.

3. NUMERICAL METHODS

Our basic approach to solving (10) (or (11)) consists of two nested loops that in pseudo-code reads
as follows and solves the problem on a sequence of finite element meshes

Here, the inner loop is the semi-smooth Newton iteration to compute the solution on a fixed
mesh, while the outer loop is a typical mesh adaptation loop that determines a mesh with a higher
resolution in each iteration based on the solution of the previous iteration.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 105:416–439
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Conceptually, we think of the Newton iteration as happening in function spaces, with every
Newton step discretized individually so that it can be computed. In practice, of course, we intend
these steps to happen on a sequence of finer and finer, adaptively refined meshes (with a small
fraction of cells being coarsened) that are obtained through hierarchic refinement to make the
transfer of solutions possible in an efficient way. The key point of the overall algorithm is to
choose components that interact well with each other. We will comment on the individual pieces
in the following subsections. However, the following overarching comments are in order already at
this point.

� Newton’s method is well known to interact well with (adaptive) mesh refinement: If the current
Newton iterate is transferred from the previous to the next mesh upon mesh refinement, then
one often finds that only a small number of iterations is necessary on each mesh to achieve
convergence of the discrete nonlinear system there. This implies that in a scheme such as
the one mentioned earlier, most of the Newton iterations happen on coarser meshes where
they are, comparatively, very cheap. In other words, using both Newton iteration and refining
meshes between iterations is synergetic. We will demonstrate this, with a certain wrinkle, in
Section 4.1.
� Choosing an active set method for the contact problem also integrates well with the overall

framework. For example, active set iterations can be run concurrently with the Newton iter-
ation, and unlike some interior point or penalty methods, they do not increase the condition
number of the linear systems to be solved in each iteration. This is important because for
penalty methods, one has to increase the penalty parameter with mesh refinement to ensure
a sufficient approximative fulfillment of the non-penetration condition, and this results in a
deterioration of the condition number. One can avoid this by using an augmented Lagrangian
formulation in which the Lagrange multiplier is estimated iteratively or by using an enlarged
system matrix for the standard Lagrange multiplier method. In contrast to these expensive
methods, the mesh dependence of the active set method we use here is only weak, as we will
show in the numerical results in the succeeding text.
� Finally, we will show in the succeeding text how we can formulate the active set iteration in

a way that allows us to retain linear systems that are structurally equivalent to discrete elastic-
ity problems and, thus, amenable to solvers for symmetric and positive definite systems. Such
solvers, based on Krylov subspace methods preconditioned by algebraic multigrid, have previ-
ously been shown to work well even for very large problems (e.g., [39, 40]). This is in contrast
to most other preconditioners that have been proposed for this kind of problem, and we will
compare our method with the CGPSSOR method in Section 4.4.

In the following, we will discuss the various numerical methods that form the basis of the
algorithm outlined earlier.

3.1. Newton linearization of the plastic behavior

As discussed earlier, the first step in our algorithm is to apply a Newton method to compute a better
approximation to the solution of the primal formulation (10). Formally, (10) is not differentiable.
However, it satisfies the conditions of slant differentiability [46] and, consequently, we can hope
that a formal linearization works. This ultimately leads to a method equivalent to the frequently used
radial-return mapping algorithms [17].

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 105:416–439
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In Newton’s method, we seek an updated solution ui D ui�1 C ˛iıui 2 V C. Because the step
length ˛i can only be determined once ıui is known, we derive the equations for ıui under the
assumption that we will choose ˛i D 1. Then, ıui D Qui � ui�1 is computed by solving for the full
Newton step Qui using

�
I…". Qui /; ".'/ � ". Qui /

�
>
�
I…".ui�1/; ".'/ � ". Qui /

�
�
�
P….C".ui�1//; ".'/ � ". Qui /

�
; 8' 2 V C;

(16)

where the rank-4 tensor I… D I…."D.ui�1// given by

I… D

8̂<
:̂
C� CC� ; if jC"D.ui�1/j6 �0;

� iso

2�C� isoC� C

�
1�

� iso

2�C� iso

�
�0

jC"D.ui�1/j

 
C� � 2�

C"D.ui�1/˝C"D.ui�1/

jC"D.ui�1/j2

!
CC� ; else.

(17)

Note that I… is the (formal) linearization ofP….C �/ around "D.ui�1/, with the projectorP… defined
in (9). For a linear isotropic material, the bulk and shear components of the projector are given by

C� D 	I ˝ I; C� D 2�

	
I �

1

3
I ˝ I



;

where I and I are the identity tensors of ranks 2 and 4, respectively.
From this, we see that problem (16) that needs to be solved in each nonlinear step is, in essence,

a linear elastic contact problem with spatially variable elasticity coefficients. In fact, the very first
Newton iteration solves an elastic, constant-coefficient contact problem if we start from u0 D 0.
We will first discretize this (inequality) problem and then, using an active set method, convert it
into an elastic (equality) problem with non-constant coefficients. Those parts of the boundary in
which the deformable object is in contact with the obstacle and forces that are inward are treated
as Dirichlet boundaries, i.e., we enforce that the displacement Qui satisfies the contact condition
with equality.

3.2. Discretization

Conceptually, our algorithm approximates the solution of the linear problem (16) that defines the
Newton update by finite element discretization on a mesh T i . We will keep the mesh the same
between iterations, T i D T iC1, unless we have found that the solution in step i was already suf-
ficiently converged within the approximation of this mesh by measuring the size of the (discrete)
residual as well as ensuring that the active set defined in Section 3.3 has not changed in the previ-
ous iteration. This typically happens within 6–30 Newton iterations (Section 4.1), after which the
mesh is refined using a simple smoothness indicator (the widely used Kelly error estimator [48]).
More sophisticated strategies for mesh refinement are certainly possible here and would likely yield
further savings in computational complexity [20, 30, 49, 50].

The discrete problem corresponding to (16) asks for a function Qui
h
2 V

C;i
h

so that

�
I…"

�
Quih
�
; ".'h/ � "

�
Quih
��
>
�
I…"

�
ui�1h

�
; ".'/ � "

�
Quih
��

�
�
P…

�
C"

�
ui�1h

��
; ".'/ � "

�
Quih
��
; 8'h 2 V

C;i
h

;
(18)

where we define the discrete spaces of piecewise polynomial degree p as

V ih D
°

uh 2
�
H 1.�/

�d
W uhjK ı F

�1
K 2 Qp for allK 2 T i ; uh D 0 on�D

±
;

V
C;i
h
D
®
uh 2 V

i
h W n � uh 6 g on�C \N

¯
:
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Here, Qp are tensor product polynomials up to degree p on the reference element, ¶ FK is the
mapping from the reference element to element K, and N is the set of nodal points xp of all shape
functions 'ip of the finite element space (e.g., the vertices of T i for Q1 finite elements). In other
words, we only enforce the contact condition at nodal points.

In the following, we will represent the function ui
h

using its expansion in terms of finite element
shape functions

Quih.x/ D
X
p2S

QU ip'
i
p.x/;

where S i is the set of indices of all degrees of freedom.

3.3. Reformulation as an equality constrained problem via the primal–dual active set method

Problem (18) is still an inequality constrained, albeit finite dimensional, problem that cannot be
solved in one step. In order to solve it, we apply a single step of a primal–dual active set method
that replaces it by an equality constrained problem where boundary displacements are prescribed
on parts of the contact surface �C . Strictly speaking, the solution of this problem is not that of
(18) because we can only guess where the discrete solution ui

h
touches the obstacle. We could

iterate out the nonlinear contact problem with the linearized material model, but in practice, it is
sufficient to just go with the first approximation of the contact problem and then re-linearize the
plastic nonlinearity.

The general idea of active set methods is as follows: If we knew that the two objects are in actual
contact at �A

C � �C (the active contact surface), then we could find the solution of (18) by instead
searching for a Qui

h
satisfying

min
Qui
h
2V i
h

1

2

�
I…"

�
Quih
�
; "
�
Quih
��
�
®�
I…"

�
ui�1h

�
; "
�
Quih
��
�
�
P…

�
C"

�
ui�1h

��
; "
�
Quih
��¯

subject to n � Quih D g on�A
C \N :

For numerical stability, it is best to understand the equality constraint in an integral sense, i.e.,˝
n � Qui

h
� g; n�

˛
�A
C
;h
D 0 for all � 2 Vh. As mentioned earlier, we opt for enforcing the con-

straint in the nodal points of the finite element only. This is equivalent to approximating the integral
hf; gi�A

C
D
R
�A
C
f g dx with hf; gi�A

C
;h using quadrature that includes only quadrature points

that are also nodal points of the finite element space. In practice, this means computing hf; gi�A
C
;h

via Gauss–Lobatto quadrature, using the fact that the support points of Qp elements are defined at
Gauss–Lobatto points (or at the vertices for p D 1).

Remark 1
An alternative description that also takes into account the function space stability of solutions of the
saddle point problem that results from this minimization problem is given in [32]. The description
given here leads to the exact same algebraic system and is, consequently, equivalent. The formu-
lation in [32] explicitly constructs the Lagrange multipliers using a basis defined at the vertices
(i.e., the Gauss–Lobatto points for the case of linear elements). This basis fulfills a so-called
biorthogonality condition in combination with linear ansatz function for the displacements that
eventually leads to the same diagonal matrix B .

With this, the solution of the aforementioned problem is given by the following optimality
conditions:�

I…"
�
Quih
�
; ".'/

�
C hn � �h;n'hi�A

C
;h D

�
I…"

�
ui�1h

�
; ".'/

�
�
�
P…

�
C"

�
ui�1h

��
; ".'/

�
8' 2 V ih ;

(19)

¶We consider hexahedral meshes, but the algorithm also works on tetrahedral meshes when using the space of
polynomials Pp on the reference tetrahedron.
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˝
n � Quih � g; n � �h

˛
�A
C
;h
D 0 8�h 2 V

i
h : (20)

This problem only defines the Lagrange multiplier �h in normal direction and only on �A
C . We

could extend it by zero but it is a quantity whose non-unique parts are never used, as we will see
next—in fact, we will eliminate it altogether from the discrete problem and only compute its unique
components from Qui

h
in a post-processing step. �h can be interpreted as the (discrete approximation

of the) force the obstacle exerts on the body. Its analysis can be found in [51].
The aforementioned problem can be written in matrix–vector form as

	
A.U i�1/ B

BT 0


	
QU i

ƒ



D

	
F.U i�1/

G



: (21)

Using the inner product defined by quadrature as described earlier guarantees that B is a diagonal
matrix. We will discuss solving this linear system in the next subsection where we will exploit the
fact that B is diagonal. The remaining question for this section is how to determine �A

C . Obviously,
we do not know the exact contact area a priori. Let S i be the set of all degrees of freedom (with
jS i j D dim

�
V i
h

�
). For simplicity, let us assume that we have rotated degrees of freedom in such a

way that at every boundary node, one is responsible for the normal displacement and the other two
for tangential displacements. Then let S iC � S i be those degrees of freedom located at the contact
boundary �C and representing normal displacements. The simplest active set methods [52] then
define the active set Ai � S iC by looking at the sign (inward or outward) of the residual boundary
force density

Ai WD
®
p 2 S iC W .�A.U i�1/U i�1 � F.U i�1//p > 0

¯
:

Primal–dual active set methods, see [32, 46], improve on this by instead using the criterion

Ai WD
°
p 2 S iC W

�
�
�
A.U i�1/U i�1 � F.U i�1/

�
C c. NBTU i�1 �G/

�
p
> 0

±
: (22)

Here, NBpq D hn �'p;n �'qi�C ;h is computed using the entire contact boundary �C , given that we do
not know which parts of it will actually be in contact. As before, NB is diagonal. Furthermore, Gp D
hg; n � 'pi�C ;h. For adequate scaling, the penalty parameter c in front of the term NBTU i�1 clearly
needs to be proportional to the elastic coefficients that go into the computation of A.U i�1/U i�1; in
our examples, we will consequently choose it as c D 100E D 300	.1 � 2�/.

Because we do not intend to iterate out the active set for the linearized (elastic) contact problem
but instead re-linearize the plastic behavior after each active set step, one may argue that a better
criterion to determine the active set would replace the linearized residual �A.U i�1/U i�1 by the
fully nonlinear one. To this end, in our work, we compute the active set using

Ai WD
°
p 2 S iC W

�
R.ui�1/p C c. NBTU i�1 �G/

�
p
> 0

±
(23)

instead of (22), where the nonlinear residual is defined as

R.u/p D
�
P….C".u//; "

�
'ip
��

in accordance with (10).

Remark 2
In parallel computations, the steps of our algorithm discussed in this section can be computed almost
completely locally on every machine. This includes the nonlinear residual that only requires one
exchange of vector ghost elements. This satisfies one of the goals of our algorithm, namely, that all
methods should be designed to scale in a way that allows us to run problems on very large machines.
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At the end of this section, let us add that when using hierarchically refined meshes, one typically
ends up with hanging nodes. The degrees of freedom on these are then constrained against neigh-
boring degrees of freedom. On top of that, in three dimensions, some of these hanging nodes are on
the boundary and may also be constrained by the contact. In this case, we must choose only one of
the two constraints for these degrees of freedom, and we choose the one that results from the hang-
ing node because we want our finite element approximation to be continuous, even if this (slightly)
violates the contact condition. As a consequence, we ensure that the set S iC of normal displacement
degrees of freedom at the contact boundary does not include degrees of freedom on hanging nodes.

3.4. Solution of the linear system

Using the methods of the previous section, we have arrived at the linear system (21) that now needs
to be solved. One could do so as is, but it is difficult to find adequate iterative solvers and precondi-
tioners for saddle point problems of this kind. However, this is also not necessary: Because we have
determined an estimate Ai of the set of active constraints and computed B from it, the second line
of (21) simply reads

QU ip D g.xp/ 8p 2 Ai :

This corresponds to a Dirichlet boundary condition for the normal displacements at a subset of
nodes. Consequently, the displacement part of the solution of (21) is given by solving OA.U i�1/ QU i D
OH where

OApq.U
i�1/ D

8<
:
Apq.U

i�1/ ifp 62 Ai ;
0 if; p 2 Ai ^ p ¤ q;
1 if; p 2 Ai ^ p D q;

OHp D

²
F.U i�1/p ifp 62 Ai ;
Gp ifp 2 Ai :

In other words, we simply remove constrained rows from the original linear system. Because B
is nonzero only in these rows, the term Bƒ completely disappears, rendering ƒ a quantity that
no longer appears in our computation. As already hinted earlier, the fact that ƒ is not uniquely
determined then poses no problem in practice. To restore symmetry of the matrix, we can further
transform this linear system by Gauss elimination steps on each column q 2 Ai to

OOA.U i�1/ QU i D
OOH.U i�1/; (24)

where

OOApq.U
i�1/ D

8<
:
Apq.U

i�1/ ifp 62 Ai ^ q 62 Ai ;
0 if .p 2 Ai _ q 2 Ai / ^ p ¤ q;
1 ifp 2 Ai ^ p D q;

OOHp.U
i�1/ D

8<
:
F.U i�1/ �

P
q2Ai

Apq.U
i�1/Gq ifp 62 Ai ;

Gp ifp 2 Ai :

In fact, it is this form of the linear system that we assemble directly.

It is not difficult to show that OOA.U i�1/ is a positive definite matrix if A.U i�1/ is positive definite;
by construction, it also inherits the symmetry from A.U i�1/. Consequently, it is now amenable to
solution by conjugate gradients (CG) or other Krylov space solvers with an algebraic multigrid as
preconditioner.

Remark 3
Our reformulation has resulted in a linear system that can be assembled with local operations requir-
ing a minimal amount of communication to add to elements of the matrix or vector that are not
stored on the local processor. Furthermore, it can be solved by a preconditioned BiCGStab iteration.
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As mentioned earlier, this combination satisfies our requirement that we only use methods that are
known to scale well even to very large systems. We will numerically confirm that this is indeed the
case in Sections 4.2 and 4.3.

3.5. Line search

Once we have computed QU i , we can use a line search to determine the next Newton iterate U i . We
use the usual backtracking line search [52] to find the first step length ˛i 2 ¹1; 2�1; 2�2; : : :º so that

��� OR.u˛/���
`2
<
��� OR �ui�1h

����
`2
; (25)

where u˛ D .1 � ˛i /ui�1
h
C ˛i Qui

h
and where OR.u˛/ D R.u˛/ with the exception of (1) elements

p 2 Ai where we set OR.u˛/p D 0 and (2) elements that correspond to hanging nodes, which we
eliminate in the usual manner.

As before, all of these steps can be carried out mostly locally, with a small amount of
communication to exchange elements of the residual vectors R.u˛/ between processors.

In our computations, we typically observe that the line search is necessary mostly during the first
Newton iterations.|| Furthermore, for elastoplasticity, one considers a time-dependent problem where
it is always possible to reduce the time or load step if the line search does not lead to convergence
of the Newton iteration. That said, the line search makes the method strictly more robust.

3.6. Summary of the algorithm

To summarize, the steps of our algorithm to be performed in Newton iteration i are as follows:

(1) Assemble the residual vector R
�
ui�1
h

�
and the matrix NB (or take the latter from the previous

iteration, if the mesh has not changed).
(2) Compute the active set Ai .
(3) Assemble the matrix OOA and right-hand side OOH in the same way as one would usually assemble

A but eliminating rows and columns p; q 2 Ai when copying local contributions from every
cell to the global objects.

(4) Solve linear system (24).
(5) Find a step length using the line search procedure (25).

4. NUMERICAL RESULTS

In this section, we show results for a number of test cases that illustrate the performance of our
methods. In particular, in Section 4.1, we consider the overall performance of our algorithms in
terms of the number of Newton iterations and inner linear iterations, and we will demonstrate that
interpolating from the previous to the next mesh significantly reduces the computational complex-
ity. This example also shows some of the difficulties one encounters when working on problems
with geometries and computational sizes relevant to real applications. In Section 4.2, we then
illustrate the accuracy of our solutions by defining a benchmark problem. Sections 4.3 and 4.4 eval-
uate the parallel scalability of our methods up to 1024 processor cores and more than a billion
unknowns and compare our algorithm with one previously described in the literature. Section 4.5
shows a quasi-static computation with a load that increases over time. We conclude our numer-
ical results by showing a case of an obstacle with a realistic geometry used in metal drilling in
Section 4.6.

||For example, in the weak scaling test with 1024 cores and 1.2 billion unknowns shown in Section 4.3, we perform 17
Newton iterations. Of these, 9 use a full step size ˛i D 1, 7 use ˛i D 0:5, 1 uses ˛ D 0:25, and none use even smaller
step sizes.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2016; 105:416–439
DOI: 10.1002/nme



LARGE-SCALE, PARALLEL SOLUTION OF ELASTOPLASTIC CONTACT PROBLEMS 429

Our implementation of the algorithms discussed earlier is available as the step-42 tutorial program
of the open source finite element library DEAL.II [12, 13] and all computations in the succeeding
text are based on variants of it. We use TRILINOS version 11.0.3 for parallel linear algebra [14, 15]
and P4EST 0.3.4 to distribute meshes among processors [16].

4.1. Evaluating nonlinear and linear solvers

In order to evaluate the performance of nonlinear and linear solvers, we consider two test cases.
The first simulates pressing a rigid sphere into an elastoplastic cube (see the left panel of Figure 2;
this example is also the subject of Section 4.2). The second illustrates our ability to solve problems
on unstructured meshes with complex obstacles: We consider a situation where we press a binary
mask (i.e., an obstacle with a flat bottom for certain values of x1; x2 and an infinite distance for all
other values of x1; x2) into a half sphere. We choose as our obstacle a shape corresponding to the
Chinese symbol for ‘force’; see the right panel of Figure 2. As will become clear from the following
discussion, this is not simply a more complicated obstacle but one that provides for a fundamental
lesson on dealing with complex shapes.

We solve these problems on a sequence of adaptively refined meshes, and Tables I and II summa-
rize the number of cells and unknowns on each of these meshes, along with the number of nonlinear
and the average number of linear iterations per Newton step. Each table compares two cases: where
the solution on one mesh is interpolated onto the next one to use as a starting guess and where
we start from scratch on each mesh. In the latter case, our starting solution is a zero vector with

Figure 2. Adaptively refined mesh (cut away in the left half of the domain for all cells that are exclusively
elastic) and fraction of quadrature points in each cell that are plastified (blue: none, red: all). Left: pressing
a sphere into a cube, corresponding to the benchmark discussed in Section 4.2. Right: pressing the Chinese
symbol for ‘force’ into a half sphere. The part of the top surface where the obstacle is in contact with the

body is shown in Figure 6.

Table I. Performance characteristics of our algorithms when pressing a sphere into
a cube.

Mesh No. of cells No. of DoFs No. of Newton it.s Average no. of linear it.s

0 512 2187 6 / 6 3 / 3
1 1548 6294 5 / 8 6 / 6
2 4768 18,207 12 / 11 10 / 9
3 14,652 52,497 8 / 10 12 / 10
4 45,368 154,647 9 / 21 15 / 15
5 140,344 461,106 7 / 31 22 / 22
6 435,044 1,400,961 6 / 31 20 / 23
7 1,347,690 4,297,257 6 / 28 23 / 23

The number of linear iterations is averaged over the Newton steps taken on that mesh. In
the last two columns, numbers correspond to the algorithm where we do/do not interpolate
the solution from the previous to the next mesh upon mesh refinement.
DoFs = degrees of freedom; it.s = iterations.
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Table II. Performance characteristics of our algorithms when pressing a Chinese
symbol into a half sphere.

Mesh No. of cells No. of DoFs No. of Newton it.s Average no. of linear it.s

0 384 1443 5 / 5 1 / 1
1 1189 4770 13 / 6 5 / 5
2 3695 14,787 13 / 6 7 / 6
3 11,661 46,122 19 / 7 9 / 9
4 36,630 141,990 22 / 11 9 / 9
5 114,995 432,180 20 / 11 14 / 13
6 360,100 1,319,442 23 / 18 16 / 17
7 1,125,977 4,007,004 37 / 26 18 / 21
8 3,513,838 12,215,337 27 / 30 24 / 23
9 10,931,570 37,106,544 23 / 29 28 / 29

10 33,928,726 112,814,994 22 / 48 30 / 35

All columns as in Table I.

those elements that would violate the contact condition displaced in normal direction so that they
are below the obstacle. This may lead to cells at the surface whose displaced image is inverted and
in any case to unphysical strains, so the first Newton step is carried out using a completely elastic
material model (equivalent to one with an infinite yield stress) to avoid the dependence of the next
solution on the unphysical stress state of the initial solution. In both cases, we initialize the active
set based on the starting solution.

The results of these tables show that for the case of the spherical obstacle (Table I), interpolating
the solution guarantees an almost constant number of Newton iterations on each mesh, while this
number increases if the solution on each mesh is computed without reference to that on the previous
mesh. This shows that for this case, the majority of the numerical effort has indeed been pushed onto
coarser and consequently much cheaper meshes. In addition, the number of inner linear iterations
increases only slowly with the number of degrees of freedom (by a factor of less than 2 for an
increase from a first reasonable mesh with 50,000 degrees of freedom to one with more than 4
million), yielding an almost linear overall complexity.

The situation for the Chinese symbol-shaped obstacle (Table II) is more complex. Here, interpo-
lating the solution provides a worse starting solution than just a zero vector in the first few mesh
refinement iterations. Our numerical investigations indicate that this is because for this rather irregu-
lar obstacle, the first meshes used are simply too coarse (the mesh shown in Figure 2 corresponds to
mesh 5 of the table) and that the solution computed on each does not accurately reflect the solution
on the next. On the other hand, once the mesh does resolve the obstacle, the number of Newton steps
required when using the interpolated solution from the previous mesh reverts to a reasonable number
and, more importantly, stays constant as the mesh is further refined. At the same time, the number of
iterations when starting the Newton method anew on each mesh continues to grow, illustrating the
significant computational advantage obtained by interpolating the solution. In this context, note in
particular that we are most concerned with the number of iterations on the last few, most expensive
meshes. As before, the number of inner linear iterations per Newton step does increase as the mesh
becomes finer, albeit slowly: by a factor 3–4 as the number of degrees of freedom grows by three
orders of magnitude from 105 to 108.

The discussion of these results points at a fundamental issue when moving from ‘simple’ bench-
marks to realistic cases with complex geometries. There, the full performance of an algorithm may
only become apparent when applying it to cases where the goal is to solve something to achieve
at least engineering accuracy. As the next section will show, reaching this level of accuracy is not
trivial even for the case of the sphere.

4.2. Evaluating accuracy: pressing a sphere into a cube

Because we know of no widely used benchmarks for elastoplastic contact problems, we have
decided to use the first of the two cases discussed in the previous section as a benchmark problem. A
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Table III. Description of the benchmark discussed in Section 4.2.

Domain Cube (0,1 mm)3

Obstacle Sphere xcenter D .0:5; 0:5, and 1.59 mm), r D 0:6 mm
Contact surface �C D ¹x 2 � W x3 D 1 mmº
Boundary conditions u D 0 on the bottom of the cube

u1 D u2 D 0 on the sides of the cube, u3 is free
Material properties E D 200 GPa; � D 0:3

(or equivalently 	 D 166:67 GPa, � D 76:92 GPa)

�0 D 400 MPa; 
 iso D 2�



1 � 

D 1:55 GPa; 
 D 0:01

Evaluation point P D .0:5001, 0.5001, and 0.9501 mm)T

(in the reference configuration)

full description of all the parameters corresponding to the picture shown in the left panel of Figure 2
is given in Table III. **

To evaluate accuracy we consider three measures as follows:

(1) The vertical displacement u´.P / at point P .
(2) The diagonal elements �xx.P /; �yy.P /; �´´.P / of the stress tensor at the same point.
(3) The integral

R
�C
�´ of the vertical component of the reaction force density � exerted by the

deformable body onto the obstacle. The integral over �C is then the total vertical force.

For P (Table III), we have chosen a point slightly offset from the central axis to avoid the complica-
tion that computed stresses are discontinuous and, consequently, non-unique along cell interfaces.
The chosen point is guaranteed to never be on such an interface upon regular mesh refinement of
the cubic domain.

Given these considerations, Table IV shows our numerical results for both uniform and adaptive
mesh refinement with linear .p D 1/ and quadratic finite elements .p D 2/. Because of the symme-
try of the problem and the chosen location for the evaluation point P , we have �xx.P / D �yy.P /;
consequently, only one of the two is shown. The displacements make sense given the indentation of
�0:01 mm at the surface; we have verified that our computation of the total force is correct for an
elastic body for which an analytic solution exists (the so-called Hertzian contact problem [53]). We
therefore believe that the values shown in the table indeed converge to the correct ones. The last row
of the table contains our best, extrapolated guess of the exact value. We show in Figure 3 conver-
gence histories for u´.P / and the integrated contact force against these best guesses (convergence
for �xx.P / and �´´.P / is less regular—as may be expected—and not shown here).

The table and figure make clear the degree of difficulty of this problem, despite its apparent sim-
plicity: For example, computing the displacement to better than 0.1% already takes several hundred
million unknowns with globally refined meshes forQ1 elements. On the other hand, the results also
make clear that adaptive meshes—in particular when combined with higher-order elements—can
achieve the same level of accuracy with far fewer unknowns: in the case of Q2 elements, just a few
hundred thousands. Next, we cannot determine the stresses �xx; �´´ to better than a few percent,
even on meshes with a billion unknowns, unless we use both adaptivity and higher-order elements.

These results, considering a relatively simple model problem, suggest that problems of more
realistic complexity such as the Chinese symbol considered in the previous section or the drill bit
discussed in Section 4.6 can no longer be solved without adaptivity or higher-order elements, even
just to rather moderate accuracies. Rather, realistic applications require the complex methods dis-
cussed here, as well as very large computations that can only be carried out in parallel. Consequently,
we will consider the parallel scalability of our methods in the next section.

**We could also have evaluated the accuracy of our solution (relative to the solution on the finest mesh) using the Chinese
symbol obstacle. However, such results would be difficult to reproduce by others in the community. Furthermore, as the
results in the succeeding text will indicate, it is questionable whether highly accurate results could have been obtained
for the complex obstacle even on the more than 100 million unknowns shown in the last line of Table II.
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Table IV. Computed values of displacements (in millimeter), stresses (in megapascal), and inte-
grated forces (in Newton) for global and adaptive mesh refinement when pressing a sphere into

an elastoplastic cube (Section 4.2).

Mesh No. of cells No. of DoFs u´.P / �xx.P / �´´.P /
R
�C

�´

Global mesh refinement with p D 1

0 512 2187 �0.0075681 �5733.1 �6098.2 37.306
1 4096 14,739 �0.0070691 �3317.5 �3855.5 62.313
2 32,768 107,811 �0.0068296 �1946.6 �2565.8 59.099
3 262,144 823,875 �0.0066294 �1027.6 �1684.2 56.761
4 2,097,152 6,440,067 �0.0065339 �1155.4 �1832.8 55.751
5 16,777,216 50,923,779 �0.0064756 �1240.1 �1925.0 55.333
6 134,217,728 405,017,091 �0.0064602 �1170.2 �1856.2 55.221

Global mesh refinement with p D 2

0 512 14,739 �0.0061351 27.5 �605.7 66.640
1 4096 107,811 �0.0074271 �376.3 �1085.8 57.127
2 32,768 823,875 �0.0065627 �766.3 �1450.0 55.226
3 262,144 6,440,067 �0.0064618 �1107.4 �1794.1 55.247
4 2,097,152 50,923,779 �0.0064541 �1129.5 �1816.0 55.168
5 16,777,216 405,017,091 �0.0064547 �1156.1 �1842.7 55.183

Adaptive mesh refinement with p D 1

0 512 2187 �0.0075681 �5733.1 �6098.2 37.306
1 1548 6294 �0.0070687 �3317.7 �3855.7 62.323
2 4768 18,207 �0.0068284 �1947.1 �2566.4 59.118
3 14,652 52,497 �0.0066271 �1027.5 �1684.2 56.794
4 45,368 154,647 �0.0065296 �1156.8 �1834.2 55.835
5 140,344 461106 �0.0064715 �1244.6 �1929.3 55.492
6 435,044 1,400,961 �0.0064694 �1242.4 �1927.8 55.377
7 1,347,690 4,297,257 �0.0064587 �1171.9 �1857.8 55.291
8 4,175,172 13,075,026 �0.0064584 �1101.7 �1787.0 55.224
9 12,911,781 40,051,599 �0.0064562 �1150.4 �1836.5 55.197
10 39,915,821 122,655,213 �0.0064557 �1154.8 �1841.2 55.184
11 123,459,540 377,150,526 �0.0064553 �1149.8 �1836.2 55.184

Adaptive mesh refinement with p D 2

0 64 2187 �0.0064262 �5625.5 �6050.7 26.980
1 176 6087 �0.0061346 �27.7 �605.6 66.647
2 652 20,397 �0.0074270 �376.4 �1085.8 57.130
3 2192 64,731 �0.0065623 �766.3 �1450.1 55.229
4 6980 195,327 �0.0064618 �1107.4 �1794.1 55.251
5 21,652 585,603 �0.0064530 �1125.6 �1811.8 55.172
6 67,264 1,829,181 �0.0064549 �1136.0 �1822.6 55.182
7 208,804 5,842,461 �0.00645493 �1154.6 �1841.0 55.1782
8 647,144 18,341,805 �0.00645512 �1157.1 �1843.4 55.1771
9 2,006,964 56,467,965 �0.006455126 �1158.3 �1844.8 55.1783
10 6,224,212 175,552,233 �0.006455129 �1158.5 �1845.0 55.1789

Extrapolated best guesses

1 1 �0.00645513(1) �1158.(7) �1845.(2) 55.179(4)

The last row contains extrapolated values; digits in parentheses are probably correct but with a low
degree of certainty.
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Figure 3. Convergence of u´.P / (left) and the contact force
R
�C

�´ for the benchmark problem discussed
in Section 4.2. Convergence is measured against the extrapolated best guesses from Table IV.

Figure 4. Results for strong (left) and weak (right) scaling as discussed in Section 4.3. The red line in the left
panel corresponds to 100,000 degrees of freedom per core beyond which scalability deteriorates; the dashed
line represents perfect speedup. In the weak scaling case, the slowdown is due to parallel inefficiencies as

well as to a larger number of inner iterations per Newton step. See the main text for more information.

4.3. Parallel scalability

The results shown in Section 4.1 already indicate that the algorithms described in this contribution
can, at least in principle, scale weakly to large problems because the number of Newton itera-
tions does not grow with the problem size, and the number of linear iterations grows only slowly.
Furthermore, the previous section shows that even for relatively simple problems, one needs very
large numbers of unknowns to achieve an error of even just better than 1%, necessitating the use
of parallel computers. To investigate whether our algorithms indeed scale, we have run a number
of computations corresponding to the benchmark discussed in the previous section on the Brazos
cluster at Texas A&M University. We have used up to 128 nodes, each equipped with one eight-
core Opteron 2350 processor (2.5 GHz clock rate), 32 GB of memory per node, and an Infiniband
interconnect.

To evaluate our algorithms, Figure 4 shows strong and weak scaling results for all significant
components of our program.

For strong scaling, we have chosen a problem with 9.9 million unknowns (the largest size we
can fit on a single node with eight cores). For each computation, we initially solve on a uniformly
refined mesh, and the timings are then carried out for the following adaptively refined mesh to
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include the effects of adaptivity. As seen in the left panel of Figure 4, we obtain linear acceleration
of all significant parts of the program until around 256 processors (approximately 40k unknowns
per core). Beyond this point, the fraction of the problem each core has to solve simply becomes
too small to fully amortize the cost of communication. Previous experience [38, 39] has shown that
computations often fail to scale once the number of unknowns per core drops below approximately
100,000, indicated by the red line in the figure. Our results here scale somewhat further than that,
possibly because the problem requires more work per degree of freedom.

To demonstrate weak scalability, we use meshes where the number of degrees of freedom is
approximately equal to 1:2 � 106 times the number of cores. This is achieved by starting from
3� 3� 3; 4� 4� 4, or 5� 5� 5 coarse mesh, refining globally a number of times and then refining
adaptively once in such a way that we achieve the desired number of unknowns. Similar to before,
timings are then carried out for the last, adaptive step. Coarse mesh sizes are chosen so that the last
step can be achieved by refining approximately 10% of cells.

The results shown in the right panel of Figure 4 again show that our algorithms scale well, even to
very large problems, losing only approximately a factor of 3 in the overall efficiency when increasing
the number of processor cores from 8 to 1024. The figure shows that the primary obstacles to both
strong and weak scalability are solver setup and solver iterations (including preconditioner). This
preconditioner is provided by Trilinos’ ML package. However, only part of the slowdown can be
attributed to parallel inefficiencies: As shown in Tables I and II, as problems become larger, the
number of inner iterations per Newton step increases slowly. Here, from 8 to 1024 processors, it
increases from an average of 28 to 52, accounting for almost a factor of 2 of the slowdown in the
solver (but not preconditioner setup). In other words, a significant fraction of the slowdown is due
to a loss in quality of the preconditioner rather than inefficient parallel communication.

On the other hand, the third most expensive part of the program—assembling the linear systems,
an almost completely local operation—scales almost linearly. The computation of the residual lacks
some scalability because processors’ work depends on the fraction of their cells located at the con-
tact interface; this could be optimized, but we have not done so given that it takes up only 7% of run
time even on the largest computations. All other operations are negligible.

We note that the last data point of these weak scaling results corresponds to a nonlinear, inequality
constrained problem with more than 1.25 billion unknowns and is solved in about 10 h. Given that
during this time we perform 17 Newton iterations, this corresponds to 35 min per Newton iteration
for a system with 1.2 million unknowns per core. Taken together with the strong scaling results, this
is consistent with experience from previous work that suggests a time of 1–2 min per linear solve
(including assembly, setting up preconditioners and post-processing) when using approximately
100,000 unknowns per core for non-trivial problems of this size [38–40].

The results shown in this section demonstrate that the methods we have presented work together
in a way that allows us to solve very large problems in a reasonable amount of time, utilizing large
numbers of processors. Furthermore, the limitations we find—primarily the scalability of setting up
and applying the algebraic multigrid preconditioner ML [54] in TRILINOS, i.e., the red and orange
curves with boxes—are well known-bottlenecks to parallel scalability.

4.4. Comparison with an existing method

In order to put the results of the previous section in context, we have also implemented an entirely
different solver for elastoplastic contact problems that has previously been described in the litera-
ture: The CG-based projection method CGPSSOR; see [36]. CGPSSOR uses conjugate gradients as
the outer solver and a Gauss–Seidel-(or SSOR-)-based preconditioner in which all degrees of free-
dom that violate the obstacle condition are always projected. The CG iteration is modified in such
a way that these projected degrees of freedom are left untouched and remain at their correct values.
It is important to note that this modification does not just affect the inner linear solver but instead
requires the assembly of different linear systems in each iteration and involves a different approach
to solving the problem altogether. The primary advantage of the algorithm is that it treats the con-
tact problem within the inner iteration rather than solving linear systems that correspond to a fixed
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Figure 5. Comparison of the overall computation time for the active set strategy and the CGPSSOR method
for a computation on a single processor.

set of contact nodes. A detailed description of this method can be found in [4, 36]. In contrast to the
first of these references, we are here using a non-cascadic version.

We apply this method and compare it with our combination of algorithms to the benchmark exam-
ple of Section 4.2. Figure 5 shows the run time for the two methods on a single processor. The curves
compare the time necessary to solve the nonlinear system on each sequence of meshes and include
the time to assemble and solve the linear and nonlinear systems but excluding the time for post-
processing, mesh refinement, and generating graphical output. For small problems, the two methods
are comparable in performance. However, beyond approximately 200,000 degrees of freedom, the
run time of the CGPSSOR method increases faster than that of the active set/BiCGStab/algebraic
multigrid method proposed here. Of course, 200,000 unknowns (corresponding to a 403 uniform
mesh) is a vanishingly small number for many of the problems we have in mind for our approach.
We did not compute numbers beyond 1.4 million unknowns because run times on a single proces-
sor become unreasonably large. The point, however, is not to establish that on a single processor,
one method is better or worse than the other but simply to ensure that the solver we propose in this
paper is asymptotically no worse than existing and documented methods.

We did not attempt to parallelize CGPSSOR because it cannot win there: While we have shown in
the previous section that our methods provide scalability to large numbers of processors, SSOR is an
inherently sequential algorithm. This also extends to the cascadic version of CGPSSOR discussed
in [36]. Both can of course be parallelized by running the preconditioner only on that diagonal block
of the matrix each processor stores locally, but it is well known that the quality of preconditioners
then deteriorates, unlike our algebraic multigrid preconditioner.

The conclusion of this section is that for rather small problems, our proposed set of algorithms is
comparable with one that has been described in the literature recently. Furthermore, our work here
scales well in parallel, unlike the pre-existing CGSSOR algorithm.

4.5. A quasi-static example

As discussed in Section 2.4, the one-step situation of the previous examples is easily extended to
quasi-static problems consisting of a sequence of loading steps [4, 21, 47]. To evaluate our methods
in this context, we revisit the Chinese symbol example from Section 4.1 but apply the loading in
steps; we also replace the hardening law by nonlinear isotropic hardening with a saturation term
[17, 22]

�y D �0 C 

isoj"pj C .�1 � �0/ .1 � exp.kej"

pj// :

This implies that we have to solve a scalar nonlinear equation in each integration point during
assembly of the Newton matrix. For this purpose, we choose a Newton method again. Calculations
are carried out on a relatively coarse, locally refined mesh with 137,157 degrees of freedom, which
we obtained after five adaptive refinement cycles.
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Table V. Description of the quasi-static example of pressing the Chinese symbol into a half
sphere.

Domain Half sphere, r D 0:8 mm, xcenter D .0:5; 0:5; and0:5 mm/
Obstacle Chinese symbol, initially in touching contact
Contact surface �C D ¹x 2 � W x3 D 0:5 mmº
Time interval Œ0s; 10s�
Obstacle velocity 2 � 10�4 mm/s, in negative ´-direction
Boundary conditions u D 0 on the spherical surface; free surface or contact on the flat surface
Material properties E D 200 GPa; � D 0:3

(or equivalently 	 D 166:67 GPa, � D 76:92 GPa)
�0 D 250 MPa; �1 D 400 MPa; ke D 17:0,


 iso D 2�



1 � 

D 1:55 GPa; 
 D 0:01

Figure 6. Quasi-static deformation: contact zone (red) and, in the left half of the domain, the plastified cells.
Cells shown with colors other than red or blue have vertices both inside and outside the contact zone. Left

to right: load steps 1, 2, 5, and 10 with one load step every second.

Table VI. Quasi-static deformation: influence of the time step size.

No. of time steps No. of plastic Q-points Plastic volume Average no. of Newton iterations

1 212,810 0.1140 34.00
2 213,070 0.1146 11.50
5 211,352 0.1076 8.20

10 209,335 0.1019 7.90
20 207,378 0.0974 7.55
40 206,499 0.0947 7.65

100 205,684 0.0929 7.27
200 204,827 0.0914 6.95
500 205,133 0.09163 6.52

Table V describes the details of this case and Figure 6 shows the progress of plastic deformation
as the obstacle is indented deeper into the body. We present numerical results in Table VI that show
that, as expected, the average number of Newton iterations per time step (or load step, depending on
viewpoint) decreases as time steps become smaller. Furthermore, the number of plastic quadrature
points and the corresponding volume of the plasticized zone converge, as expected, if slowly. In
deviation from the value given in Section 3.3, we have found that we obtain best results with a
primal–dual penalty parameter of c D 106 �E. The table uses this value.

4.6. A complex application: pressing a drill head into a cube

As a final example, we consider a more realistic obstacle: a drill head that is used as a test case in
the project funded by the German Science Foundation that supports the first author. The geometry
of this drill head, shown in Figure 7, contains two channels used to pump cooling fluid to the drill
site. The presence of the cooling liquid also ensures that the contact is nearly frictionless and thus
satisfies at least approximately one of our assumptions. On the other hand, it is clear that the actual
drilling process cannot be modeled taking into account only continuous deformations. Furthermore,
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Figure 7. Left: drill head with two cooling canals. Right: distribution of plastified cells and elastoplastic
deformation.

Figure 8. Left: displacements in ´-direction. Right: adaptive refined mesh on the contact surface.

heat development and the temperature dependence of material parameters play an important role in
drilling—both effects that are not considered here.

As a first step in the direction of such realistic models, we consider indenting the drill head into
a block of metal. Figure 7 shows both the obstacle as well as the indentation and the distribution
of plastified cells. Figure 8 shows a close-up of the complex structure of the vertical displacement
(left) as well the adaptive mesh used to resolve it (right).

5. CONCLUSIONS AND OUTLOOK

In this paper, we have investigated a set of interconnected methods to solve complex elastoplastic
contact problems. Our focus was on developing algorithms for mesh generation, iteration of the
plastic and contact nonlinearities, and solution of the resulting linear systems that in each component
provide almost optimal complexity and can scale to problems that require hundreds of millions of
unknowns and more than a thousand cores. In the numerical results shown in Section 4, we have
demonstrated the performance and accuracy of these methods as well as investigated their limits.
We have also provided highly accurate results for a benchmark problem for comparison by others.
The implementation of our methods is available under an open source license as the step-42 tutorial
program of the DEAL.II finite element library.

Despite the accuracy and efficiency demonstrated in the results shown earlier, improvements
continue to be possible. In particular, issues that could be addressed are the lack of scalability
of the setup phase of the algebraic multigrid (e.g., by reusing the preconditioner from previous
Newton steps), possible improvements in how solutions are transferred from one mesh to the next
(e.g., by projections that use not only the displacement but also the stresses), or using higher-order
polynomials or hp-adaptive refinement methods. Furthermore, more realistic applications require
incorporating thermal effects and friction at the contact surface (e.g., [26, 27, 29, 30, 55–57]).
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