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Many operations that need to be performed in modern finite element codes can be described as an operation
that needs to be done independently on every cell, followed by a reduction of these local results into a global
data structure. For example, matrix assembly, estimating discretization errors, or converting nodal values
into data structures that can be output in visualization file formats all fall into this class of operations. Using
this realization, we identify a software design pattern that we call WorkStream and that can be used to model
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1. INTRODUCTION

Since around 2004, computer processors clockspeeds have not become significantly
faster per processing unit, and single-core performance has increased at a much lower
speed than before. Instead, processor manufacturers have decided to provide more
compute power by increasing the number of cores working in parallel on a single chip.
For example, at the time of writing, well-equipped workstations may have 64 cores,
and the recently introduced Intel Xeon Phi accelerator card has a similar number; no
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doubt, the number of cores will continue to grow in the future. To exploit this resource
efficiently, modern scientific codes therefore necessarily need to be written in a way that
exposes to compilers and support libraries operations that can be executed in parallel.

In the past, attempts to do so have often focused on relatively low-level descriptions
of simple loops. In the context of finite element software—the focus of this article—
these attempts have often targeted the inner loops of linear algebra operations. For
example, through paradigms such as the compiler directives in OpenMP, one can an-
notate the loop that sums two vectors into a third to indicate that the operations
in the loop body are independent and can consequently be executed in parallel. A
great deal of literature is available on the potential for acceleration of finite element
codes using this approach; see, for example, Mahinthakumar and Saied [2002], Oliker
et al. [2002], Nakajima [2003, 2005], Pantalé [2005], and Giannoutakis and Gravvanis
[2009].

On the other hand, parallel programming is most scalable if it can identify oppor-
tunities for parallelism at the highest levels of a program. For finite element codes,
this is frequently at the level of loops over all cells. These loops form the most com-
mon operation in finite element codes apart from the solution of linear systems and
appear, for example, in the assembly of the stiffness matrix and right-hand sides,
the estimation of errors, the computation of postprocessed quantities, and the gen-
eration of data for visualization. Rather than addressing each of these places in an
ad-hoc way, we have identified a software design pattern that allows us to describe
each of these loops over all cells in a common way and to utilize a common software
framework for their implementation. The key insight we use in modeling these op-
erations is that these cases are all composed of an embarrassingly parallel operation
followed by a reduction operation. The reduction operation has to be synchronized
and sequenced properly to guarantee correctness and reproducibility. We will describe
these requirements and efficient implementations herein. (Obviously, finite element
codes also contain many operations that do not follow this pattern and are therefore
not addressed by the methods discussed herein. However, as we will show, the opera-
tions we target account for about half of the runtime of a typical finite element code and
parallelizing them is therefore a necessary component of achieving reasonable overall
speedup.)

With this, the goals of this article are as follows:

—To describe a design pattern frequently encountered in finite element codes;
—To discuss ways in which this design pattern can be implemented in a way that

allows us to efficiently exploit multicore parallelism on modern computer systems;
—To demonstrate the efficiency of these implementations on real-world testcases taken

from our work on efficient numerical solvers for complex problems.

In these goals, this article stands squarely in the tradition of research on software
design patterns [Gamma et al. 1994; Mattson et al. 2004]. We would like to empha-
size that our goal is not to outline ways to achieve perfect scalability on large parallel
machines. The techniques for this are well known and in almost all cases require the
distribution of data structures to limit memory access contention to explicit communi-
cation sections. Doing so, however, typically requires redesigning existing codes from
scratch. On the other hand, our paper presents a way that allows reinterpreting com-
mon operations in finite element codes in view of a design pattern; if these operations
follow the description of this pattern—which typically only requires splitting functions
into two parts but no redesign of data structures or the introduction of explicit paral-
lel communication—then they are trivially parallelizable. We demonstrate that with
this marginal programming effort, we can achieve sizable speedups between 7 and 44
for significant parts of a finite element code on current workstations. Reformulating
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operations in view of the design pattern therefore provides an easy way toward paral-
lelization of legacy codes as well as for the many codes that can benefit from utilizing
multiple cores but do not require fully parallel implementations based on MPI that
would scale to hundreds of cores.

The remainder of the article is structured in the following way: In Section 2, we will
provide an overview of how modern finite element codes are typically structured and
what kinds of operations they perform that may lend themselves to parallelization.
Section 3 will then be a critique of the existing approaches that are widely used in ex-
ploiting parallelism to map finite element codes to shared memory multicore machines.
Section 4 introduces a design pattern that will allow us to implement high-level loops
in finite element codes using a common software framework. We will discuss three pos-
sible implementations of this design pattern in Section 5 and compare their relative
efficiency and scalability on large multicore machines in Section 6. We will conclude in
Section 7.

2. CHARACTERISTICS OF MODERN FINITE ELEMENT CODES

Historically, the runtime of finite element codes was dominated by the cost of linear
solvers. This was a consequence of the use of fixed meshes, low-order elements, and
mappings, all of which resulted in fast assembly of linear systems; and relatively simple
solvers such as Jacobi or Gauss-Seidel preconditioned Conjugate Gradients, or even just
fixed point iterations that resulted in slow linear solves. Graphical data were written
into files that often were barely more than memory dumps of solution vectors and
mesh data structures. Given this set of techniques, linear solvers often consumed 80%
or more of the overall runtime, and their optimization and parallelization presented
the most expedient approach to accelerating the overall execution.

However, this workload is no longer representative of the current generation of fi-
nite element codes. For example, today’s codes use sophisticated, adaptively changing
meshes; higher order, mixed, or enriched elements; and higher order mappings to
support curved boundaries. All of these make the assembly of linear systems far more
complex and expensive. Furthermore, modern codes often write their numerical results
in semantically rich data formats (such as the XML-based VTU format [Schroeder et al.
2006] or data stored in HDF5-encoded formats [Folk et al. 1999]) that are relatively
expensive to generate but allow for the production of high-quality graphics and other
postprocessing steps. Finally, linear solvers have become vastly better: The develop-
ment of block (“physics-based”) preconditioners for coupled systems and algebraic or
geometric multigrid for elliptic problems have allowed the solution of problems up to
109 unknowns in a number of iterations that is almost independent of the size of the
problem, even for complex equations [White and Borja 2011; Kronbichler et al. 2012;
Frohne et al. 2015].

A consequence of these developments is that, today, modern finite element codes are
no longer dominated by the CPU time spent in straightforward linear solvers (such
as those using sparse or dense decompositions or conjugate gradients with relatively
simple preconditioners). To give just one example, a recent three-dimensional simula-
tion of time-dependent thermal convection using the ASPECT solver [Kronbichler et al.
2012] (See also http://aspect.dealii.org/) resulted in the breakdown of its overall run-
time (summed over more than 10,000 time steps) shown in Table I. This computation
used an average of slightly more than 107 degrees of freedom. Mesh adaptation and
postprocessing are relatively cheap because meshes were adapted only every 15 time
steps, and the major part of postprocessing—generating graphical output—happened
only every 50 time steps. The computation ran on 64 cores using MPI. It is therefore
representative of many medium-sized computations common today.
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Table I. Runtime of a Typical ASPECT Run

Stokes assembly 24% Temperature assembly 19%
Compute Stokes preconditioner 10% Compute temperature preconditioner 3%
Stokes solve 29% Temperature solve 9%
Mesh adaptation 2% Postprocessing 1%

What these numbers show is that, for many complex applications, simple linear
solves are no longer the dominant part of the code. Rather, modern codes have many
sections that significantly contribute to the overall runtime. If one wanted to make
such codes fully utilize multi- or many-core machines, it is therefore necessary to ad-
dress a much larger subset of functions than just the linear algebra. This is made more
difficult by the fact that assembly, the computation of algebraic multigrid hierarchies,
or postprocessing are typically not expressed in terms of operations on large vectors
but instead require the traversal of complex data structures with many indirections.
Parallelizing the innermost—often very short—loops is therefore not going to yield a
significant benefit on current architectures, although they may of course lend them-
selves to vectorization. These arguments regarding utilization of parallel computers
hold true even taking into account that the assembly operations used in the preceding
example could be accelerated with techniques such as those discussed in Melenk et al.
[2001] and Kronbichler and Kormann [2012].

One approach that has commonly been taken to address these difficulties is to par-
allelize many of these operations using a distributed memory paradigm, using, for
example, MPI [Message Passing Interface Forum 2012]. While this has been very suc-
cessful, it is labor intensive in that it requires a complete redesign of many parts
of an existing code; developing codes with MPI also requires specialized knowledge
not available in many communities for whom large-scale parallel computations are
not necessary. In such cases, providing simple means that can efficiently use shared
memory programming parallel processing on a single machine provides an attractive
route toward utilizing today’s computer architectures. This article is one step in this
direction.

3. A CRITIQUE OF CURRENT APPROACHES TO MULTICORE PARALLELISM
FOR FINITE ELEMENT CODES

There is an enormous body of literature on the optimization and parallelization of finite
element codes dating back to at least the 1970s; see, e.g., George [1971, 1973], Chang
et al. [1984], Law [1986], Farhat [1988], Yagawa and Shioya [1993], Tezduyar et al.
[1993], Devine and Flaherty [1996], McKenna [1997], Laszloffy et al. [2000], Löhner
and Galle [2002], Remacle et al. [2002], Banaś [2004], Bauer and Patra [2004], Bergen
et al. [2005], Nakajima [2005], Pantalé [2005], Paszyński et al. [2006], Paszyński
and Demkowicz [2006], Williams et al. [2007], Paszyński et al. [2010], Logg et al.
[2012], Löhner and Baum [2013], and Russell and Kelly [2013]. However, most of these
contributions—and certainly most of the more recent ones—deal with parallelizing
linear algebra operations. This approach has given rise to paradigms such as OpenMP
[2014] or OpenACC [2014] that annotate simple loops to allow the compiler to infer
mutual independence of loop bodies and thereby allow scheduling them to run on dif-
ferent processor cores. A related research direction has been the use of GPUs to offload
computations; this has also typically involved only linear algebra operations [Göddeke
et al. 2008; Wadbro and Berggren 2009; Joldes et al. 2010; Williams et al. 2010; Pichel
et al. 2012; Markall et al. 2013], explicit time stepping schemes [Klöckner et al. 2009;
Komatitsch et al. 2010; Corrigan et al. 2011], or finite element assembly considered in
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isolation [Cecka et al. 2011; Knepley and Terrel 2013]. A discussion of the potential for
acceleration using GPUs can be found in Vuduc et al. [2010].

We believe that this approach is insufficient to address the more complex structure
of a big fraction of current finite element codes. Our critique has essentially three
reasons:

—This approach is not a good match for modern finite element codes: Since today’s fi-
nite element codes no longer operate on simple data structures using tight loops,
no single function is typically responsible for more than 20% of run time (see,
e.g., the evaluation of DEAL.II’s performance as part of the SPEC CPU 2006 suite
[Henning 2007]). Furthermore, even “hot” linear algebra functions often contain
complex loops such as finding coarsening operations in algebraic multigrid precondi-
tioners. Annotating individual code blocks cannot adequately address these complex
data dependencies.

—This approach is too much work: Modern finite element codes can consist of hundreds
of thousands of lines of code. It is simply not feasible to identify the potential for
parallelism at the level of individual loops. Consequently, on large core counts, the
loops that have not been parallelized will become the bottlenecks, providing for an
almost endless chase for the next place that needs to be addressed.

—This approach is too low level: If a modestly sized finite element computation today
has a million unknowns, then parallelizing operations such as vector-vector additions
on machines with 64 cores leaves each core only around half a million instructions to
execute. This may be enough to amortize the cost of breaking the vector into chunks,
scheduling them to run on 64 threads located on the 64 cores, and then joining
execution again in the main thread, but it will not scale to future larger core counts.
Even more importantly, most vector-vector operations happen on vectors of much
smaller sizes (e.g., the number of degrees of freedom per cell, at most a few tens) for
which parallelization by this approach cannot provide an answer. Ultimately, every
thread synchronization from annotating a loop to run in parallel (e.g., by marking
it as #pragma omp parallel with OpenMP) typically requires several thousand CPU
cycles and has to be amortized; this is far more difficult to do when simple inner
loops are annotated.

These points can only be addressed by exposing parallelism not at the level of the
most deeply nested loops, but at the outermost ones. Because of complex data depen-
dencies, relatively simple annotation systems used by language extensions such as
OpenMP are unable to adequately describe such loops. Rather, data dependencies and
synchronization have to be modeled explicitly in the code, and parallelization happens
by exposing independent work in large chunks that are then assigned to available
compute resources by a scheduler. Parallelizing large chunks of work also fits today’s
complex memory hierarchies better and leads to better cache usage.

Remark 1. In this work, we focus on the tasks specific to finite element toolkits
and consider linear solvers to be black boxes that are parallelized on their own (a
common strategy in many FEM applications). Thus, we will not discuss issues such as
the creation of algebraic multigrid levels or combined stages of assembly and matrix
factorizations by frontal solvers [Laszloffy et al. 2000; Paszyński et al. 2006; Paszyński
and Demkowicz 2006; Paszyński et al. 2010]. On the other hand, matrix-free iterative
solvers that perform element integrals [Kronbichler and Kormann 2012] fit into our
scheme and could profit from design pattern presented here. Such operations are of the
same category as the various “assembly” operations in Section 6.
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4. WORKSTREAM: A DESIGN PATTERN FOR PARALLEL LOOPS OVER ALL CELLS

4.1. Motivation

Looking at Table I of runtimes, one recognizes that several of the major components
are loops over all cells of a finite element mesh:

—When forming a linear system, one typically loops over all cells; evaluates shape
functions, their derivatives, and other quantities at the quadrature points of this
cell; and forms a local contribution. This local contribution is then added to the
global linear system, with several cells contributing to the same matrix entries.

—In postprocessing, one generates data for files that can be used in creating graphical
representations of the solution. For nontrivial cases, this usually involves evaluating
the solution on each cell, transforming it to a suitable local representation, and then
conjoining the local representations into a global object that can be handed off to
functions that write them to disk. The local representation may simply consist of the
values of the solution at the vertices of the current cell, but it can also contain derived
quantities such as Mach numbers computed from the velocity or seismic wave speeds
computed from density, temperature, and chemical composition in simulations of
convection in the Earth’s mantle.

—Also in postprocessing, one frequently wants to evaluate integral quantities. Exam-
ples are the lift and drag coefficients of airfoils in aerodynamics computations, the
average heat flux from the Earth’s core to the surface, or similar quantities. As before,
these are typically computed by a loop over all or a subset of cells where local quan-
tities are computed, and these local quantities are then added up to a global number.

The point of this enumeration is to find common patterns that can then be exploited
by design patterns that allow implementations to be generic across specific situations.
This approach has led to the identification of a significant number of software design
patterns [Gamma et al. 1994] and the consequent standardization of many components
of software. In the current context, the central realization is that every one of the sit-
uations just discussed consists of a stream of objects on which we need to compute a
local contribution followed by a reduction operation in which the local contribution is
added or merged into a global object. We name this pattern WorkStream. It is related to
MapReduce [Dean and Ghemawat 2008; Lin and Dyer 2010] but works on more struc-
tured inputs and makes use of significantly more stringent requirements as outlined
in the next section. It is also not intended for distributed memory use.

It is important to recognize that, of course, not all components of a finite element
code fit the mold of independent computations followed by reductions. For example,
iterative solvers, most preconditioners, and direct solvers do not follow this description.
Consequently, while they may offer opportunities for parallelism in other ways, the
design pattern described here will not be of use for these parts of codes. On the other
hand, as outlined earlier, the design pattern we describe herein fits parts of finite
element codes that, taken together, account for a significant fraction (in some cases the
majority) of CPU time. The work described here is therefore relevant even though it
does not fit all parts of finite element codes.

Next, we will systematize the preceding observations. Section 5 then presents
a generic framework for the implementation of the corresponding software design
pattern.

4.2. Requirements

A sequential implementation of any of the operations listed earlier might look like this
in pseudo-code, keeping in mind that the loop over all cells might as well be a loop over
the elements of any other kind of sequence as well:
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Here, LocalContribution is a data type that stores whatever we compute locally. In the
preceding examples, it could be small dense vectors and matrices (for assembly), data
for visualization from the current cell (visualization), or a single number (computing
integral averages). GlobalObject is a type for the object we would like to compute from
the contributions of all cells, for example a sparse matrix and vector, or an array of
structures containing information for visualization from all cells. ⊕ is the operation
that adds or joins the local contributions to the global object; the addition to an existing
object, ⊕ =, is generally a reduction operation. In the context of finite element compu-
tations, GlobalObject is in general a large object that cannot be duplicated or broken
down into smaller subentities easily and cheaply to support pair-wise reduction, as
one might do for, example, for simple sums over vector elements [Reinders 2007]. In
other words, the concept underlying most implementations of MapReduce on multicore
machines (like, e.g., Phoenix [Chu et al. 2006]) cannot easily be applied to our situation.

An important practical consideration is that the computation of local contributions
typically requires scratch objects holding intermediate computations. For example, in
DEAL.II, computing local contributions during the assembly process is done using a
class called FEValues [Bangerth et al. 2007] that stores the values and derivatives of
shape functions and similar information. It is initialized at the beginning of the loop
by precomputing these values on the reference cell, and every cell then only needs to
transform these values using the mapping from the reference cell to this particular cell.
In other operations, one often requires scratch arrays that hold temporary data that
can then be further transformed into local contributions. We will assume that all of this
temporary data has been collected in a class called ScratchData, and the computation of
local contributions will thus use an object of this type. It is a common strategy to move
as much expensive initialization—computing values on the reference cell, or allocating
memory—into the construction of such objects, to make the operations on every cell as
cheap as possible.1 We will assume that the computation of local contributions will not
make use of the state of the scratch object carried over from the previous loop iteration.

Having introduced this general approach to computing the global object, let us add a
few comments that will guide our considerations when translating the preceding loop
into a loop that can be executed in parallel on multicore machines:

—In all of the examples we have considered, the computation of local contributions on
different cells are mutually independent and can be run in parallel as long as every
independent execution of the compute_local_contribution function has its own copy
of a scratch object. In other words, this operation is typically trivially parallelizable.

1Numerical experiments with the operations discussed in Section 6 show that precomputing data makes
all operations 3–10 times faster compared to an approach in which no data are precomputed before
the loop starts (i.e., where one would create the equivalent of the scratch_object locally inside the
compute_local_contribution() function).
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—On the other hand, the reduction operation using the ⊕ = operation reads from
objects that can be computed independently but writes into the same global object.
To avoid data corruption, the traditional approach is therefore to guard the parallel
execution of this line by a mutex. With this, a simple parallelization strategy would
be to create P threads, each having its own ScratchData object and working on
subsets of the range [c0, cN) of cells of roughly equal size.

—However, an unfortunate reality is that, in many cases, the reduction operation ⊕ =
is not associative. The most obvious case is that IEEE floating point addition is not
associative and (a + b) + c may differ from (a + c) + b by round-off. The consequence
is that the scheme outlined in the previous bullet point produces results that are not
reproducible, with the usual catastrophic consequences on programmers’ ability to
find bugs or simply repeat computations.

—While not always the case, we can generally assume that the reduction operation is
significantly cheaper than the computation of local contributions. (We will evaluate
this assumption in our experimental results in Section 6.)

Our requirements for a design pattern that models the parallel, shared memory
execution of loops such as those described are therefore:

(1) Parallelize as far as possible the computation of local contributions to exploit all
available processor cores on a shared memory machine.

(2) Synchronize the reduction operation to avoid race conditions in write accesses to
data in global_object.

(3) Sequence the reduction operation in such a way that the order in which local
contributions are added to the global object is repeatable when running the same
executable on the same machine.

We will show in the next section how all of these goals can be achieved.

Remark 2. An alternative approach to avoiding the problem of synchronization in
most of the loops mentioned earlier is to consider loops over independent chunks of the
global data structure instead of the cells, possibly duplicating some work on adjacent
cells. This approach was used, for example, for edge-based CFD solvers [Löhner and
Galle 2002], with a loop over vertices or edges instead of cells and where the additional
computations could be hidden completely in a memory-intensive loop. Since the number
of adjacent elements to a vertex can be more than one layer away for adaptive finite
elements with hanging nodes, the overhead in computations is typically too large, and
we do not consider that approach.

5. IMPLEMENTING WORKSTREAM

Having laid out the kind of operation we want to parallelize on multicore machines,
in this section, we provide three implementations of this pattern. They will differ in
several implementation details, but will follow a general interface whereby we can
write code as follows:
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Fig. 1. Visualization of the Pipeline upon which we base the implementation of the WorkStream pattern as
discussed in Sections 5.1 and 5.2.

Here, the first argument in calling work_stream denotes the range of objects to work
on; the second and third arguments are function objects for the computation of local
contributions and the reduction operations, respectively; and the fourth and fifth ar-
guments are properly initialized scratch and local contribution objects that serve as
templates from which similar objects can be copy-constructed whenever we need them.
The last argument is the output argument. At the end of executing this code sequence,
global_object should contain the same state as if the sequential loop of the previous
section had been executed for a defined and reproducible but otherwise arbitrary order
of the objects [c0, cN).

The following subsections describe three possible implementations of the function
above. They assume that an implementation for the parallel pipeline design pattern
[Mattson et al. 2004] is available. In our experiments, we use the one available through
the Threading Building Blocks [Reinders 2007]. The implementations we discuss illus-
trate our learning process with this pattern, and the final implementation discussed
in Section 5.3 is now part of the DEAL.II library and available under an open source
license at http://www.dealii.org/.

5.1. A First Implementation

The basis for all implementations here is the parallel pipeline pattern [Mattson et al.
2004]. Pipeline consists of a set of stages, each represented by a function with input
and output arguments, where the output of one stage serves as the input of another
one. Operations on different stages are assumed to be data-independent of each other.
If the function on one stage of the pipeline is pure (i.e., it only acts on its input and
output arguments but not any global state that might change as the loop is executed),
then this stage of the pipeline can run in parallel on multiple cores of a shared memory
machine if it has its own set of input and output objects. Making use of these last two
statements enables parallelism. Furthermore, using this pattern, none of the functions
needs to explicitly lock any resources.

In the current context, the pipeline we use to model WorkStream can be visualized as
in Figure 1. The pipeline has four stages, of which the second can run in parallel on as
many cores as are available. Each of these stages is represented by a function with input
and output arguments that we will describe later. In addition, this implementation of
WorkStream has some state variables common to the entire parallel execution unit of
this pipeline (but not shared with any other pipelines that may be running at the same
time):

These lists represent scratch objects and objects holding local contributions that can
be used by the second and third stages of the pipeline. Because their creation and
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initialization may be expensive, we want to reuse them and consequently consider the
boolean second part of each pair in these lists an indication of whether the object is
currently in use or not. Before starting the pipeline, we initialize the lists with at least
as many elements as the maximal number of tasks that can be concurrently processed
by the underlying implementation of pipeline. We found that limiting this number to
two times the number of CPU cores is reasonable. Initialization of the list elements
happens by copy construction from the templates passed as fourth and fifth arguments
in the call to work_stream().

In addition to the preceding variables, the state of the WorkStream object contains
pointers to the global object into which results are to be added and function objects
representing the compute_local_contributions() and ⊕ = operations.

Given these, the functions that make up the four stages of the pipeline look like
this:

(1) Create: The function that implements this stage has no input and outputs a tuple
that consists of a cell and pointers to scratch and local contribution objects. Its
implementation looks like this:

Because the two lists for scratch objects and local contributions are at least as large
as the total number of items currently being worked on, we are guaranteed that
each of the two searches in this function will actually succeed.

Note that since this stage of the pipeline writes into global data structures, it can
only be run once concurrently. On the other hand, this also implies that no locking
is necessary.

(2) Compute local contribution: The implementation of the second stage is obvious:

Because the objects *s and *l are specifically assigned to an item that is being
moved through the pipeline and because compute_local_contribution is supposed
to be pure, this stage of the pipeline can be executed in parallel. It is typically the
most expensive part of the overall work.
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(3) ⊕ =: This stage is equally obvious:

Because this function writes into the global object, it cannot be run in parallel.
However, running it on only a single thread at a time also obviates the need for
locking.

(4) Destroy: The final stage simply marks the scratch and local contribution objects as
usable again:

This function may write to flags at the same time as the stage 1 function. However,
no race conditions are possible as long as reads and writes to these flags are atomic.
In practice, one can avoid this complication by taking scratch and local contribution
objects round-robin from a buffer with a sufficiently large number of elements.

Using these functions and a reference to the context object for the state of the algo-
rithm, we can implement the WorkStream pattern using an existing implementation
of pipeline.

Remark 3. The preceding implementation does not, by itself, guarantee reproducible
results unless items are processed in a predictable order by the third stage. Fortunately,
some implementations of the pipeline pattern—notably the one in the Threading Build-
ing Blocks [Reinders 2007]—guarantee that sequential stages see items in exactly the
same order as they were generated by the first stage. This is sufficient to make results
reproducible even if the reduction operation ⊕ is not associative.

Remark 4. The overhead for the implementation of this pattern can be reduced by
not working on one cell at a time, but instead passing whole batches of cells through the
pipeline. This implies that one also has to pass batches of LocalContribution objects
along. On the other hand, since the scratch objects carry no state between iterations, a
single scratch object per batch is sufficient.

We will explore the idea of batches of cells further in Remark 6.

5.2. An Implementation with Thread-Local Scratch Objects

In typical finite element computations, the scratch objects are rather heavy, with many
small arrays containing the values and derivatives of shape functions at quadrature
points, members providing transformations from the reference cell to the real cell, and
the like. The design used in the previous subsection used scratch objects taken round-
robin from a global pool. On machines where each processor core has its own cache,
this almost certainly leads to a large number of cache misses because a thread working
on computing a local contribution rarely will get the same scratch object it had while
working on the previous cell. Worse, by preallocating these objects before even starting
the pipeline, NUMA machines will typically create the objects in memory associated
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with only one processor and consequently far away from those cores trying to load a
scratch object into their caches.

This can be avoided if we make the scratch objects thread-local. With this modi-
fication, the second implementation of the design pattern uses a global state of the
kind:

The local_contribution objects are not thread-local since they are passed from the
second to the third stage of the pipeline and, consequently, may be accessed from
different threads. The implementation then uses the same pipeline as in Figure 1, with
the following four functions:

(1) Create: The function that implements this stage has no input and outputs a tuple
that consists only of a cell and a local contribution. Its implementation looks like
this:

(2) Compute local contribution: The second stage computes the local contributions. Its
implementation now consists of the following code:

Because the list of scratch objects is thread-local, there is no need to guard access
to this list using a mutex. Typical implementations of the pipeline pattern pin their
worker threads to individual processor cores. Consequently, the scratch objects in
this list are not only specific to a thread, but are in fact located in the memory
associated with the processor the current thread runs on and will also frequently
already be in the cache of the current core.

(3) ⊕ =: This stage uses the same function as before, simply omitting the scratch object
from the argument and return value lists.

(4) Destroy: The final stage simply marks the local contribution object as usable again:
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Fig. 2. Visualization of the parallel-for for an example with two colors. Colors are treated sequentially but
cells within a color are processed independently on as many cores as are available. The implementation of
the WorkStream pattern as discussed in Section 5.3 uses this scheme.

One may be tempted to think that a single scratch object per thread—rather than a
list—is sufficient. After all, the stage_2 function uses it from the start to the end, and
while there may be other instances of stage_2 running at the same time, they are on
different threads and consequently cannot use the thread-local scratch object of the cur-
rent thread. In other words, because on the current thread only one instance of stage_2
can run at any given time, there is no need for multiple scratch objects. However, this
is not true in general for task schedulers such as the one in the Threading Building
Blocks [Reinders 2007]. In particular, whenever something in the implementation of
compute_local_contribution starts other tasks and then waits for their completion,
the task scheduler may run another instance of stage_2 on the same thread while
the first instance sleeps. Consequently, every thread needs a list of scratch objects. In
almost all cases, this list will be very short, however.
5.3. An Implementation using Graph Coloring

Having addressed one inefficiency, we are left with the realization that any imple-
mentation with a serial third stage running the ⊕ = reduction operation cannot
scale to large numbers of processors if the reduction operation takes a non-negligible
fraction of the runtime of the compute_local_contribution function. This is a
simple consequence of Amdahl’s law [Amdahl 1967; Patterson and Hennessy 2009].
In practice, this condition means that if the number of cores exceeds the ratio
cputime(compute_local_contribution)/cputime(⊕ =), then scalability breaks down.

In actual finite element codes, computing local contributions is often an expensive
operation, requiring looking up coefficients in equations, evaluating shape functions,
computing integrals by quadrature, and more. On the other hand, adding local contri-
butions to the global object typically requires much less time. As we will show in detail
in the next section, the ratio of runtimes for these two functions is typically in the
range of 3–100, with some exceptions. Thus, we can expect the previous two implemen-
tations to scale on current generation laptops, but not on current workstations with
up to 64 cores. Furthermore, we cannot expect these implementations to scale well on
future hardware.

To address this deficiency, we need to fundamentally rethink the algorithm. To this
end, recall that we run the third stage sequentially because it writes into a globally
shared object, and we expect these writes to conflict if they happen at the same time.
However, in many cases, we can be more specific. For example, in matrix assembly, not
all writes conflict with all others: For continuous elements, the reduction operations
for cells conflict with each other only if these cells share degrees of freedom. Cells that
are not neighbors write into separate rows of vectors and matrices and consequently
do not conflict.
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For these kinds of operations, we can introduce a preprocessing step in which we
colorize the set of cells in such a way that cells for which the reduction operations
conflict are assigned different colors [Saad 2003; Kubale 2004]. Cells that do not conflict
may have the same color. By consequence, all reduction operations for cells of the same
color cannot conflict and may run at the same time. This approach has previously
been used in the finite element context for element-by-element matrix-vector products
on vector supercomputers [Berger et al. 1982; Carey et al. 1988; Farhat and Crivelli
1989], explicit time stepping in spectral element codes on GPUs [Komatitsch et al.
2009], matrix-free techniques in finite elements [Kormann and Kronbichler 2011],
or assembly of matrices [Cecka et al. 2011; Logg et al. 2012]. Coloring is obviously
generalizable if the elements of the range [c0, cN) we iterate over are not cells but other
objects in finite element codes, such as faces for boundary integrals, and the like.

If such coloring is efficiently possible, we can use an implementation where the state
of the WorkStream is now described by the following variables:

With this, we can implement the WorkStream pattern using a parallel-for as shown
in Figure 2. We no longer need a sequential Create item stage because, for a given
color, the order in which the elements are processed does not matter, and a parallel-for
implementation can freely schedule any item (not necessarily in any particular order)
onto available threads. Thus, we only need the following function:

(1) Compute local contribution and ⊕ =: This stage computes the local contributions
and adds them to the global object. Cell c is an element of ∈ [c0, cN). All the
cells worked on simultaneously by the parallel-for must have the same color. The
implementation of this stage is obvious:
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Note that both the scratch and the local contribution object are now thread-local
and presumably in the cache of the processor core executing the function. This im-
plementation may execute the reduction operation ⊕ = multiple times in parallel,
but because we only work on cells of the same color, by definition, these writes do
not conflict.

We implement the WorkStream pattern by first finding a colorization of the elements
of the range [c0, cN) and then, for each color, running a parallel-for loop over all elements
of this color. This allows a completely parallel execution of all significant operations.

Remark 5. To fully exploit parallelism, it is important that the colorization does not
produce colors with a small number of elements. In particular, colors that contain less
elements than a small multiple of the number of cores will likely yield poor scaling. To
avoid this, we need a colorization algorithm that attempts to equilibrate the sizes of
the individual colors. We will describe such an algorithm and show its performance in
Appendix A.

Remark 6. As with the other implementations, one can limit the overhead of schedul-
ing items to threads by not working on individual cells but on batches of cells instead.
In the experiments we show in the next section, we use a batch size of 8. This also
implies that implementation 1 requires memory for 8 (batch size) times the number
of items-in-flight LocalContribution objects since they can be released again after the
reduction stage (which runs concurrently to the local-assembly stage of the pipeline).
We limit the number of items in flight to two times the number of CPU cores (ncpus),
resulting in a total of 16 ncpus memory slots for LocalContribution objects. Because
they can be reused on each cell of a batch, we only need 2 ncpus slots for ScratchData
objects.

Likewise, for implementation 2, the numbers are 16 ncpus memory slots for Local-
Contribution objects and slightly more than ncpus slots for ScratchData objects, taking
into account that we may need more than one ScratchData per thread, as explained at
the end of Section 5.2. Finally, for implementation 3, we need slightly more than ncpus
slots for both LocalContribution and ScratchData objects.

In all cases, these numbers are independent of the number of cells we work on (i.e.,
memory consumption is O(1)) and, in general, negligible compared to the sizes of typical
mesh and matrix data structures for processor core counts available today.

Using a colorization of all cells typically results in processing cells out of order with
regard to the way their properties are stored in memory. This implies that our memory
access pattern will not benefit from data locality, and this will have to be balanced with
the improvement in parallel efficiency. On the other hand, blocking (as described in
Remark 6) can regain some of the data locality.

5.4. Alternative Strategies

In the preceding subsections, we focused on strategies that use shared memory and
multiple threads to parallelize work. We would be amiss if we did not mention possible
alternatives to achieve the same goal of utilizing available processing power for paral-
lelization. In particular, we discuss data duplication and distributed data approaches
in the next few paragraphs. We will also use the distributed data approach to provide
baseline compute times for our numerical experiments in Section 6.

Duplicating Entire Data Structures. One of the fundamental difficulties we address
in our algorithm designs is that multiple threads want to write into shared data struc-
tures concurrently. We have addressed this by sequentializing potentially conflicting
writes (implementations 1 and 2), and by graph coloring to avoid conflicting writes
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(implementation 3). However, the simplest approach is to simply duplicate the entire
data structure we write to as many times as there are threads, schedule cells freely to
threads, have each thread write into its own copy of the now thread-local object, and
have a sequential reduction over this relatively small number of objects at the end.

This approach works as long as the output data structure is relatively small and the
final reduction is cheap. For example, later we discuss a “Depth average” operation for
which the output is a small array, and, in this case, the data duplication approach is
completely reasonable—and vastly faster. On the other extreme, in the 3d cases we
discuss later, the output data structure for the “Assemble Stokes system” operation is a
matrix that requires 3.5GB—a size that cannot be replicated 64 times for our largest
computations.

Because the memory usage of this approach scales linearly with the number of
processor cores, we do not consider it a viable solution for the general cases we want to
address in this article and will not consider it further.

Splitting Data Structures Into Pieces. Alternatively, one could duplicate only parts of
the global data structure; namely, so that each thread’s local output object consists of
that part of the global object the thread actually writes to. This is the approach typically
taken when parallelizing work on distributed memory machines, for example, using
MPI: There, every processor stores a part of the triangulation, of the matrix, and the
like, with some data duplication where necessary (e.g., for ghost cells and vector ghost
elements).

There are downsides to this approach: First, it requires static partitioning of cells
onto processors/cores/MPI processes to ensure that each only writes into that part of
the partitioned data structure that it actually owns. This often leads to imbalances
if operations take different relative amounts of time on cells. An example is that the
assembly on some, but not all, cells requires additional boundary integrals, whereas
creating graphical output takes the same amount of time on all cells. No static partition
of cells onto MPI processes can be optimal for both of these operations at the same
time. The implementations outlined in the previous subsections do not suffer from
this setback because they dynamically schedule work items onto available compute
resources.

Second, the fraction of duplicated data may become prohibitive on systems with
many cores but little memory, such as GPUs or the Intel Xeon Phi. To give an example,
the 3d examples we show later have 49,152 cells. With 64 cores, each core’s partition
would consist of 768 cells, corresponding to a block size of roughly 9 × 9 × 9. With one
layer of ghost cells, each processor needs to store 113 = 1.7 · 768 cells—a 70% overhead
on the mesh data structures (the overhead would be larger if using an unstructured
mesh in which the domains for each processor are not as compactly structured).

Finally, to make the approach workable, it is necessary to have efficient strategies
to partition every data structure in a program. Doing so will yield a program that
will likely scale to hundreds or thousands of processor cores. The results we show
demonstrate that such a programming model is still the gold standard if pure speed
is the only relevant metric. At the same time, it is difficult to redesign existing codes
and their data structures, and it is also often not necessary for many applications
for which a single shared-memory workstation is large enough to achieve the desired
accuracy but for which parallelization would nevertheless provide a welcome speedup.
The algorithms described herein do not require modification of data structures and
therefore provide a much simpler solution to using parallel machines.

Given these drawbacks, we believe that neither complete duplication nor partitioning
of data structures is a complete solution to parallelizing operations such as those
discussed in this article and that, therefore, there is a need for the algorithms described

ACM Transactions on Mathematical Software, Vol. 43, No. 1, Article 2, Publication date: August 2016.



The WorkStream Design Pattern for Multicore FEM 2:17

herein. In particular, if the metrics to measure success of a project include programming
effort, programmability, debuggability, memory overhead, and other quantities not
immediately related to walltime only, then the algorithms provided here are attractive.

6. EXPERIMENTAL INVESTIGATION OF SCALABILITY

Having described three possible implementations of the WorkStream design pattern,
in this section we evaluate their parallel scalability using some of the use cases we
identified in Section 4.1. To this end, we will use a version of the step-32 tutorial
program of DEAL.II [Kronbichler et al. 2013] with some additional timers around sections
of interest. Step-32 solves the Boussinesq equations describing thermal convection and
is the basis for the much larger open source code ASPECT [Kronbichler et al. 2012] for
which we showed a breakdown of overall runtime in Section 2. For our computational
experiments, we work with step-32 instead of ASPECT since it is much simpler (ASPECT

has about 10 times as many lines of code) and the individual operations are much
simpler to time separately. However, step-32 does essentially the same computations
and is, consequently, a realistic testcase.

Step-32 alternates between solving the Stokes system,

−∇ · (ηε(u)) + ∇ p = ρ(T )g,

∇ · u = 0,

for the flow field characterized by velocity u and pressure p as a function of the
temperature-dependent density ρ(T ), and the advection diffusion equation for the
temperature, (

∂

∂t
+ u · ∇

)
T − ∇ · κ∇T = 0.

Here, η, κ are viscosity and thermal diffusion coefficients, and ε(u) is the strain tensor.
More details on the algorithm can be found in Kronbichler et al. [2012]. While step-32
can also utilize distributed memory parallelism, we here only use it as a reasonably
complex testcase for shared memory parallelization on a single multicore machine.

Of the components of this program, we will look in particular at the following
operations:

—Assemble Stokes system: In this part of the program, we need to assemble the matrix
and right-hand side that represent the discretized Stokes operator, namely

Aij = (2ηε(ϕi,u), ε(ϕ j,u)) − (∇ · ϕi,u, ϕ j,p) − (ϕi,p,∇ · ϕ j,u),

Fi = (ϕi,u, ρ(T n−1)g).

Here, ϕi,u and ϕi,p are the velocity and pressure components of a shape function ϕi.
While the right -hand side F is computed in every time step, the matrix Aonly needs
to be rebuilt whenever the mesh changes (as long as the viscosity is constant).

The operation requires the assembly of local contributions on every cell, as well as
the addition of these local contributions to sparse matrix and vector objects we use
from the Trilinos library [Heroux et al. 2005, 2014]. The ⊕ = function adding local
contributions to the global object also resolves constraints within the finite element
space, for example due to hanging nodes or boundary conditions.

—Assemble Stokes preconditioner: The preconditioner we use in this program builds
an algebraic multigrid hierarchy using the ML package [Tuminaro and Tong 2000;
Gee et al. 2006] of Trilinos, based on the matrix

Bij = (η∇ϕi,u,∇ϕ j,u) + (η−1ϕi,p, ϕ j,p).
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The velocity-velocity block of this matrix is considerably sparser than that of the full
Stokes matrix since it does not couple the individual components of the velocity vector
(except, possibly, at boundaries with tangential flow boundary conditions, where we
have constraints that do couple different velocity components). This simplifies the
construction of multilevel hierarchies. The preconditioner matrix also contains an
approximation to the Schur complement in the form of a mass matrix on the pressure
space scaled by the inverse of the viscosity. These two matrices form the ingredients
for a block-triangular Schur complement preconditioner [Silvester and Wathen 1994].

As before, the two operations we have to implement are the computation of local
contributions and adding local contributions to the global matrix while resolving
constraints. We do not consider computing the actual preconditioner here.

—Assemble temperature matrix: Since step-32 treats the temperature equation semi-
implicitly, we need to assemble the matrices

Cij = (ψi, ψ j), Dij = (κ∇ψi,∇ψ j).

Here, the ψi are the shape functions corresponding to the temperature variable. The
matrix to be inverted in a time step will be a linear combination of these two matrices,
with coefficients related to the time step. Local operation and reduction are as given
earlier.

—Assemble temperature right-hand side: While the two temperature matrices only
need to be computed every time the mesh changes, the right-hand side needs to
be computed in every time step. This involves computing a complicated vector that
contains linear combinations of the previous two temperature solutions, an artificial
viscosity that depends nonlinearly on a variety of coefficients, and the advection
term. The exact formula is not enlightening and can be found in Kronbichler et al.
[2012]. Due to the variety of factors and the complexity of computing the artificial
viscosity, the computation of local contributions in this operation is more expensive
than for any of the other preceding operations. On the other hand, the result is a
small local vector that needs to be added to the global vector—a relatively cheap
operation.

—DataOut: This operation evaluates the solution at the vertices of every cell and
converts this information into an intermediate form. This produces a structure for
every cell that the reduction operation then inserts into an array. The array is at a
later time converted into one of a variety of file formats for graphical visualization.
The reduction operation is unnecessary here since each result is simply put into a
separate array slot, rather than being added to an existing piece of data.

—Depth average: The final operation we describe is a typical post-processing operation.
It evaluates the temperature value at the center of the cell and uses this to compute
temperature averages over layers of the domain at specific depths. In our examples,
we subdivide the domain into 100 such layers and the result of each cell then needs
to be added to an element of an array of size 100 that stores the sum of cell-local
temperature integrals (approximated by the one-point midpoint quadrature) and the
corresponding element of an array of equal size storing the sum of areas of the cells.
The final average temperature over each layer is then the ratio of these sums.

As mentioned at the beginning of Section 5.3, the first two implementations of our
software design pattern can only scale well if the ratio of run times of the functions
implementing the computation of local contributions and the reduction operation is
large. To this end, we have measured these ratios for the six areas outlined earlier.
Runtimes and ratios for two-dimensional computations are listed in Table II.2 From

2The data shown in the table were measured by running the six operations on a single thread on all cells of
the mesh in sequence and dividing the runtime by the number of cells. This workload is not representative

ACM Transactions on Mathematical Software, Vol. 43, No. 1, Article 2, Publication date: August 2016.



The WorkStream Design Pattern for Multicore FEM 2:19

Table II. Runtimes and Ratios of Runtimes for the Computation of Local Contributions and the Reduction
Operation, for the Six Operations Discussed in Section 6 and Computations in Two Space Dimensions

Operation CPU time (local contribution) CPU time (⊕ =) Ratio
Assemble Stokes system 19 μs 1.0 μs 19
Assemble Stokes preconditioner 30 μs 1.1 μs 27
Assemble temperature matrix 9.0 μs 1.1 μs 8.1
Assemble temperature r.h.s. 39 μs 1.0 μs 39
DataOut 8.1 μs 0 μs ∞
Depth Average 1.3 μs 0.036 μs 36

CPU times are provided as single-processor runtime per execution of the function, averaged over all
calls to these functions on all cells of the mesh and over several time steps.

these data, we would expect the first two implementations to scale well for the assem-
bly of the temperature right-hand side and for DataOut (and, to a lesser degree, for the
assembly of the Stokes system and preconditioner), whereas the remainder of the oper-
ations should stop scaling to larger processor numbers relatively quickly. (Computing
the depth average shows other peculiarities discussed later.)

To evaluate these claims experimentally, we performed computations on a worksta-
tion with 4 16-core AMD Opteron 6378 (Abu Dhabi) processors running at 2.4GHz,
for a total of 64 cores. The system has 128GB of memory. The numerical experiments
were run in two space dimensions on a mesh with 786,432 quadrilateral cells using
quadratic finite elements for the velocity and temperature variables and linear ele-
ments for the pressure, resulting in a total of 11,814,912 unknowns. This problem
size is large enough to keep the machine busy for sufficiently long times to allow for
accurate timing.

Figure 3 presents the actual (walltime) runtime as a function of the available num-
ber of processor cores for each of the three implementations discussed in Section 5.3
To put the achieved speedup in context, we also include numbers for an MPI-only par-
allelization of the program [Kronbichler et al. 2012] following the data partitioning
approach discussed in Section 5.4. We then repeated the same computations for three
space dimensions on a test case with 49,152 cells and 1.8 million degrees of freedom,
and we show results in Figure 4.

In the following paragraphs, we interpret these results in a number of ways. We will
discuss the last two operations (DataOut and Depth average) separately at the end,
since they exhibit significantly different performance characteristics.

Interpreting Implementations 1 and 2. The results shown in the figures indicate that
NUMA and cache effects on the scratch data do not appear to be significant issues
for any of the operations—in all examples, implementation 2 is slightly faster than
implementation 1, but the difference is never very large.

That said, studying the scalability of these two implementations validates the un-
derlying motivation for studying implementation 3: As discussed at the beginning of
Section 5.3, we cannot expect the first two implementations to scale beyond a number
of cores equal to the ratio of runtimes of the local computation to reduction operation.
Indeed, the kinks in the 2d curves (Figure 3) at a number of cores where these imple-
mentations stop to scale well are well correlated with the ratios provided in the last
column of Table II.

of the multithreaded cases since it ensures that all scratch objects and local contributions are always in the
cache. As a consequence, we suspect that “real” runtimes are larger than stated in Table II and in particular
that the ratios given in the last column would be lower in a multithreaded context.
3We show the best of three runs for each data point. All experiments were done on an otherwise empty
machine, and we observed very little variation between individual runs.
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Fig. 3. Walltime for the six operations discussed in Section 6 as a function of the number of processor cores
utilized. Computations were performed for a two-dimensional domain and are averaged over multiple time
steps.

This consideration already suggests that the first three operations will not be able
to gain a significant speedup when using implementations 1 or 2 once the number of
processor cores exceeds that of a well-equipped laptop of the current generation.

Interpreting Implementation 3. Compared to the first two implementations, imple-
mentation 3 discussed in Section 5.3 does significantly better on the first 4 test cases,
achieving overall speedups compared to a single processor in the range of 7.7 to 36
when using up to 64 cores in 2d computations. In 3d, we achieve speedups between 15
and 44. The speedup that results from switching from implementation 2 to implemen-
tation 3 is summarized in Table III for the 2d cases. It is obvious that, in several of the
cases, further speedup can be expected by going to even more than the 64 cores we had
access to.
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Fig. 4. Walltime for the same six operations as discussed in Section 6 as a function of the number of processor
cores utilized. Compared to Figure 3, computations here were performed in a three-dimensional domain.

Table III. Comparison of the Best Runtimes Achieved with Implementations 2 and 3 (Along with the Number of
Cores at Which This Time was Achieved) for Two-Dimensional Computations

Operation Best time implementation 2 Best time implementation 3 Ratio
Assemble Stokes system 7.0s (8 cores) 1.66s (64 cores) 4.2
Assemble Stokes preconditioner 7.75s (8 cores) 2.94s (64 cores) 2.6
Assemble temperature matrix 5.73s (4 cores) 1.57s (64 cores) 3.6
Assemble temperature r.h.s. 1.51s (48 cores) 0.94s (64 cores) 1.6
DataOut 0.52s (32 cores) 0.47s (32 cores) 1.1
Depth Average 0.37s (16 cores) 1.09s (2 cores) 0.33

The last column shows the speedup that can be achieved when replacing implementation 2 by implemen-
tation 3.
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Interpreting the DataOut and Depth Average Operations. The last two operations
show different characteristics that result from how independent the operations are on
cells.

In the case of DataOut, the work on every cell is completely independent of that
on others since the local worker function can already put the processed data into
the correct and unique memory location. There is, consequently, no need at all for a
reduction operation. However, the scaling is not perfect. Analysis shows that this can be
traced back to frequent memory allocation for temporary data and the associated lock
contention in the system’s memory allocator (data that would ideally go to ScratchData
instead) and, to a lesser extent, NUMA effects on the output array.

The Depth average operation represents the other extreme. There, all cells produce
results that need to be written into an array of only 100 elements. Consequently, each
color can only have at most 100 cells, and some colors may have significantly fewer.
Given our batch size of 8 (see Remark 6), the best we could possibly hope for is to
saturate at most around 12 cores. In reality, given how cheap the operation on every
cell is, the more complex scheduling of implementation 3 negates any speedup at all;
the obvious remedy—increasing the batch size—is not an option here since the size of
colors is already so small. Compared to this, implementation 2 can at least achieve a
speedup of slightly over 3, again limited by the ratio of runtimes and the overhead of
scheduling.

The conclusion of these considerations is that how well the implementations of the
WorkStream pattern work depends crucially on how many conflicts there exists between
work items (i.e., how many colors we need to partition the cells). In other words, while
our design pattern formally applies to this situation, it is not a good match in practice.
As mentioned in Section 5.4, the obvious solution for this operation is to duplicate data
structures.

Limits to Scalability. Our experiments show very significant speedups, but no imple-
mentation provides ideal speedup. Let us here examine some of the reasons. First, in
the 2d examples used earlier, the partitioning of the mesh into colors is almost optimal
(6 colors with 131,030, 131,070, 130,988, 131,201, 131,112, and 131,031 cells, respec-
tively). Therefore, a limited amount of available parallelism is not the reason for the
lack of scalability. Moreover, the scheduling overhead appears to be relatively small
and to have a minor impact: In our implementation, we follow the remarks at the end
of Sections 5.1 and 5.3 and do not work on individual cells, but instead on batches of
eight. Thus, the first color yields 16,379 batches of cells, for an average of 256 batches
that need to be scheduled to each of the 64 cores in the largest configuration. This
should still be a sufficiently large number of batches per core to balance cases where
some batches require more work than others. Increasing the batch size to 64 decreases
the runtime by 5–20% compared to those shown in Figure 3, but when increasing the
size even further we get increasing runtimes again. (One could imagine an adaptive
choice of batch size here.) In order to quantify the cost of synchronization, we also
ran the experiments for successively smaller problem sizes, and parallel speedup can
be recorded down to a baseline of approximately 6 to 12 milliseconds for the tasks in
panels 1 to 4 of Figures 3 and 4, with saturation when the global mesh has less than
1,000 elements.

Instead, we found the primary reason for the lack of scalability on the assembly test
cases to be memory and cache effects when accessing global data structures. This is
also obvious by comparing the 2d and 3d data in Figures 3 and 4: The 3d runs require
significantly more work both to compute local contributions and to accumulate data
into the global data structures, making cache effects less important; consequently, the
graphs show much better scalability than in the 2d cases. Since investigating details
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of cache usage goes beyond the scope of this article but toward the design of the data
structures that local assembly and reduction operations work on, we will not explore
this in detail but only provide a limited overview. First, the sparse matrix objects
we use (based on the Trilinos library, Heroux et al. [2014]) initialize memory in a
single-threaded way and thereby in memory attached to a single processor. When all
64 cores simultaneously accumulate results into the matrix, this nonuniform memory
access results in a serious bottleneck and limits the parallel speedup to about 13 for
the 2d assembly of the Stokes system, for instance. Using preliminary work replacing
this data structure by one in which each processor initializes a part of the matrix
memory (first touch), the parallel speedup for the Stokes assembly increases to about
22. Second, cache performance when accessing global objects such as the matrix or the
mesh geometry is nonoptimal when coloring single cells. Indeed, the nature of coloring
is that neighboring cells are worked on at very different times, and matrix rows, vertex
coordinates, and other cell-dependent information between neighboring cells will in
general no longer be in caches. The lower performance of implementation 3 for small
processor counts in 2d can be attributed to this effect, too. To improve data locality, one
can color whole batches of neighboring cells instead of individual cells. Coloring batches
of 64 cells, performance is considerably improved. Combined with the NUMA-aware
memory initialization, the parallel speedup on 32 cores is 28 and on 64 processors it
is 42 for assembling the 2d Stokes system, considerably faster than even the MPI-only
implementation.

Furthermore, scaling is affected by the total available memory bandwidth in the
system, and an algorithm like matrix assembly that is computation bound in serial
gets increasingly memory bandwidth bound in parallel. This is particularly relevant
for the assembly of mass and Laplace matrices for the temperature, for which the
computations are cheap (see Table II). Last, our speedup numbers may disfavor large
processor counts because “turbo” capabilities in modern processors allow computations
to run at higher core frequency if only few cores are in use.

Comparison with a Partitioned Data Method. To put the speedup numbers just re-
ported in context, all the graphs also show speedups for an implementation of step-32
that uses MPI only and no threads (see Section 5.4). In this approach, all data struc-
tures are completely distributed and all operations on each MPI process can be run in
a sequential manner, followed by a global exchange of data between processors. This
approach has no write conflicts and has the advantage that MPI processes are pinned
to individual processor cores, guaranteeing good cache usage. Consequently, it is not
surprising that we achieve good speedup on most operations.

At the same time, we note that this can only be achieved if (i) the static partitioning
of cells onto processors is good (which here is the case because the code does not need
to compute different things on different cells, as is often the case in practice); (ii)
the fraction of data duplicated between processes is small (i.e., if each processor has
sufficiently much memory to store large chunks of data); and (iii) if the data structures
we write into can be partitioned. The last point is often difficult to achieve in practice;
for example, we use heavily tailored wrappers of Trilinos with several thousand lines
of code to achieve decent speedup on matrix assembly operations.

Given these limitations, the results we obtain using WorkStream show that we can
achieve good speedup even on large core counts using algorithms that allow us to
dynamically schedule operations onto available resources and without the need to
modify data structures. While the comparison—unsurprisingly—demonstrates that
MPI provides for a more scalable programming model, our work shows that good
speedup can be achieved without the drawbacks discussed in Section 5.4 and at a
fraction of the programming cost.
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7. CONCLUSION

In this article, we presented a design pattern for the parallel execution of common
pieces of finite element computations—namely, the iteration over all cells or other
entities—on multicore machines. Our approach addresses contexts that consist of an
embarrassingly parallel computation part followed by a global reduction operation
into a global object. We describe two simple implementations of the pattern that only
parallelize the computation part and a more advanced scheme that uses graph coloring
to create nonconflicting operations also in the reduction part. Our numerical results in
Section 6 show the scaling properties of these implementations. However, our results
also highlight that practical issues like optimal cache usage and nonuniform memory
access become important as soon as the underlying algorithm allows for scaling to
larger core counts. While these limitations are outside the scope of this article (they
require changes in the data structures used), our generic implementation allows us to
achieve speedups not far below the theoretical maximum for several of the cases we
have investigated.

APPENDIX

A. EQUILIBRATING COLORIZATION OF FINITE ELEMENT MESHES

Implementation 3 of the WorkStream pattern required running a pipeline over the
elements of each color in a colorized set of elements [c0, cN). This can only be efficient if
there are no colors with few elements. On the other hand, achieving a minimal number
of colors is not important. In the following, we describe an algorithm that realizes these
goals.

Our algorithm is composed of three stages: partitioning, coloring, and gathering. It
requires a user-defined function that receives an element from the range [c0, cN) and
returns a set of conflict indices. Conflict indices encode memory locations that will be
written to; they could either be pointers to memory or simply the rows of a matrix in the
case of assembly. Two elements that have a common conflict index cannot be treated
at the same time during the reduction operation. Next, we explain in detail the three
stage of the algorithm:

—Partitioning: Partitioning divides the elements into sets called zones and works sim-
ilar to a Cuthill-McKee algorithm. The first zone contains only the first element c0.
The second zone contains all the elements that share a conflict index with c0. The
third zone contains all the elements that share a conflict index with those in the sec-
ond zone and that are not part of any previous zone. This is done until there are no
elements left or until the elements left are not in conflict with the elements already
associated with a zone. In the latter case, one of the remaining elements is used to
create a new zone. Partitioning is done when no elements remain unassigned. In the
following, we will call the first, third, fifth, . . . , of these zones the odd zones and the
remaining ones even zones. It is important to note that there is no conflict between
the elements of one odd zone and those of another odd one (and similarly for two
even zones), although there may, of course, be conflicts between the elements within
one zone.

—Coloring: We color the elements within each zone using the DSATUR algorithm
[Brélaz 1979]. Each color consists only of elements that do not conflict. Coloring
different zones are independent operations and can be done in parallel.

—Gathering: The goal of the gathering stage is to gather colors in the odd (respec-
tively even, zones) to create large colors that have similar number of elements. The
gathering is done in the following way:
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Fig. 5. The three stages of the colorization algorithm applied to a 4 × 4 uniform mesh.

Fig. 6. Examples of colorized meshes.

(1) Search for the odd zone that has the largest number of colors (master colors).
(2) Choose an odd zone and add the elements of the largest color of this zone to the

smallest master color.
(3) Search for the second largest color in this zone and add the elements to the

smallest master color left (i.e., excluding the master color already used).
(4) Repeat the process for all the colors in all the odd zones.
(5) Apply the same steps for the even zones.

In Figure 5, the three stages or the algorithm are shown for a 4 × 4 uniform mesh.
While not usually done in standard coloring algorithms (see Berger et al. [1982] and
Komatitsch et al. [2009]), the initial subdivision of elements into zones allows for the
gathering step at the end that can create better balanced color sizes, as well as the pos-
sibility of running at least part of the coloring in parallel. The fact that in the example
we use seven instead of the minimal number of four colors is not important to us.

Figure 6 shows examples of colored meshes. The left image shows a cutout of the
2d mesh used in Section 6. The domain is a two-dimensional shell discretized using
786,432 cells. Colorization produces six colors of respectively 131,030, 131,070, 130,988,
131,201, 131,112, and 131,031 cells. The right image shows a colorization of an adap-
tively refined mesh with 3,860 cells (using the step-6 tutorial program of DEAL.II). The
colorization yields 14 colors of respectively 275, 274, 277, 278, 274, 264, 273, 265, 301,
302, 272, 267, 267, and 271 cells. Further adaptive refinement results in 16,604 cells
and requires 18 colors of respectively 927, 937, 906, 937, 925, 931, 915, 924, 927, 937,
929, 936, 929, 909, 932, 906, 905, and 892 cells. In all of these cases, we can see that
the colors are well balanced in size.
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