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Abstract: An interconnected set of algorithms is presented for the simulation of two-phase �ow in
porous media achieving more than two orders of magnitudes acceleration. The methods combine:
an adaptive operator splitting technique; adaptive meshing; e�cient block preconditioning; and a
localized arti�cial di�usion strategy for stabilization. The accuracy and e�ciency of the approach
is demonstrated through numerical experiments for three types of �ows in heterogeneous porous
media, including an advection dominated �ow and �ow involving capillary transport.
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1 Introduction

Multiphase �ow in porous media are ubiquitous in applications ranging from �ow of groundwater and sec-
ondary oil recovery, to geo-sequestration of carbon dioxide and transport processes in fuel cell electrodes
[1]. The simulation of such �ows poses a number of physical and computational modelling challenges. In
the case of polymer electrolyte membrane fuel cells (PEMFCs) which motivated this work, porous media
play a crucial role in the transport of reactants (hydrogen and oxygen) and of the products of the electro-
chemical energy conversion process, viz. electric current, water and heat. The transport is facilitated in the
so-called membrane-electrode-assembly via two key porous media: the gas di�usion layer (GDL) and the
catalyst layer. When the fuel cell operates at higher currents, or when local water and/or heat management
are inadequate, water condensation can lead to ��ooding� within the porous GDL and catalyst layer. The
resulting blockage of pores hinders the di�usion of reactant gases, and can lead to local starvation of the
reaction sites and, in turn, severe performance losses and potential degradation. The understanding and
prediction of the two-phase transport in GDLs and other components of a fuel cell is a pacing item in the
development of fuel cell technology, as it a�ects not only performance, but also durability. The GDL is a
heterogeneous anisotropic porous medium consisting of �bres that are treated to impart hydrophobicity in
order to promote water removal. The complexity of the medium, the lack of fundamental understanding
regarding e�ective transport properties and constitutive relations, the couplings and the transient nature of
the �ows make simulation of multiphase �ow in porous media di�cult.

The background and salient issues related to the numerical solution of �ow in porous media are reviewed
in [2]. E�ective stabilization of higher order methods is an important ingredient for achieving computational
e�ciency without compromising accuracy. We have previously shown that an extension of the entropy-based
arti�cial viscosity approach proposed by Guermond & Pasquetti [3] does ensure stability and accuracy when
used in conjunction with a general continuous �nite element discretization for two phase �ow in porous media
[4] provided the term acts only in the vicinity of strong gradients in the saturation and other discontinuities.
Although adaptive methods have been the subject of many developments, see, e.g. [5, 6], with the h-adaptive
methods being the most commonly used in engineering applications, the literature on adaptive techniques for
transient multiphase �ow in porous media is relatively scarce. The coupling between the �ow and pressure
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�eld and individual phase transport is usually dealt with using classical operator splitting techniques (e.g.
[7]). While this e�ectively decouples the �ow and saturation transport equations, signi�cant computing
resources are still required to solve the velocity-pressure equation at each time step, making simulations
costly.

In this this work we focus on the key issues of enhancing computational e�ciency of �nite element methods
while retaining accuracy, and we present and apply a computational framework integrating the following
features: (i) higher order spatial discretization yielding the same accuracy at smaller computational cost,
and incorporating stabilization mechanisms for hyperbolic problems such as those representing multiphase
�ow; (ii) adaptive mesh re�nement that vastly reduces the number of cells required to resolve the �ow �eld;
(iii) adaptive operator splitting and time stepping that allows the use of large time step limited solely by the
physical time scale rather than numerical stability; (iv) an operator splitting algorithm allowing the use of
e�cient solvers; (v) an e�cient solver and preconditioning method that accelerate the solution of the linear
problem.

These methods were implemented and integrated using the deal.II open source �nite element library [8],
and their application is illustrated in this paper for several heterogeneous porous media problems involving
two immiscible phases.

2 Problem Statement

2.1 Governing Equations

We consider incompressible isothermal �ow of two immiscible phases. Using the mixture model [9] the
macroscopic equations governing the �ow in a 16ilic porous media characterized by a porosity ε and a
permeability tensor K can be expressed as [10]

ut = −λtK∇pw − λnwK∇pc (1)

∇ · ut = qw + qnw (2)

ε
∂Sw

∂t
+∇ · (Fut) +∇ · (λnwFK∇pc) = qw (3)

where the total velocity ut = uw + unw; S is the saturation (volume fraction) with subscripts w and nw
denoting the wetting and non-wetting phase respectively with Sw +Snw = 1; q is a source term. The capillary
pressure is given by

pc = pnw − pw (4)

and the total mobility λt and the fractional �ow of the wetting phase F are de�ned by

λt = λw + λnw =
krw

µw
+
krnw

µnw
(5)

F (S) =
λw

λt
=

λw

λw + λnw
=

krw/µw

krw/µw + krnw/µnw
(6)

where kr is the relative permeability and µ the viscosity.
In order to close the set of governing equations it is also necessary to prescribe a constitutive relation for

the capillary pressure, discussed further below, as well as the relative permeability. Following a commonly
used prescription for the dependence of the relative permeabilities krw and krnw on saturation, we use

krw = Sn
e , krnw = (1− Se)n

. (7)

The e�ective saturation Se is de�ned in the next subsection. The exponent n depends on the capillary
parameter characterizing the porous medium; capillary pore network simulations [11] yield 1.7< n < 2.8. A
value of n = 2 is used for the simulation with negligible capillary transport, and a value of 3 for simulation
accounting for capillary transport.

It should be noted that the form of equations (1) and (3) corresponds to the case of a hydrophylic medium.
For the the hydophobic case, it is more convenient to solve the equations in terms of the non-wetting phase
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Figure 1: Illustration of random permeability �eld.

and these equations can be recast accordingly [10]. For �ow situations where capillary transport is negligible,
the capillary pressure is simply set to zero.

With the required parameters and constitutive relations prescribed, equations (1)�(3) can be solved
subject to appropriate initial conditions for saturation and boundary conditions for pressure.

2.2 Capillary Pressure Function

The capillary pressure pc is correlated as a function of both Sw and k both based on the so-called Leverett
J-function [12, 13]:

J (Se) =
pc

σc cos (θc)

(
k

ε

)1/2

(8)

where σc is the surface tension, k is the permeability and θc is the contact angle, which varies between 0◦

and 90◦ for hydrophilic media.
The e�ective saturation Se is de�ned in terms of the so-called immobile or irreducible saturation [14, 15, 9],

which represents a threshold value below which liquid remains immobile (no capillary transport),

Se =


Sw−Sirr

1−Sirr
for 0◦ < θc ≤ 90◦

Snw−Sirr

1−Sirr
for 90◦ < θc ≤ 180◦

(9)

The pressure-saturation relationship (J-function) is prescribed following the classic correlation of Udell[16]
for hydrophilic media:

J (Se) = 1.417 (1− Se)− 2.120 (1− Se)2 + 1.263 (1− Se)3

Further details on how the J-function is incorporated in the governing equation, and the �nal form of the
solved equations is given in [10].

2.3 Physical System and Boundary Conditions

The application of the integrated methods to 2D and 3D problems involving two-phase �ow without capillary
transport in heterogeneous media is discussed in [4, 2]. Here we consider primarily capillary transport in a
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hydrophilic medium characterized by a pseudo-random permeability given by

krm(x) = min

max


Np∑
l=1

Ψl(x), 0.01

 , 4

 (10)

Ψl(x) = exp

(
−
(
|x− xl|
Bw

)2
)

where the centres xl are Np random locations of higher permeability inside the domain and Bw is the band
width of the exponential function. The permeability function is bounded both above and below to limit the
size of the condition number of the discretized problem [17]. Figure 1 shows the permeability �eld contour
with Np = 40.

The simulations are performed on a computational domain Ω = [0, 1] × [0, 1] in 2D and Ω = [0, 1] ×
[0, 1] × [0, 1] in 3D for t ∈ [0, T ]. The initial condition is set to Sw(x, 0) = 0. The boundary conditions for
the velocity/pressure equations are prescribed on all the boundaries as follows:

pw(x, t) = 0 on ∂Ω

Boundary conditions for the saturation transport equation are only imposed on in�ow boundaries.

Sw(x, t) = 0 on Γin(t) = {x ∈ ∂Ω : n · ut < 0}

3 Numerical method

It was noted in the Introduction that the numerical solution of the system of partial di�erential equations
governing two-phase transport is computationally costly. The simulations presented here were performed
using a framework integrating several methods to address the key issue to ensure computational e�ciency:
stabilized higher order spatial discretization; adaptive mesh re�nement; adaptive time stepping; e�cient
solver and preconditioning. The methods were implemented using the deal.II open source �nite element
library [8, 18]. The details of the implementation, validation and numerical experiments in porous media
�ows without capillary transport are reported in [2], demonstrating the accuracy of the approach and a two-
order of magnitude speedup. In this paper the methodology is extended to account for capillary transport
as described in Section 2.3. The features of the computational framework are summarized below.

Adaptive operator splitting and time stepping: The time stepping schemes most commonly used
to solve the type of equations (1) and (3) are of IMPES (implicit pressure, explicit saturation) type. Noting
that the pressure and velocity �elds depend only weakly on saturation, a net reduction in computing time can
be achieved by rebalancing the computing e�orts between the saturation and the pressure/velocity system.
An operator splitting approach was implemented to achieve this by solving for the saturation at every time
step, and only updating the velocity and pressure whenever necessary at speci�c �macro time-steps�. A key
feature is letting the length of the macro time-steps vary adaptively as a function of the saturation rate of
changes.

Spatial discretization and adaptive mesh re�nement: The IMPES scheme requires the separate
solution of velocity/pressure and saturation equations. Using a �nite element method, we discretize these
on the same mesh composed of quadrilaterals or hexahedra, using continuous Q2 elements for the velocity
and Q1 elements for the pressure. Continuous Q1 �nite elements are also used to discretize the saturation
equation. This choice is primarily predicated by the capillary pressure (di�usion) term, as the discretization
of the Laplace operator using the more popular discontinuous Galerkin (DG) methods leads to a signi�cant
number of additional terms that need to be integrated and have the drawback of arti�cial di�usion acting
everywhere. A shock-type adaptive re�nement method described in [4] is used.

Arti�cial di�usion stabilization of the saturation equation: The Q1 elements for the saturation
equation require stabilization. To avoid smearing of sharp fronts and grid-orientation di�culties associated
with classical arti�cial di�usion, we use the arti�cial di�usion term proposed by Guermond and Pasquetti [3],
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which acts primarily in the vicinity of discontinuities and therefore allows a higher degree of accuracy. An
explicit Euler time stepping method is used to avoid the di�culty of dealing with the non-linear stabilization
term.

Solver and preconditioning: The linear systems to be solved are typically ill-conditioned, non-
symmetric and/or inde�nite, with a size that essentially restricts the choice to Krylov subspace methods.
Good preconditioning is hence essential for computational e�ciency. In porous media �ows, an additional
complication is the saddle point structure of the problem. There is a vast literature on preconditioning
techniques for such problems; a method originally proposed for the Stokes system by Silvester and Wathen
[19] leads to very e�cient and adjustable preconditioners and is adapted to the set of equations solved here.

4 Results and Discussion

Prior to presenting sample simulations involving capillary transport, we �rst verify and assess the method
using the classical Buckley-Leverett benchmark problem which exhibits a shock well suited to test the
adaptivity and accuracy of the method.

4.1 Numerical Validation: Advection Dominated Flow

The Buckley-Leverett problem describes transient displacement in a homogeneous medium without capillary
e�ects. The problem is set up by pc = 0 and prescribing the following boundary conditions:

p(x, t) = 1− x on ∂Ω× [0, T ].

S(x, t) = 1 on Γin(t) ∩ {x = 0}

S(x, t) = 0 on Γin(t)\ {x = 0}

This corresponds to invasion of the domain by the wetting phase from the left boundary. Note that
pressure and saturation uniquely determine a velocity, and the velocity determines whether a boundary
segment is an in�ow or out�ow boundary. No out�ow boundary conditions are required for the saturation.

The parameters used in the simulation are given in Table 1. The results in Figure 2 are compared to
previous simulations using discontinuous Galerkin space [17]. The saturation pro�les obtained with the two
methods are essentially identical, but signi�cantly fewer degrees of freedom are required in the adaptive mesh
solution, which was obtained also with adaptive operator splitting. The shock capturing capability and the
e�ectiveness of the localized di�usive stabilization method are clearly illustrated; for an in-depth veri�cation
of the e�ciency and accuracy, see [4, 2].

Table 1: Parameters used in the Buckley-Leverett problem

PARAMETER SYMBOL VALUE UNIT
Porosity ε 1.0 -
Viscosity (wetting) µw 0.2 g · cm−1 · sec−1

Viscosity (nonwetting) µnw 1.0 g · cm−1 · sec−1

permeability (constant) k 0.1 cm2

4.2 Hydrophilic Porous Medium

We consider here capillary dominated transport in a medium having a single source qw = 2 (sec−1) located
at the center of the domain. The immobile saturation Sirr is set to zero, and the surface tension σc to 10−2

g · sec−2. The evolution of the saturation �eld and the corresponding mesh are shown in Figure 3. The
transport is driven by the combination of pressure gradient and capillary (di�usive) e�ects associated with
both saturation and permeability gradients which both act by transporting the wetting-phase from high to
low values of Sw and k. One notable aspect of the e�ect of permeability gradients in this heterogeneous
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Figure 2: 2D Benchmark simulation of invasion in a uniform porous medium: comparison with previous
work of Li and Bangerth [17] at t = 2.78: (a) Saturation �eld using discontinuous Galerkin space[17]. (b)
Saturation �eld using continuous space with the stabilizing term and operator splitting (present work). (c)
Saturation pro�le along y = 0.5. (d) Saturation pro�le along y = 0.9.

medium is the isolation of the wetting-phase. The saturation contours show that the wetting-phase, which
is surrounded by three high-permeability areas on the top, left and right sides of (0.5, 0.5), di�uses initially
through a throat-like path around (0.45, 0.55) and then reaches a triangle-shaped area around (0.39, 0.65)
surrounded by few high-permeability regions. The wetting-phase �uid subsequently accumulates inside this
triangular area. In fact, during the process, the wetting-phase doesn't �ow through high-permeability regions
but rather through low-permeability areas (cf. Figure 1), which is counter-intuitive. This phenomenon is due
to the saturation gradients that drive the �uid in three directions (i.e. top, left and right directions) while
permeability gradient act in the opposite directions. The combined e�ect of these mechanisms together with
pressure is a transport pattern taking place primarily through lower permeability regions.

Both grid re�nement and coarsening are clearly shown in Figure 3. The total number of degrees of
freedom for the adaptive method increases with time as the wetting-phase gradually spreads in the porous
medium, but in any case there is a signi�cant reduction in the required mesh compared to the (static) uniform
mesh simulation as shown in Figure 4. Overall, the required number of DoFs is reduced by over 90% at the
beginning of the simulation cycle and by over 40% at the end. As a result, there is a twofold net reduction
in computational time over the cycle due solely to adaptive mesh re�nement.
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Figure 3: Hydrophilic medium: time evolution of wetting-phase saturation contours (right) and correspond-
ing grids. (a) t = 0.016 sec; (b) t = 3.079 sec; (c) t = 5.882 sec.
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Figure 4: Reduction of required DoF relative to uniform grid.

5 Conclusion and Future Work

To address the needs for high resolution methods with improved computational e�ciency to simulate two-
phase �ow in porous media, we have presented an integrated set of methods incorporating (i) an adaptive
operator splitting method that only recomputes the velocity and pressure variables whenever necessary; (ii)
block matrix preconditioning methods that greatly reduce the computing time; (iii) an entropy-based stabi-
lizing term that preserves accuracy and ensures stability; and (iv) locally adaptive re�nement allowing highly
resolved time dependent simulations. The robustness and e�ectiveness of this computational framework was
demonstrated in two types of porous media �ows one of which includes �ow with capillary transport.

The techniques described in this paper are su�ciently general to apply to a wide range of two-phase �ow
porous �ow problems. The techniques have been implemented in an open source framework [20] that should
allow further developments to account for additional complexities such as multiple interacting phases. Fur-
thermore the underlying numerical methods are well suited for parallelization, which would further enhance
computational e�ciency.
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