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Abstract. Today’s large finite element simulations require parallel al-
gorithms to scale on clusters with thousands or tens of thousands of
processor cores. We present data structures and algorithms to take ad-
vantage of the power of high performance computers in generic finite
element codes.

Existing generic finite element libraries often restrict the paralleliza-
tion to parallel linear algebra routines. This is a limiting factor when
solving on more than a few hundreds of cores. We describe routines
for distributed storage of all major components coupled with efficient,
scalable algorithms. We give an overview of our effort to enable the mod-
ern and generic finite element library deal.II to take advantage of the
power of large clusters. In particular, we describe the construction of a
distributed mesh and develop algorithms to fully parallelize the finite
element calculation. Numerical results demonstrate good scalability.

Keywords: Finite Element Software, Parallel Algorithms, Massively
Parallel Scalability.

1 Introduction

Modern computer clusters have up to tens of thousands of cores and are the
foundation to deal with large numerical problems in finite element calculations.
The hardware architecture requires software libraries to be specifically designed.

This has led to a significant disparity between the capabilities of current
hardware and the software infrastructure that underlies many finite element
codes for the numerical simulation of partial differential equations: there is a large
gap in parallel scalability between the specialized codes designed to run on those
large clusters and general libraries. The former are hand-tailored to the numerical
problem to be solved and often only feature basic numerical algorithms such as
low order time and spatial discretizations on uniform meshes. On the other
hand, most general purpose finite element libraries like deal.II [4l5] presently
do not scale to large clusters but provide more features, such as higher order
finite elements, mesh adaptivity, and flexible coupling of different elements and
equations, and more.
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By developing parallel data structures and algorithms we enable deal.II to
perform numerical simulations on massively parallel machines with a distributed
memory architecture. At the same time, by implementing these algorithms at a
generic level, we maintain the advanced features of deal.IT.

While we describe our progress with deal.II in [3], the generic algorithms
developed here are applicable to nearly any finite element code. The modifica-
tions to deal.II discussed in this paper are a work in progress but will become
available soon as open source. In Section [l we describe the data structures and
algorithms for the parallelization of finite element software. We conclude with
numerical results in Section @ The parallel scalability is shown using a Poisson
problem and we present results for a more involved mantle convection problem.

2 Related Work

Finite element software has long been packaged in the form of libraries. A cur-
sory search of the internet will yield several dozen libraries that support the cre-
ation of finite element applications to various degrees. While most of these are
poorly documented, poorly maintained, or both, there are several widely used
and professionally developed libraries. Most of these, such as DiffPack [6IT4],
libMesh [12], Getfem++ [17], OOFEM [I6], or FEniCS [I5] are smaller than the
deal.II library but have similar approaches and features.

To the best of our knowledge, none of these libraries currently support mas-
sive parallel computations. What parallel computation they support is similar
to what is available in publicly available releases of deal.IIl: meshes are either
statically partitioned or need to be replicated on every processor, only linear
solvers are fully distributed. While this allows for good scaling of solvers, the
replication of meshes on all processors is a bottleneck that limits overall scala-
bility of parallel adaptive codes to a few dozen processors. The reason for this
lack of functionality is the generally acknowledged difficulty of fully distributing
the dynamically changing, complex data structures used to describe adaptive fi-
nite element meshes. A particular complication is the fact that all of the widely
used libraries originate from software that predates massively parallel compu-
tations, and retrofitting the basic data structures in existing software to new
requirements is nontrivial in all areas of software design.

The only general framework for unstructured, fully parallel adaptive finite
element codes we are aware of that scales to massive numbers of processors
is ALPS, see [7]. Like the work described here, ALPS is based on the p4est
library [8]. On the other hand, ALPS lacks the extensive support infrastructure
of deal.II and is not publicly available.

3 Massively Parallel Finite Element Software Design

In order for finite element simulations to scale to a large number of processors,
the compute time must scale linearly with respect to the number of processors
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and the problem size. Additionally, local memory consumption should only de-
pend on the local, not the global, problem size. The former requires minimizing
global communication. The latter requires distributed data structures, where
only necessary data is stored locally.

Thus, our focus is on the primary bottlenecks to parallel scalability: the mesh
handling, the distribution and global numbering of the degrees of freedom, and
the numerical linear algebra. See [3] for the technical details concerning the
implementation with deal.II.

3.1 Distributed Mesh Handling

The computational mesh is duplicated on each processor in most generic finite
element libraries, if they support distributed parallel computing at all. This is not
feasible for massively parallel computations because the generic description of a
mesh involves a significant amount of data for each cell which is then replicated
on each processor, resulting in huge memory overhead.

Each processor only needs to access a small subset of cells. Most parts of the
replicated global mesh are unnecessary locally. We will say that the processor
“owns” this required subset of cells. In addition, a processor also needs to store
cells touching the cells it owns, but that are in fact owned by neighboring ma-
chines. These neighboring cells are called ghost cells. Information about ghost
cells is needed for several reasons, most obviously because continuous finite ele-
ments share degrees of freedom on the lines and vertices connecting cells. Ghost
cells are also needed for adaptive refinement, error estimation, and more.

Since deal.II only supports hexahedral cells, we restrict the discussion to
that type of meshes. The active cells in h-adaptive finite element methods are
attained from recursively refining a given “coarse” mesh. Thus, one also stores
the hierarchy of refinement steps. We distinguish between three different kinds
of information for mesh storage:

1. The coarse mesh consists of a number of coarse cells describing the domain.
We assume that the coarse mesh only consists of a relatively small number of
cells compared to the number of active cells in the parallel computation, say
a few tens of thousands; it can be stored on each processor. The refinement
process starts with the coarse mesh.

2. Refinement information can be stored in a (sparse) octree (a quadtree in two
spatial dimensions) of refinement flags for each coarse cell. Each flag either
states that this cells has been refined into eight (four in two dimensions)
children or that it is an active cell if not.

3. Active cells are those on which the finite element calculation is done. Typical
finite element programs attach a significant amount of information to each
cell: vertex coordinates, connectivity information to faces, lines, corners, and
neighboring cells, material indicators, boundary indicators, etc. We include
the ghost cells here, but we set a flag to indicate that they to belong to a
different machine.

We can store the coarse mesh (1.) on each machine without a problem. For the
refinement information (2.) we interface to an external library called p4est, see
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[8]. This library handles the abstract collection of octrees describing refinement
from the coarse mesh and handles coarsening, refinement, and distribution of
cells. Internally p4est indexes all terminal cells in a collection of octrees with
a space filling curve. This allows rapid operations and scalability to billions of
cells. For partitioning the space filling curve is cut into equally sized subsets,
which ensures a well balanced workload even during adaptive refinement and
coarsening. p4est allows queries about the local mesh and the ghost layer. With
this information deal.II recreates only the active cells and the ghost layer.
Because we chose to recreate a local triangulation on each machine, most of the
finite element library works without modification, e.g. implementation of finite
element spaces. However, we need a completely new method for creating a global
enumeration of degrees of freedom. This is discussed next.

3.2 Handling of Degrees of Freedom

The finite element calculation requires a global enumeration of the degrees of
freedom. The difficulty lies in the fact that every machine only knows about a
small part of the mesh. The calculation of this numbering involves communica-
tion between processors. Additionally, the numbering on the ghost layer and the
interface must be available on each machine. This is done in a second step.

Like all cells, each degree of freedom is owned by a single processor. All de-
grees of freedom inside a cell belong to the machine that owns the cell. The
ownership of degrees of freedom on the interface between cells belonging to dif-
ferent machines is arbitrary, but processors that share such an interface need
to deterministically agree who owns them. We assign such degrees of freedom
to the processor with the smaller index[] The following algorithm describes the
calculation and communication to acquire a global enumeration on the machines
p=0,...,P—1:

1. Mark all degrees of freedom as invalid (e.g. —1).

2. Loop over the locally owned cells and mark all degrees of freedom as valid
(e.g. 0).

3. Loop over the ghost cells and reset the indices back to invalid if the cell is
owned by a processor ¢ < p. Now only indices that are owned locally are
marked as valid.

4. Assign indices starting from 0 to all valid DoFs. This is done separately
from the previous steps, because otherwise all neighbors sharing a degree of
freedom would have to be checked for ownership. We denote the number of
distributed DoF's on machine p with n,,.

5. Communicate the numbers n,, to all machines and shift the local indices by

-1
ZZ:O Ng
Now all degrees of freedom are uniquely numbered with indices between 0 and
N = 25:_01 ng. Next we must communicate the indices of degrees of freedom

! This rule is evaluated without communication. Assigning all degrees of freedom on
one interface to the same processor also minimizes the coupling in the system matrix
between the processors, see [3].
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on the interface to the ghost layer and on the ghost layer itself. Each machine
collects a packet of indices to send to its neighbors. Indices of a cell are sent to
a neighbor if a ghost cell owned by that neighbor touches the cell. Indices on
the interface may not be known at this point because they might belong to a
third machine. As these communications are done concurrently there is no way
to incorporate this information in this step. So we do this communication step
twice: in the first round every machine receives all indices on its own cells, and
after the second round every machine knows every index on the own cells and
the ghost cells. There is no global communication required in these two steps.

3.3 Efficient Indexing

A subset Z of the indices {0,..., N} is managed on each processor p. Each
processor also needs to have the indices of degrees of freedom on the interface
owned by another machine and indices on the ghost layer. Algebraic constraints
induced by hanging nodes, solution vectors and other data structures need to
access or store information for those indices. We typically look at three different
subsets of indices:

1. The locally owned indices Z;,. as described earlier. Following the algorithm
outlined in the previous step, this is initially a contiguous range of n,, indices.
However, we may later renumber indices, for example to in a block-wise way
to reflect the structure of a partial differential equation in the linear system.

2. The locally active indices Z; ,. defined as the locally owned indices as well as
the other indices on the interface. This is no longer a contiguous range.

3. The locally relevant indices Z; .., which also includes the indices on the ghost
cells.

We need an efficient data structure to define these subsets. If we store some
information for each index in Z; ., we would like to put that information into a
contiguous memory location of #7;,. elements. To access the information of an
index i € 7., we need to find its position in the list Z; . (in other words, the
number of indices j € 7. with j < ). This query is performed repeatedly, and
thus it should be optimized.

We create a data structure of K sorted, disjoint, contiguous, intervals [b, e)
for defining the subset Z € {0,..., N} as T = Uf:o[bka er). Other libraries often
go for a simpler description of this subset as a list of numbers, but this means
more entries are stored because of the large contiguous subranges. Thus the
important queries are slower. We also store the number p; = Zi;é(e,{ —be) =
pr—1 + (ex—1 — bg—1) of indices in previous intervals with each interval [b, eg).
This allows us to do queries like the one above in O(log, K) operations.

3.4 Numerical Linear Algebra

The linear system can be stored with the global numbering of the degrees of free-
dom. There are existing, extensively tested, and widely used parallel libraries like
PETSc, see [1I2] and Trilinos, see [IT10] to handle the linear system. They sup-
ply row-wise distributed matrices, vectors and algorithms, like iterative Krylov
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solvers, and preconditioners. deal.II, like most other finite element libraries,
has interfaces to these libraries. We have tested both PETSc and Trilinos solvers
up to many thousand cores and obtain excellent scaling results (see below).

The linear system is assembled on the local cells. Matrix and vector values
for rows on different machines are sent to the owner using point-to-point com-
munication. The linear system is subsequently solved in parallel.

3.5 Summary of Finite Element Algorithms

The building blocks of a distributed finite element calculation are described
above. In an actual implementation, additional technical details must be ad-
dressed. To perform adaptive mesh refinement, an error estimate is needed to
decide which cells to refine, solutions must be transferred between meshes, and
hanging nodes must be handled. Hanging nodes come from degrees of freedom
on interfaces between two cells on different refinement levels. For finite element
systems with several components, like velocity, pressure, and temperature with
different elements as used in Section Ml the global indices must be sorted by
vector components. See [3] for details.

3.6 Communication Patterns

Because of the complex nature and algorithmic diversity of the operations out-
lined above it is difficult to analyze the MPI communication patterns appearing
in the code.

The distribution of the mesh given by p4est has an interesting property: the
number of neighbors for each processor (number of owners of the ghost cells)
is bounded by a small number independent of the total problem size and the
number of processors@. Most communication necessary in our code is therefore
in the form of point-to-point messages between processors and a relatively small
number of their neighbors, which results in optimal scaling.

Further efficiency is gained by hiding the latency of communication where pos-
sible: MPI communication uses non-blocking transfers and computations proceed
while waiting for completion instead of leaving processors idle.

The amount of MPI communication within deal.II (outside that handled
by pdest) consists of the parts described in section B and was created with the
massive parallel implementation in mind. Exchanging degrees of freedom on the
ghost cells is consequently done with neighbors only and is effectively hidden
using non-blocking transfers. Other algorithms using communication, like error
estimation and solution transfer, behave similarly. All other communication is
done inside the linear algebra package.

As in all good finite element codes, the majority of compute time in our
applications is spent in the linear solvers. For massively parallel applications,
either PETSc or Trilinos provides this functionality. Limiting factors are then
the speed of scalar product evaluations and matrix-vector products. The former

2 The number of neighbors in all experiments is always smaller than fifty, but much
lower for typical meshes. This seems to be a property of the space filling curve.
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is a global reduction operation, it only consists of scalar data. On the other
hand, matrix-vector products require this sort of communication but do not
require the global reduction step. Furthermore, matrix-vector products are often
not the most difficult bottleneck because communication can be hidden behind
expensive local parts of the product. In summary, good scalability in the linear
algebra is achieved if a low latency network like InfiniBand is available, as it is
on most current high performance clusters.

4 Numerical Results

4.1 Scalability Test

We start by testing a Poisson equation in 2 and 3 dimensions with adaptive and
global refinement, respectively. In Figure [[l we show the weak scalability from 8
to 1000 processors with about 500,000 degrees of freedom per processor on the
three dimensional unit cube. We measure computation times for different parts
of the program and average memory consumption on each machine. All parts but
the solver (BiCGStab preconditioned with an algebraic multigrid) scale linearly.
Figure [2] shows individual iterations in a fully adaptive refinement loop for a
two dimensional Poisson equation on 1024 processors (left). The problem size
increases over several refinement cycles from 1.5 million to 1.5 billion degrees of
freedom. The right panel shows strong scalability starting from 256 and going to
4096 processors for the same cycle with a fixed problem size within the adaptive
iteration loop. We have excellent scalability with respect to problem size and the
number of processors. The memory consumption is nearly constant even when
the problem size increases by over a factor of one hundred.

4.2 Results for a Mantle Convection Problem

Our second test case is a more complicated problem modeling thermal convection
in the Earth’s mantle. Details and motivation for the discretization and solver
choices are given in [I3] and [9].

In the Earth’s mantle, fluid flow is strongly dominated by viscous stresses and
is driven (among other factors) by temperature differences in the material, while
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Fig. 1. 3D Poisson Problem, regular refinement, 500,000 degrees of freedom per pro-
cessor. Left: Weak scaling up to 1016 processors. Right: Average peak memory for the
same data.
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Fig.2. 2D Poisson Problem, fully adaptive. Left: Weak scaling on 1024 processors.
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Fig. 3. 2D mantle convection. Left: snapshot of the temperature for a fixed time step
and a zoom. Right: Solution times on 512 processors with overview (top) and detailed
functions (bottom).

inertia is negligible at realistic velocities of a few centimeters per year. Thus the
buoyancy-driven flow can be described by the Boussinesq approximation:

—V-(2ne(u)) +Vp=—ppTeg,
V.-u=0, (1)
%—f+u~VT—V~HVT:7.

Here, u, p,T denote the three unknowns in the Earth’s mantle: velocity, pres-
sure, and temperature. The first two equations form a Stokes system for velocity
and pressure with a forcing term stemming from the buoyancy through the
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temperature T'. The third is an advection-diffusion equation. Let 1 be the vis-
cosity of the fluid and & the diffusivity coefficient for the temperature (both
assumed to be constant here for simplicity), £(u) = 1(Vu+ (Vu)T) denotes the
symmetrized gradient, p is the density, § is the thermal expansion coefficient,
g is the gravity vector, and ~ describes the external heat sources. Fig. Bl left,
shows a snapshot from the evolution of the turbulent mixing within the Earth’s
mantle.

In figure Bl right, we present timing of seven adaptive refinement steps for a
single fixed time step. We observe good scalability; the solver itself scales better
than linearly due to the relatively fine mesh for the two dimensional solution
and because the solution on the coarser meshes is reused as a starting guess.

5 Conclusions

We present a general framework for massively parallel finite element simulation.
The results are convincing, showing that even complex problems with more than
a billion unknowns can be solved on a large cluster of machines. The develop-
ments in deal.II outlined here make the maximum solvable problem size two
orders of magnitude larger than previously possible.

There are several reasons for the good scalability results. Most importantly
the workload is distributed evenly, because every processor has roughly the same
number of locally active cells. In addition the algorithms described in section [3]
introduce no significant overhead in parallel. This includes the total memory
usage. As described in section 3.6l most of the communication is restricted to the
neighbors.
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