
THE deal.II LIBRARY, VERSION 8.1

WOLFGANG BANGERTH∗, TIMO HEISTER† , LUCA HELTAI‡ , GUIDO KANSCHAT§ ,

MARTIN KRONBICHLER¶, MATTHIAS MAIER‖, BRUNO TURCKSIN∗∗, AND

TOBY D. YOUNG††

Abstract. This paper provides an overview of the new features of the finite element library
deal.II version 8.1.

1. Overview. deal.II version 8.1 was released December 24, 2013. This paper
provides an overview of the new features of this release and serves as a citable reference
for the deal.II software library version 8.1. deal.II is an object-oriented finite
element library used around the world in the development of finite element solvers. It
is available for free under the GNU Lesser General Public License (LGPL) from the
deal.II homepage at http://www.dealii.org/.

Version 8.1 contains, along with the usual set of bug fixes and documentation
updates, the following noteworthy changes:

– Three new tutorial programs (see Section 3.3, 3.1, and 3.2);
– Improved support for multicore parallelization on shared memory machines

(Section 3.4);
– The testsuite was ported to CTest/CDash (Section 3.5);
– Post-install tests (see Section 3.6).

Information on how to cite deal.II is provided in Section 4.

2. Changes to the governance structure. deal.II has been a project with
contributors from around the world for a long time already. However, there has never
been a formalized way to recognize contributions other than by listing the authors in
a file that is part of the documentation.

Starting with this release, deal.II now has a more open governance structure
that we hope will more accurately reflect the extensive contributions of many par-
ticipants in this project: in addition to listing all contributors as before, deal.II is
now governed by a council of developers – currently Luca Heltai, Martin Kronbichler,
Matthias Maier, Bruno Turcksin, and Toby Young – along with principal develop-
ers who are responsible for running the technical infrastructure – currently Wolfgang
Bangerth, Timo Heister, and Guido Kanschat. It is our hope that this new struc-
ture is a more adequate representation of many contributors’ long-term effort for this

∗Department of Mathematics, Texas A&M University, College Station, TX 77843, USA,
bangerth@math.tamu.edu
†Mathematical Sciences, O-110 Martin Hall. Clemson University. Clemson, SC 29634, USA,

heister@clemson.edu
‡SISSA - International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy,

luca.heltai@sissa.it
§Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld

368, 69120 Heidelberg, Germany, kanschat@uni-heidelberg.de
¶Institute for Computational Mechanics, Technische Universität München, Boltzmannstr. 15,

85748 Garching b. München, Germany, kronbichler@lnm.mw.tum.de
‖Institute of Applied Mathematics, Heidelberg University, Im Neuenheimer Feld 293/294, 69120

Heidelberg, Germany, matthias.maier@iwr.uni-heidelberg.de
∗∗Department of Mathematics, Texas A&M University, College Station, TX 77843, USA,

turcksin@math.tamu.edu
††Institute of Fundamental Technological Research of the Polish Academy of Sciences, ul.

Pawińskiego 5b, Warsaw 02-106, Poland, tyoung@ippt.pan.pl

1

ar
X

iv
:1

31
2.

22
66

v4
 [

m
at

h.
N

A
]

 3
1

D
ec

 2
01

3

http://www.dealii.org/
mailto:bangerth@math.tamu.edu
mailto:heister@clemson.edu
mailto:luca.heltai@sissa.it
mailto:kanschat@uni-heidelberg.de
mailto:kronbichler@lnm.mw.tum.de
mailto:matthias.maier@iwr.uni-heidelberg.de
mailto:turcksin@math.tamu.edu
mailto:tyoung@ippt.pan.pl

project. It is our intention that this structure remains open to others and that this
serves as motivation for others to participate!

3. Changes to the library.

3.1. A new tutorial: Elasto-plastic contact problem (step-42). The first
of the three new tutorial programs, step-42 (written by Jörg Frohne, Timo Heister,
and Wolfgang Bangerth), shows how to solve an elasto-plastic contact problem. The
program is an extension of step-41 to a much more complex equation (nonlinear
elasto-plasticity) and also demonstrates how to compute solutions for such problems
in parallel.

The example shows how to solve a 3d, non-linear problem with a semi-smooth
Newton method coupled with an active set strategy on adaptively refined meshes
and scales well up to at least 1024 cores and 1 billion unknowns. An accompanying
paper [6] explains the details and design of the algorithms behind this tutorial. It
also shows scalability results for parallel computations.

3.2. A new tutorial: A hybridizable discontinuous Galerkin method
(step-51). Step-51, written by Martin Kronbichler and Scott Miller, shows how to
implement a hybridizable discontinuous Galerkin method (HDG) in deal.II. An
HDG method is a special DG method which features a reduced number of globally
coupled degrees of freedom compared to other DG schemes for implicit systems. This
is achieved by introducing a new variable for the numerical trace, i.e., the operator
that connects the solution of the subproblems on each element. The linear system
to be solved globally then only consists of degrees of freedom in the trace variable,
whereas the DG contributions interior to cells are eliminated during assembly by
static condensation. The tutorial program shows how to implement this concept in
deal.II, where the class FE FaceQ represents the trace element for the usual DG
element FE DGQ applied to the scalar convection-diffusion equation written as a first
order system.

The tutorial program includes a few practical aspects of an HDG implementa-
tion, namely the realization of superconvergent post-processing and the utilization
of the parallel character of the assembly and static condensation process with the
WorkStream class. The tutorial also contains an extensive discussion of efficiency of
this approach compared to standard continuous finite elements. The results show
that the HDG method is competitive to continuous elements for medium order be-
tween about 3 and 6 in terms of solution time on diffusion-dominated systems. For
convection-dominated problems, the method inherits the superior stability properties
of low to medium order DG methods, which allows for good solution quality already
on coarser meshes.

Furthermore, a new element FE FaceP has been added to the deal.II library that
can used for hybridization of the discontinuous elements of complete degree p, FE DGP.
FE DGP and FE FaceP of degree p have fewer degrees of freedom per cell compared to
the elements FE DGQ and FE FaceQ of tensor product degree p.

3.3. A new tutorial: An adaptive mesh solver for the heat equation
(step-26). deal.II has long had tutorial programs for the wave equation, but none
for the conceptually simpler heat equation. Furthermore, there was no simple tutorial
program that showed how one can solve time dependent problems where the mesh
changes every few time steps.

The new step-26 tutorial program closes this gap. It is a rather simple program
– the program has just 151 lines with a semicolon – and as such serves as a gentle

2

introduction to these topics.

3.4. Improved WorkStream implementation. The WorkStream namespace
has already in the past contained the functions that are used to parallelize (using
multithreading) many of the loops over all cells or faces that one encounters in finite
element computations. Extensive documentation on how to use this class and the
rationale behind it is provided in the “Parallel computing with multiple processors
accessing shared memory” module.

This class has been significantly revamped in an effort to improve scaling to large
multicore workstations. In particular, we now use thread-local variables in some places
to improve cache performance. In addition, the namespace has obtained another
implementation of WorkStream::run that does not just take a sequence of cells (or
other objects to work on), but such a sequence that has been colored in a way to
indicate which cells will conflict with others when writing into the global matrix, right
hand side, or other object. Using this function instead of the previously existing one
obviously requires changes to existing code bases, but can provide significant speedups
in some circumstances when using significant numbers of threads (say, above 16 or
32). The details of these algorithms have been documented in [10].

As part of the changes necessary to allow this, deal.II has also gained a set of
generic functions that provide graph coloring algorithms. The are located in names-
pace GraphColoring.

3.5. Testsuite ported to CTest/CDash. With this minor release deal.II is
now fully ported to CMake. The last remaining step was the migration of the testsuite
to CTest as test driver and CDash as web front end. This involved porting over
3000 tests to a new directory structure. Furthermore, the regression and build tests
are no longer independent testsuites, but a combined one; and tests are by default
run against both the debug and release versions of the library.

The port of the testsuite was also motivated by the fact that, in order to provide
official support for at least three major compiler brands (GCC, Clang and ICC)
on multiple platforms such as Linux, MAC OSX and BSD, it is highly necessary
to have regular regression tests available for these platforms. Hence, in addition
to the regression tester already present (whose main purpose is to test every single
subversion revision) dedicated nightly build tests for a big variety of above compilers
and platforms (and external dependencies) have been set up.

The testsuite is set up in the build directory via make setup tests. After that,
tests can be run by invoking the test driver ctest with suitable options. In order to
submit test results a CTest script is available that can be passed as an option to the
driver, e. g. by ctest -S ../tests/run testsuite.cmake (or if just the build tests
should be run, .../run buildtest.cmake). The scripts run a configure, build and
test stage as necessary and submit the results to a CDash instance. Public, anonymous
submission of test results to the CDash site is possible in order to easily upload and
share regression test results.

3.6. Post-install tests. Every installation now ships with a small collection of
tests that can be executed by calling make test in the build directory. This is used
to identify common configuration problems, bugs in external dependencies, problems
in the MPI wrappers, and to check the correct setup of some of the external pack-
ages. Running the tests is now part of the installation instructions and we especially
recommend to run the tests on new machines.

3

3.7. Other Changes. The deal.II release 8.1 also includes improvements in
the following areas:

– The handling of periodic boundary conditions has been improved and ex-
tended to distributed triangulations.

– deal.II’s output capabilities have been extended in several aspects. In par-
ticular, it is now possible to merge output from vectors belonging to several
different DoFHandler objects (a common case when solving multiphysics prob-
lems) within a single file instead of forcing the user to join the data in one
DoFHandler for output.

– Higher order polynomial boundary descriptions now use support points of
the Gauss-Lobatto quadrature formula instead of equidistant ones, which
gives much better stability at high orders and more accuracy for some curved
boundary shapes due to superconvergence effects.

4. How to cite deal.II. In order to justify the work the developers of deal.II
put into this software, we ask that papers using the library reference one of the
deal.II papers. This helps us justify the effort we put into it.

There are various ways to reference deal.II. To acknowledge the use of a partic-
ular version of the library, reference the present document as follows:
@article{dealII81,

title = {The {\tt deal.{I}{I}} Library, Version 8.1},

author = {W. Bangerth and T. Heister and L. Heltai and G. Kanschat

and M. Kronbichler and M. Maier and B. Turcksin and T. D. Young},

journal = {arXiv preprint \url{http://arxiv.org/abs/1312.2266v4}},

year = {2013},

}

The original deal.II paper containing an overview of its architecture is [2]. If
you rely on specific features of the library, please consider citing any of the following:

– For geometric multigrid: [7, 8];
– For distributed parallel computing: [1];
– For hp adaptivity: [4];
– For matrix-free and fast assembly techniques: [9];
– For computations on lower-dimensional manifolds: [5].

5. Acknowledgements. deal.II is a world-wide project with dozens of con-
tributors around the globe. Other than the authors of this paper, the following people
contributed code to this release: Fahad Alrashed, Daniel Arndt, Juan Carlos Araujo
Cabarcas, Krzyszof Bzowski, Francesco Cattoglio, Denis Davydov, David Emerson,
Armin Ghajar Jazi, Eric Heien, Tobin Isaac, Oleh Krehel, Craig Michoski, Scott
Miller, Jean-Paul Pelteret, Andreas Putz, Mayank Sabharwal, Martin Steigemann.
Their contributions are much appreciated!

deal.II and its developers are financially supported through a variety of fund-
ing sources. W. Bangerth and B. Turcksin were partially supported by the National
Science Foundation under award OCI-1148116 as part of the Software Infrastructure
for Sustained Innovation (SI2) program; by the Computational Infrastructure in Geo-
dynamics initiative (CIG), through the National Science Foundation under Award
No. EAR-0949446 and The University of California – Davis; and through Award
No. KUS-C1-016-04, made by King Abdullah University of Science and Technology
(KAUST).

L. Heltai was partially supported by the project OpenSHIP, “Simulazioni di flu-
idodinamica computazionale (CFD) di alta qualità per le previsioni di prestazioni

4

idrodinamiche del sistema carena-elica in ambiente OpenSOURCE”, financed by Re-
gione FVG - POR FESR 2007–2013 Obiettivo competitività regionale e occupazione.

T. Heister was partially supported by the Computational Infrastructure in Geo-
dynamics initiative (CIG), through the National Science Foundation under Award No.
EAR-0949446 and The University of California – Davis and through Award No. KUS-
C1-016-04, made by King Abdullah University of Science and Technology (KAUST).

The Interdisciplinary Center for Scientific Computing (IWR) at Heidelberg Uni-
versity has provided hosting services for the deal.II web page and the SVN archive.

REFERENCES

[1] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler. Algorithms and data structures
for massively parallel generic adaptive finite element codes. ACM Trans. Math. Softw.,
38:14/1–28, 2011.

[2] W. Bangerth, R. Hartmann, and G. Kanschat. deal.II — a general purpose object oriented
finite element library. ACM Trans. Math. Softw., 33(4), 2007.

[3] W. Bangerth and G. Kanschat. Concepts for object-oriented finite element software – the
deal.II library. Preprint 1999-43, SFB 359, Heidelberg, 1999.

[4] W. Bangerth and O. Kayser-Herold. Data structures and requirements for hp finite element
software. ACM Trans. Math. Softw., 36(1):4/1–4/31, 2009.

[5] A. DeSimone, L. Heltai, and C. Manigrasso. Tools for the solution of PDEs defined on curved
manifolds with deal.II. Technical Report 42/2009/M, SISSA, 2009.

[6] J. Frohne, T. Heister, and W. Bangerth. Efficient numerical methods for the large-scale, parallel
solution of elastoplastic contact problems. submitted, 2013.

[7] B. Janssen and G. Kanschat. Adaptive multilevel methods with local smoothing for H1- and
Hcurl-conforming high order finite element methods. SIAM J. Sci. Comput., 33(4):2095–
2114, 2011.

[8] G. Kanschat. Multi-level methods for discontinuous Galerkin FEM on locally refined meshes.
Comput. & Struct., 82(28):2437–2445, 2004.

[9] M. Kronbichler and K. Kormann. A generic interface for parallel cell-based finite element
operator application. Comput. Fluids, 63:135–147, 2012.

[10] B. Turcksin, M. Kronbichler, and W. Bangerth. WorkStream – a design pattern for multicore-
enabled finite element computations. submitted, 2013.

5

