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Today’s largest supercomputers have 100,000s of processor cores and offer the potential to solve partial differen-
tial equations discretized by billions of unknowns. However, the complexity of scaling to such large machines and
problem sizes has so far prevented the emergence of generic software libraries that support such computations,
although these would lower the threshold of entry and enable many more applications to benefit from large-scale
computing.

We are concerned with providing this functionality for mesh-adaptive finite element computations. We assume
the existence of an “oracle” that implements the generation and modification of an adaptive mesh distributed
across many processors, and that responds to queries about its structure. Based on querying the oracle, we
develop scalable algorithms and data structures for generic finite element methods. Specifically, we consider the
parallel distribution of mesh data, global enumeration of degrees of freedom, constraints, and postprocessing.
Our algorithms remove the bottlenecks that typically limit large-scale adaptive finite element analyses.

We demonstrate scalability of complete finite element workflows on up to 16,384 processors. An implemen-
tation of the proposed algorithms, based on the open source software p4est as mesh oracle, is provided under
an open source license through the widely used deal.II finite element software library.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Finite element software—mesh handling;
linear algebra; G.1.8 [Numerical Analysis]: Partial Differential Equations—finite element method.

General Terms: Adaptive mesh refinement, Parallel algorithms, Software design, Object orientation

1. INTRODUCTION

Computer clusters with tens of thousands and more processor cores are becoming more
and more common and are going to form the backbone of most scientific computing for
the currently foreseeable future. At the same time, the number of codes that efficiently
utilize these machines is relatively limited, due in large part to two reasons: (i) existing
legacy codes are difficult to parallelize to these massive numbers of processors since data
structures have to be conceived entirely differently; (ii) algorithm and data structure design
is not trivial when the goal is to exploit machines of this size in a scalable way.

In the past, continuum mechanics codes—for example based on the finite element
method—have been among the largest consumers of supercomputing resources. The
desire to run such codes on “massively” parallel machines dates back to at least the early
1990s [Mathur et al. 1993; Devine et al. 1993; Tezduyar et al. 1994], although the notion
of what constitutes a large machine has evolved since then. On the other hand, codes that
scale to the largest available machines were then, and are now, almost exclusively purpose-
built for individual applications. For example, the codes SPECFEM3D [Carrington et al.
2008], CitcomS [Tan et al. 2008], and Rhea [Burstedde et al. 2008] have been written for
particular geophysical applications and are not based on general-purpose finite element
libraries. The reason, of course, is that none of the libraries widely used in academic and
applied finite element simulations—such as PLTMG [Bank 1998], DiffPack [Bruaset and
Langtangen 1997; Langtangen 2003], libMesh [Kirk et al. 2006], Getfem++ [Renard and
Pommier 2006], OOFEM [Patzák and Bittnar 2001], FEniCS/DOLFIN [Logg 2007; Logg
and Wells 2010], or deal.II up to version 6.x [Bangerth et al. 2007; Bangerth and
Kanschat 2011]—support massively parallel computations that will run on thousands of
processors and routinely solve problems with hundreds of millions or billions of cells and
several billion unknowns.

This notwithstanding, there clearly is a demand for general-purpose finite element li-
braries supporting such computations through a relatively simple, generic interface. In this
article, we will outline the algorithms that we have implemented in version 7.0 of the open
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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source library deal.II, offering the ability to solve finite element problems on fully
adaptive meshes of the sizes mentioned above to a wider community. While deal.II
provides a reference implementation of both the mentioned algorithms as well as of tuto-
rial programs that showcase their use in actual applications, our goal is to be generic and
our methods would certainly apply to other finite element libraries as well. In particular,
we will not require specific aspects of the type of finite element, nor will the algorithms be
restricted to quadrilaterals (2d) and hexahedra (3d) that are used exclusively in deal.II.

When using thousands of processors1 in parallel, two basic tenets need to be followed in
algorithm and data structure design: (i) no sizable amount of data can be replicated across
all processors, and (ii) all-to-all communications between processors have to be avoided in
favor of point-to-point communication where at all possible. These two points will inform
to a large part what can and cannot work as we scale finite element computations to larger
and larger processor counts. For example, even if it would make many operations simpler,
no processor will be able to hold all of the possibly billions of cells contained in the global
mesh in its local memory, or even be able to compute a threshold for which cells exceed a
certain error indicator and should therefore be refined.

In this paper, we will not be concerned with the question of how to efficiently gen-
erate and partition hierarchically refined meshes on large numbers of processors, which
presents a major challenge on its own. Rather, we will assign this task to an “oracle” that
allows deal.II to obtain information on the distributed nature of the mesh through a
well-defined set of queries. These include for example whether a certain cell exists on
the current processor, or whether it is a “ghost” cell that is owned by another processor.
Using queries to the oracle, each processor can then rebuild the rich data structures neces-
sary for finite element computations for the “locally owned” part of the global mesh and
perform the necessary computations on them. In our implementation, we use the p4est
algorithms for 2d and 3d parallel mesh topology [Burstedde et al. 2010] as the oracle; how-
ever, it is entirely conceivable to connect to different oracle implementations—for example
packages that support the ITAPS iMesh interface [Ollivier-Gooch et al. 2010]—, provided
they adhere to the query structure detailed in this article, and can respond to certain mesh
modification directives discussed below.

We will detail the requirements deal.II has of the mesh oracle, a description of the
way p4est works, and the algorithm that builds the processor-local meshes in Section 2.
In Section 3, we will discuss dealing with the degrees of freedom defined on a distributed
mesh. Section 4 will then be concerned with setting up, assembling and solving the linear
systems that result from the application of the finite element method; Section 5 discusses
the parallel computation of thresholds for a-posteriori error indicators and postprocessing
of the solution. In reality, today’s supercomputers do not consist of a set of equal, in-
terconnected single-processor machines; rather, they have multicore chips and may have
general-purpose graphics processing units (GPUs). Section 6 reviews our designs in light
of these considerations on processor architecture and argues that, at least given the current
state of parallel linear algebra and solver software, using a “flat” MPI space consisting
of single-threaded processes is still the most practical choice. We provide numerical re-
sults that support the scalability of all proposed algorithms in Section 7 and conclude in
Section 8.

1Since this paper is purely algorithmic, we will not distinguish between processors, processor cores, and MPI
processes [Message Passing Interface Forum 2009]. We will here use the terms interchangeably.
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2. PARALLEL CONSTRUCTION OF DISTRIBUTED MESHES

Finite element methods decompose the computational domain into a collection of cells,
called a mesh or grid. We understand the term mesh primarily as information on the
topological relationships between cells—i.e., how cells are connected by neighborship
relations—rather than on the geometric location of cells, although the latter also needs
to be stored for finite element applications.

The parallel scalability of previous versions of deal.II was restricted by a bottleneck
present in many generic finite element libraries, namely the requirement to replicate the
global mesh structure on each processor. As the number of mesh cells is increased, memory
requirements increase in proportion. It is thus obvious that replicating the mesh storage on
each processor limits the total mesh size by the amount of local processor memory, which
is not likely to grow in the future. We resolve this limitation by distributed mesh storage
with coarsened overlap: Each processor still stores a local mesh that covers the whole
domain, but this mesh is now different on each processor. It is identical to the global mesh
only in the part that is identified by the oracle as “locally owned” by the current processor,
whereas the remaining and much larger non-owned part of the local mesh is coarsened
as much as possible, rendering its memory footprint insignificant. With this approach the
global mesh is not replicated anymore but understood implicitly as the disjoint union of
the locally owned parts on each processor. To achieve parallel scalability of the complete
finite element pipeline, the storage of degrees of freedom and matrices arising from a
finite element discretization must be fully distributed as well, which can be achieved by
querying the oracle about ghost cells and creating efficient communication patterns and
data structures for index sets as we will explain below.

We encode the distributed mesh in a two-layered approach. The inner layer, which we
refer to as the “oracle”, provides rudimentary information on the owned part of the mesh
and the parallel neighborhood, and executes directives to coarsen, refine, and re-partition
the mesh. The outer layer interacts with the oracle through a well-defined set of queries and
builds a representation of the mesh that includes the refinement hierarchy and some overlap
with neighboring mesh parts, and is rich enough to provide all information needed for finite
element operations. This two-layered approach effectively separates a large part of the
parallel management of mesh topology in the oracle from the locally stored representation
retaining the existing infrastructure in deal.II.

There is a significant amount of literature on how to generate and modify distributed
adaptive meshes in parallel. For example, [Burri et al. 2005; Tu et al. 2005; Chand et al.
2008; Sundar et al. 2008; Knepley and Karpeev 2009] discuss related data structures and
algorithms. In the current contribution, we base our work on the open source software
library p4est, which realizes the oracle functionality in the sense outlined above, and
has been shown to scale to hundreds of thousands of processors [Burstedde et al. 2010].
However, any other software that allows the well-defined and small list of queries detailed
below may equally well be used in place of p4est. For example, this could include the
packages that support the ITAPS iMesh interface [Ollivier-Gooch et al. 2010].

In this section, we define the general characteristics of the mesh, propose an algorithm to
construct the local mesh representation based on querying the oracle, and document mesh
modification capabilities required from the oracle.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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2.1 Assumptions on parallel distributed meshes

We will here not be concerned with the technical details of the parallel storage of meshes or
the algorithms hidden within the oracle. In particular, for our purposes we only need to be
able to infer what cells exist, how they relate to each other via neighborship, and how they
have been derived by hierarchic refinement from a small to moderate set of initial coarse
mesh cells. We will make the following general assumptions that are respected by both the
inner layer or oracle (p4est) and the outer layer (implemented within deal.II):

—Common coarse mesh: All cells are derived by refinement from a common coarse mesh
that can be held completely on each of the processors and should therefore not exceed a
few 100,000 to a million cells. In general, the common coarse mesh only needs to pro-
vide a sufficient number of cells to capture the topology of the computational domain,
which is often below 100 or even as small as 1, while mesh refinement takes care of ge-
ometric details. Only in rare cases does geometric complexity require 100,000s or more
coarse mesh cells; consequently, we reserve the dynamic partitioning of coarse cells,
which is certainly feasible, for a future extension. Because deal.II exclusively sup-
ports quadrilaterals and hexahedra, we will henceforth assume that the common coarse
mesh only consists of such cells, though this is immaterial for almost all that follows,
and our algorithms are equally valid when applied to meshes consisting of triangles or
tetrahedra.

—Hierarchic refinement: Each of the common coarse mesh cells may be hierarchically
refined into four (2d) or eight (3d) children which may in turn be further refined them-
selves. This naturally gives rise to a quad- or octree rooted in each common coarse cell,
and an appropriate data structure for the entire mesh then is a quad- or octforest. There-
fore each cell can be uniquely identified by an index into the common coarse mesh (i.e.,
its tree number) and an identifier that describes how to walk through the corresponding
tree to the (refined) cell.

—2:1 mesh balance: We demand that geometrically neighboring cells may differ by only
a single refinement level, thereby enforcing that only a single hanging node can exist per
face or edge. This condition is mostly for convenience, since it simplifies the creation of
interpolation operators on interfaces between cells.

—Distributed storage: Each processor in a parallel program may only store a part of the
entire forest that is not much larger than the total number of cells divided by the number
of processors. This may include a fixed number of ghost cell layers, but it cannot be a
fraction of the entire mesh that is independent of the number of processors. We explicitly
permit that each processor may store parts of more than one tree, and that parts of a given
tree may be stored on multiple processors.

Note that a mesh is independent of its use; in particular, it has no knowledge of finite
element spaces defined on it, or values of nodal vectors associated with such a space. It is,
thus, a rather minimal data structure to simplify parallel distributed storage. Furthermore,
the separation of mesh and finite element data structures establishes a clean modularization
of the respective algorithms and implementations.

2.2 A mesh oracle and interface to deal.II

deal.II needs to keep rich data structures for the mesh and derived objects. For example,
it needs to know the actual geometric location of vertices, boundary indicators, material
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properties, etc. It also stores the complete mesh hierarchy and data structures of surfaces,
lines and points and their neighborship information for traversal, all of which are required
for the rest of the library and to support algorithms built on it.

On the other hand, p4est only stores the terminal nodes (i.e., the leaves) of the parallel
forest explicitly. By itself, this is not enough for all but the most basic finite element al-
gorithms. However, we can resolve this apparent conflict if deal.II builds its own local
mesh on the current processor, using the locally stored portion of the parallel distributed
mesh stored by p4est as the template, and augmenting it with the information needed for
more complex algorithms. In a sense, this approach forms a synthesis of the completely
distributed and lean data structures of p4est and the rich structures of deal.II. Design-
ing this synthesis in a practical and scalable way is one of the innovations of this paper; we
will demonstrate its efficiency in Section 7.

In order to explain the algorithm that reconstructs the local part of a mesh on one pro-
cessor, let us assume that both deal.II and p4est already share knowledge about the
set of common coarse cells. Then, deal.II uses p4est as an oracle for the following
rather minimal set of queries:

—Does a given terminal deal.II cell exist in the portion of the p4est mesh stored on
the current processor?

—Does a given deal.II cell (terminal or not) overlap with any of the terminal p4est
cells stored on the current processor?

—Does a given deal.II cell (terminal or not) overlap with any of the terminal p4est
ghost cells (defined as a foreign cell sharing at least one corner with a cell owned by the
current processor)?

—Is a given p4est cell a ghost cell and if yes, which processor owns it?

The algorithm for mesh reconstruction based on only these queries is shown in Fig. 1. It is
essential that all queries are executed fast, i.e., in constant time or at mostO(logN), where
N is the number of local cells, to ensure overall optimal complexity. Furthermore, no query
may entail communication between processors. Note that the reconstruction algorithm
makes no assumptions on the prior state of the deal.IImesh, allowing for its coarsening
and refinement as the oracle may have moved cells to a different processor during adaptive
mesh refinement and re-partitioning. In a deal.II mesh so constructed, different kinds
of cells exist on any particular processor:

—Active cells are cells without children. Active cells cover the entire domain. If an active
cell belongs to a part of the global mesh that is owned by the current processor, then it
corresponds to a leaf of the global distributed forest that forms the mesh. In that case,
we call it a locally owned active cell.

—Ghost cells are active cells that correspond to leaves of the distributed forest that are not
locally owned but are adjacent to locally owned active cells.

—Artificial cells are active cells that are neither locally owned nor ghost cells. They are
stored to satisfy deal.II’s invariants of never having more than one hanging node per
face or edge, and of storing all common coarse mesh cells. Artificial cells can, but need
not correspond to leaves of the distributed forest, and are skipped in every algorithm
inside deal.II.

—Non-active cells are cells that have children. deal.II stores all intermediate cells that
form the hierarchy between coarse mesh cells (the roots of the trees) and active cells.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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copy to deal:
do

for all coarse mesh cells K:
match tree recursively(K)

refine and coarsen all cells previously marked
while (the mesh changed in the last iteration)

match tree recursively(K):
if (mesh oracle: does K overlap with a cell in the locally owned or ghost parts of the mesh?)

if (K has children)
for each child Kc of K
match tree recursively(Kc)

else
if (not (mesh oracle: does K exist in the locally owned or ghost parts of the mesh?))

mark K for refinement
else

mark the most refined descendents of K, or K itself, for coarsening

Fig. 1. Pseudo-code for reconstructing the local part of a mesh in deal.II, based on querying the mesh oracle
provided by p4est. The algorithm starts with an arbitrary mesh and terminates once the mesh contains all cells
that the oracle indicates as either locally owned or ghost cells.

Fig. 2. Example of an adaptively refined mesh distributed across four processors. The cyan, green, yellow, and red
colors indicate which processor owns any given cell. The four panels depict the views each of the four processors
has of the mesh. Note that each processor knows only (i) the global cells it owns, and (ii) one layer of ghost cells
in the global mesh and their owner processor identifiers. The artificial cells (indicated in dark blue) carry no
information. The effective mesh used for computation is the union of the four locally owned parts.

Fig. 2 shows the result of executing copy to deal (Fig. 1) on an example mesh dis-
tributed among four processors. Note that no processor has knowledge of the entire global
mesh—each processor only matches its own cells as well as one layer of ghost cells. Here,
the parallel partition and identification of ghost cells is computed by p4est, which orders
all cells according to a space-filling z-curve [Morton 1966]. Therefore, the part of the
global mesh owned by a processor may not be contiguous. This can be seen in the second
panel of the figure.

REMARK 1. Storing artificial cells that do not belong to the coarse mesh appears
wasteful since these cells are indeed unnecessary for almost all computations. As pointed
out above we only store them to maintain the invariants for which the base library,
deal.II, has been extensively validated. Clearly, the fraction of artificial cells de-
creases as the number of cells stored locally increases. For the 2d example discussed in
Section 7.1, which has 1 coarse cell, our numerical experiments suggest that the ratio
Nartificial/(Nactive +Nghost) is only very weakly dependent on the number of processors, and

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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decreases as O((Nactive +Nghost)
−0.55). On a fine mesh with 4,096 processors and a total

of almost 600 million cells, on average only 3% of the cells stored locally are artificial
and on no processor does this number exceed 5%.

We reflect the different types of cells using the following notation: Let T denote the set
of all terminal cells that exist in the distributed mesh. Furthermore, let Tploc ⊂ T be the
subset of cells that processor p owns; obviously,

⋃
p T

p
loc = T, and we will require that

Tploc ∩ T
q
loc = ∅ for all p 6= q. Finally, let Tpghost ⊂ T be the set of ghost cells that processor

p knows about; we have that Tpghost ∩ Tploc = ∅ and we will assume that each ghost cell
K ⊂ Tpghost has at least one neighbor in Tploc where neighborship is via faces, lines, or
vertices. In addition to Tploc and Tpghost, each processor stores additional terminal cells that
may or may not be terminal cells in T, for example some coarse mesh cells. We will call
these artificial cells and denote them by Tpartificial; they are shown in dark blue in Fig. 2.

2.3 Directives for mesh modification

We will require that the oracle not only responds to the queries listed above, but also per-
forms several operations that modify the distributed global mesh. Such mesh modifications
are often used during the startup phase of a simulation, or repeatedly to adapt according to
error indicators or to track dynamical features of a simulation that evolves over time.

—Refine and/or coarsen the mesh based on flags set by deal.II. Refinement and coars-
ening shall be executed locally without communication between processors.

—Enforce 2:1 mesh balance by additional refinement where necessary, limiting the level
difference between neighboring cells to one. This is done as a postprocessing step to
local refinement and coarsening which involves communication with processors that
own nearby parts of the mesh.

—Re-partition the cells of the global mesh in parallel to ensure load balance (the most com-
monly used criterion being to equalize the number of cells among processors). This op-
eration involves mostly point-to-point communication. During the re-partitioning step,
additional information shall be attached to the cells. When a cell is migrated from one
processor to another, this data is automatically migrated with the cell.

While this functionality can entail considerable complexity, it is likely to be available from
implementations of parallel mesh data bases. Thus, we do not consider the above specifica-
tions unnecessarily restrictive. In the case of p4est we refer the reader to the algorithms
presented in [Burstedde et al. 2010]. deal.II makes use of these capabilities to effi-
ciently implement a number of operations typical of finite element codes; see Section 5.

3. DEALING WITH GLOBAL INDICES OF DEGREES OF FREEDOM

Once we have a local representation of a distributed mesh, the next step in any finite ele-
ment program is to connect the finite element space to be used with the triangulation. In
deal.II, this tasks falls to the DoFHandler class [Bangerth et al. 2007] that inspects
a FiniteElement object for the number of degrees of freedom that are required per
vertex, line, face, and cell. For example, for a Taylor-Hood (Qd2 × Q1) element used for
the Stokes equations in d space dimensions, we need d+ 1 degrees of freedom per vertex,
and d for each line, quad and hex (if in 3d). The DoFHandler will then allocate global
numbers for each of the degrees of freedom located on the vertices, lines, quads and hexes
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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that exist in the triangulation. A variant of this class, hp::DoFHandler, is able to do the
same task if different finite elements are to be used on different cells such as in hp-adaptive
computations [Bangerth and Kayser-Herold 2009].

In the current context, we will have to assign global indices for degrees of freedom
defined on a mesh of which we only know a certain part on each processor. In the following
subsections, we will discuss the algorithms that achieve this task, followed by strategies
to deal with the constraints that result from hanging nodes. Together, indices of degrees
of freedom and constraints will completely describe a basis of the finite element space we
want to use.

3.1 Enumerating degrees of freedom

The simplest way to distribute global indices of degrees of freedom on the distributed mesh
would be to first let processor 0 enumerate the degrees of freedom on the cells it owns, then
communicate the next unused index to processor 1 that will then enumerate those degrees
of freedom on its own cells that have not been enumerated yet, pass the next unused index
to processor 2, and so on. Obviously, this strategy does not scale beyond a small number
of processors.

Rather, we use the following algorithm to achieve the same end result in a parallel fash-
ion where all processors p = 0, . . . , P−1 work independently unless noted otherwise. This
algorithm also determines the ownership of degrees of freedom on the interface between
cells belonging to different processors. The rule for decision of ownership is arbitrary but
needs to be consistent and must not require communication. The number of processors
involved is typically up to eight for a degree of freedom on a vertex in 3d, but can be even
higher for a coarse mesh with complicated topology. We resolve to assign each degree of
freedom on an interface between processors to the processor with the smallest processor
identifier (the “rank” in MPI terminology).

(0) On all active cells (locally owned or not), initialize all indices of degrees of freedom
with an invalid value, for example −1.

(1) Flag the indices of all degrees of freedom defined on all cellsK ∈ Tploc by assigning to
them a valid value, for example 0. At the end of this step, all degrees of freedom on the
locally owned cells have been flagged, including those that are located on interfaces
between cells in Tploc and Tpghost.

(2) Loop over all ghost cells K ∈ Tpghost; if the owner of K is processor q and q < p then
reset indices of the degrees of freedom located on this cell to the invalid value. After
this step, all flagged degrees of freedom are the ones we own locally.

(3) Loop over all cells K ∈ Tploc and assign indices in ascending order to all degrees of
freedom marked as valid. Start at zero, and let np be the number of indices assigned.
Note that this step cannot be incorporated into step (2) because degrees of freedom
may be located on interfaces between more than two processors and a cell in Tploc may
not be able to easily determine whether cells that are not locally owned share such an
interface.

(4) Let all processors communicate the number np of locally owned degrees of freedom
to all others. In MPI terminology, this amounts to calling MPI Allgather. Shift the
indices of all enumerated degrees of freedom by

∑p−1
q=0 nq . At the end of this step, all

degrees of freedom on the entire distributed mesh have been assigned globally unique
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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indices between 0 and N =
∑P−1
q=0 nq , and every processor knows the correct indices

of all degrees of freedom it owns. However, processor p may not know the correct
indices of degrees of freedom on the interface between its cells and those owned by
other processors, as well as the indices on ghost cells that we need for some algorithms.
These remaining indices will be obtained in the next two steps.

(5) Communicate indices of degrees of freedom on cells in Tploc to other processors ac-
cording to the following algorithm:
(a) Flag all vertices of cells in Tploc.
(b) Loop over vertices of cells in Tpghost and populate a map that stores for each of the

vertices flagged in step (a) the owning processor identifier(s) of adjacent ghost
cells.

(c) Loop over all cells in Tploc. If according to the previous step one of its vertices is
adjacent to a ghost cell owned by processor q, then add the pair [cell id, indices
of degrees of freedom on this cell] to a list of such pairs to be sent to processor
q. Note that the same pair can be added to multiple such lists if the current cell
is adjacent to several other processors’ cells. Note also that every cell we add on
processor p to the list for processor q is in Tqghost. This communication pattern is
symmetric, i.e., processor p receives a message from q if and only if it sends to q;
this symmetry avoids the need to negotiate communications.

(d) Send the contents of each of these lists to their respective destination processor q
using non-blocking point-to-point communication.

(e) From all processors that the current one borders to (i.e., the owners of any of the
cells in Tpghost), receive a list as created above. Each of the cells in this list refer to
a ghost cell; for each of these cells, set the indices of the degrees of freedom on
this cell to the ones given by the list unless the index in the list is invalid.

Note that while the lists created in step (c) contain only cells owned by the current
processor, not all indices in them are known as they may lie on an interface to another
processor. These will then be the invalid index, prompting the need for the conditional
set in step (e). On the other hand, it is easy to see that if an index located on the
interface between two ghost cells is set more than once, then the value so set is always
either the same (if the ghost cells belong to the same processor) or the invalid marker
(in which case we ignore it).

(6) At the end of the previous step, all cells in Tploc have their final, correct indices set.
However, some ghost cells may still have invalid markers since their indices were sent
by processors that at the time did not know all correct indices yet. They do now,
however. Consequently, the last step is to repeat the actions of step (5). We can
optimize this step by only adding cells to the send lists that prior to step (5e) had
invalid index markers.

At the end of this algorithm, each processor knows the correct global indices of degrees
of freedom on all of the cells it locally owns as well as on all the ghost cells. We note
that this algorithm is not restricted to h-refined meshes but is equally applicable to hp-
adaptivity.

A similar algorithm that makes the same decision for degrees of freedom on the interface
is detailed in [Logg 2009], but there are a few crucial differences to our approach: First,
their algorithm contains a sequential part to compute the indices of shared degrees of free-
dom (Stage 2), while ours does that computation in parallel. Second, our approach lends
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itself to non-blocking communication (see step 5d above). Third, we decided to realize the
communication over shared vertices instead of facets, which simplifies the calculation and
enables us to send data directly to the destination (instead of sending it indirectly via other
processors when only a vertex is shared). Fourth, instead of implementing a more com-
plicated logic for transferring individual degrees of freedom we opted to always send all
degrees of freedom belonging to a cell and even to accept sending a cell twice, which can
only happen for some cells that touch more than one other processor (see step 6). Because
we transfer the data of the whole cell, we ensure knowledge of all degrees of freedom on
ghost cells, not only those on the interface to locally owned cells as described in [Logg
2009] or [Burstedde et al. 2010]; this is necessary for a number of algorithms that need to,
for example, evaluate the gradient of the solution on both sides of an interface. While our
approach requires sending slightly larger messages, it is overall more efficient because that
data does not need to be sent later in an additional communication step. The rationale here
is that since the amount of data exchanged is modest in either case, communication cost is
dominated by latency rather than message size.

REMARK 2. Our algorithm always assigns degrees of freedom on the interface be-
tween processors to the one with the smallest processor identifier. This results in a slight
imbalance: processors with identifiers close to zero tend to own more degrees of freedom
than the average, and processors with ranks close to the parallel job size own less, while
most processors in the bulk own roughly the average number.

One may therefore think about constructing a better tie breaker for ownership of degrees
of freedom on processor interfaces. deal.II implements such a fairer scheme in a mode
where each processor stores the entire mesh, as does the current code of FEniCS/DOLFIN.
However, our experiments indicate that at least relatively simple schemes do not pay off,
for several reasons. First, when different degrees of freedom on the same edge or face
are assigned to two different processors A and B, matrix-vector multiplications require
roughly twice the amount of data transfer because the connectivity graph between degrees
of freedom is partitioned by cutting more edges than when assigning all degrees of freedom
on a complete face to one side alone. Second, determining ownership is easily done without
communication in our algorithm above. Third, the workload in downstream parts of the
finite element code is typically quite well balanced, as the cost for many operations is
proportional to the number of local cells—which p4est balances perfectly—and not to
the number of degrees of freedom. Finally, by enumerating the degrees of freedom on at
least one of the cells adjacent to an interface in a natural ordering, we improve cache
locality and thus the performance when accessing corresponding data. To evaluate these
arguments, we carefully analyzed the distribution of degrees of freedom and observed only
a small imbalance in memory consumption in our numerical tests, while we found excellent
scalability of our matrix-vector product implementation.

3.2 Subsets of degrees of freedom

In the following sections, we will frequently need to identify certain subsets of degrees of
freedom (by convention by identifying their respective global indices). To this end, let us
define the following subsets of the complete set of indices I = [0, N):

—Ipl.o. denotes the set of degrees of freedom locally owned by processor p. These are all
defined on cells in Tploc, though some of the degrees of freedom located on the interfaces
of these cells with other processors may be owned by the neighboring processor. We
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have np = #Ipl.o.,
⋃
q I

q
l.o. = I, and Ipl.o. ∩ I

q
l.o. = ∅ for p 6= q. Note that following

the algorithm described in the previous section, the set of indices in Ipl.o. is contiguous.
However, this is no longer true when degrees of freedom are renumbered later.

—Ipl.a. denotes the set of degrees of freedom that are locally active for processor p. This set
contains all degrees of freedom defined on Tploc, and Ipl.a. ∩ I

q
l.a. identifies all those de-

grees of freedom that live on the interface between the subdomains owned by processors
p and q if these are neighbors connected by at least one vertex of the mesh.

—Ipl.r. denotes the set of degrees of freedom that are locally relevant for processor p. We
define these to be the degrees of freedom that are located on all cells in Tploc ∪ Tpghost.

These index sets Ipl.o. ⊂ I
p
l.a. ⊂ I

p
l.r. need to be represented in a computer program for

the algorithms discussed below. Maybe surprisingly, we have found that the data structures
chosen for this have an enormous impact on the efficiency of our programs as the number
of queries into these index sets is very large. In particular, we will frequently have to test
whether a given index is in an index set, and if it is we will have to determine the position
of an index within this set. The latter is important to achieve our goal that no processor
should ever hold arrays on all elements of I: rather, we would like to compress these arrays
by only storing data for all elements of a set Ĩ ⊂ I, but for this we need to map global
indices into positions in index sets and vice versa. The efficient implementation of such
operations is therefore an important aspect, in particular if the index set is not simply a
single contiguous range of indices.

In deal.II, the IndexSet class implements all such queries. It stores an index set
as the union Ĩ =

⋃K
k=0[bk, ek) of K half open, disjoint, contiguous intervals that we store

sorted by their first indices bk. Here, we denote by Ĩ a generic index set that could, for
example, be any of the sets defined above. For isolated indices, we have ek = bk + 1.
This data structure allows to test whether an index is in the set in O(log2K) operations.
However, the determination of the position of a given index i in the set would require
O(K) operations: if k′ is the interval in which i is located, i.e. bk′ ≤ i < ek′ , then

pos(i, Ĩ) =

k′−1∑
k=0

(ek − bk) + (i− bk′),

where the determination of k′ = min{k : i < ek} can be done in parallel to summing over
the sizes of intervals. Similarly, computing the value of the mth index in a set Ĩ would
require O(K) operations on average.

We can remove both these bottlenecks by storing with each interval [bk, ek) the number
pk =

∑k−1
κ=0(eκ − bκ) = pk−1 + (ek−1 − bk−1) of indices in previous intervals. We

update these numbers at the end of generating an index set, or whenever they have become
outdated but a query requires them. Finding the position of index i then only requires
finding which interval k′ it lies in, i.e. an O(log2K) operation, and then computing pk′ +
i − bk′ . Likewise finding the value of the mth index requires finding the largest pk < m,
which can also be implemented inO(log2K) operations. In summary, storing an index set
as a sorted collection Ĩ ∼ {(bk, ek, pk)Kk=0} of triplets allows for efficient implementation
of all operations that we will need below.
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3.3 Constraints on degrees of freedom

The algorithms described above provide for a complete characterization of the basis of
the finite element space on each cell. However, since we allow hanging nodes in our
mesh, not every local degree of freedom is actually a global degree of freedom: some are
in fact constrained by adjacent degrees of freedom. In general, the construction of such
constraints for hanging nodes is not overly complicated and can be found in [Rheinboldt
and Mesztenyi 1980; Carey 1997; Šolı́n et al. 2003; Šolı́n et al. 2008]; the algorithms used
in deal.II are described in [Bangerth et al. 2007; Bangerth and Kayser-Herold 2009].
We will here focus on those aspects particular to distributed computations.

Constraints on degrees of freedom typically have the form

xi =

N−1∑
j=0

cijxj + bi, i ∈ Ic ⊂ I,

where Ic is the set of constrained degrees of freedom, and the constraint matrix cij is
typically very sparse. For hanging nodes, the inhomogeneities bi are zero; as an example,
for lowest order elements the constraints on edge mid-nodes have the form x2 = 1

2x0 +
1
2x1. Constraints may also originate from strongly imposed Dirichlet-type boundary values
in the form x0 = 42, for example.

3.3.1 Which constraints need to be stored. As in other parts of this paper, it is clear
that not every processor will be able to store the data that describes all the constraints that
may exist on the distributed finite element space. In fact, each processor can only construct
constraints for a subset of Ipl.r. ∩ Ic since it has no knowledge of any of the other degrees
of freedom. Consequently, the question here is rather which subset Ipc of constraints each
processor could in principle construct, and which it needs to construct and store locally for
the algorithms described below to work.

For sequential computations, one can first assemble the linear system from all cell con-
tributions irrespective of constraints and in a second step “eliminate” constrained degrees
of freedom in an in-place procedure (see, for example, [Bangerth and Kayser-Herold 2009,
Section 5.2]). On the other hand, in distributed parallel computations, no processor has ac-
cess to a sufficient number of matrix rows to eliminate constrained degrees of freedom
after the linear system has already been assembled from its cell-wise contributions. Conse-
quently, we have to eliminate constrained degrees of freedom already when copying local
contributions into the global linear system. While this may not be quite as elegant, it has
the benefit that we know exactly what degrees of freedom we may have to resolve con-
straints for. Namely, exactly those that may appear in local contributions to the global
linear system: if processor p has a contribution to global entry (i, j) of the matrix, then it
needs to know about constraints on degrees of freedom i and j. Which these are depends
on both the finite element as well as the bilinear form in use.

Local contributions to the global linear system are computed by each processor for all
cells Tploc (i.e. for all degrees of freedom in Ipl.a.). For most finite elements and bilinear
forms, the local contribution consists of integrals only over each cell K ∈ Tploc and con-
sequently every processor will only need to know constraints on all degrees of freedom in
Ipc = Ic ∩Ipl.a.. Discontinuous Galerkin methods also have jump terms between cells, and
consequently need to also know about constraints on degrees of freedom on cells neigh-
boring those that are locally owned; in that case, we need to know about all constraints in
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Ipc = Ic ∩ Ipl.r..

3.3.2 Dealing with chains of constraints. The considerations above are of only theo-
retical interest if constraints can be against degrees of freedom that are themselves con-
strained, i.e. if constraints form chains. This frequently happens in at least two situations.
First, it is common in hp-adaptive methods, see for example [Bangerth and Kayser-Herold
2009]. In that case, it is even conceivable that chains of constraints extend to the boundary
between ghost and artificial cells. Then, the depth of the ghost layer would need to be
extended to more than one layer of cells, thereby also expanding the set Ipl.r.. We will not
consider such cases here.

The second, more common situation is if we have Dirichlet boundary conditions on
degrees of freedom, i.e. constraints of the form x0 = 42. If another constraint, e.g.
x2 = 1

2x0 + 1
2x1, references such a degree of freedom x0 and if the latter is located in the

ghost layer, then we need to know about the constraint on x0. For this reason, in deal.II
each processor always stores all those constraints in Ipc = Ic ∩ Ipl.r. that can be computed
on locally owned and ghost cells.

3.3.3 Computing constraints for hanging nodes. Of equal importance to the question
of which constraints we need to store is the question how we can compute the necessary
constraints that result from hanging nodes. Let us first consider the case of continuous
elements with only cell integration, i.e. Ipc = Ic ∩ Ipl.a.. Since all of these degrees of
freedom are adjacent to locally owned cells, it may appear that it is sufficient to compute
constraints by only considering hanging nodes at faces between two locally owned cells,
or between a locally owned cell and a ghost neighbor. While we believe that this true in
two space dimensions, this is not so in 3d. For example, consider the situation depicted in
Fig. 3, assuming trilinear finite elements. The degree of freedom indicated by the blue dot
is locally active both on processor 0 (white cells) and processor 1 (yellow cells in front).
However, since hanging node constraints are computed based on the face between coarse
and fine cells, not solely on edges, processor 1 can only know about the constraint on this
degree of freedom by computing the constraint on the interface between the white cells, all
of which are ghost cells for processor 1.

Fig. 3. Illustration of a
situation where constraints
need to be computed be-
tween two ghost cells.

Since the structure and size of the set Ipc depends also on
the bilinear form, one can imagine situations in which com-
puting it is even more involved than described in the previous
paragraph. For example, if the bilinear form calls for face in-
tegrals involving all shape functions from both sides of the
face, we would need to have constraints also on all degrees
in Ipl.r. which we may not be able to compute only from a
single layer of ghost cells. Fortunately, most discretizations
that require such terms have discontinuous shape functions
that do not carry constraints on hanging nodes; for a counter
example see [Kanschat and Rivière 2010].

3.3.4 Evaluating constraints. When copying local con-
tributions into the global matrix and right hand side vec-
tor objects during finite element assembly of linear systems,
we have to determine for each involved degree of freedom i
whether it is constrained or not, and if it is what the coefficients cij , bi of its constraint
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are. For the sequential case, the deal.II class ConstraintMatrix stores an array
of integers for all degrees of freedom. These integers contain the position of the constraint
in the list of all constraints, or −1 for i 6∈ Ic. This guarantees that the query whether i is
constrained can be performed in O(1), as is actually accessing the constraints.

On the other hand, in the parallel distributed case under consideration here, this strategy
is not compatible with our desire to never store arrays on all degrees of freedom on a single
processor. Rather, we are presented with two options:

—On each processor, the ConstraintMatrix stores a sorted container of #Ipc ele-
ments each of which contains the index of the constrained degree of freedom and its
constraints. Finding whether index i is constrained and if so accessing its constraints
can then be done using O (log2(#Ipc )) operations.

—On each processor, this class stores an array of #Ipl.r. integers. Finding whether an index
i ∈ Ipl.r. is constrained then requires finding the position ri of i within Ipl.r. and testing
position ri in the array whether the integer stored there is −1 (indicating that there are
no constraints on i) or otherwise is an index into an array describing the constraints on
i. As explained in Section 3.2, finding ri can be done in O(log2K

p) operations where
Kp is the number of half-open intervals that are needed to describe Ipl.r..

Here, the second strategy requires a factor of #Ipl.r./#Ipc more memory, but it is cheaper
in terms of run time ifKp � #Ipc . The former is not a significant problem, since storing a
single integer for every locally active degree of freedom is not a noticeable expense overall.
Whether the latter condition is true depends on a number of application dependent factors:
(i) how much local refinement is required to resolve the solution, as this influences #Ipc ;
(ii) the ratio of the number of ghost cells (which roughly determines Kp) to the number
of cells (which roughly determines #Ipc up to a factor). The ratio in the second point also
depends on the number of refinement steps as well as the number of processors available.

In a number of numerical experiments, we have not been able to conclusively determine
which of the two strategies above would be more efficient since the ratio of Kp to #Ipc is
highly variable. In particular, neither of these numbers are uniformly much smaller than
the other. deal.II currently implements the second strategy.

As a final note in this section, let us remark that the strategies described above turn out to
be as conservative as one can be with only one layer of ghost cells: we compute even con-
straints for degrees of freedom located between ghost cells, and we also store the maximal
set of constraints available. Coming to the conclusion that both is necessary is the result
of many long debugging sessions since forgetting to compute or store constraints does not
typically result in failing assertions or other easy to find errors. Rather, it simply leads to
the wrong linear system with generally unpredictable, though always wrong, solutions.

4. ALGORITHMS FOR SETTING UP AND SOLVING LINEAR SYSTEMS

After creating the mesh and the index sets for degrees of freedom as discussed above,
we can turn to the core objective of finite element codes, namely assembling and solving
linear systems. We note that for parallel linear algebra, deal.II makes use of PETSc
[Balay et al. 2008; Balay et al. 2010] and Trilinos [Heroux et al. 2005; Heroux et al.
2011], rather than implementing this functionality directly. We will therefore not elaborate
on algorithms and data structures for these linear algebra operations, but rather show how
distributed finite element programs can interface with such packages to be correct and
efficient.
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4.1 Setting up sparsity patterns

Finite element discretizations lead to sparse matrices that are most efficiently stored in
compressed row format. Both PETSc and Trilinos allow application programs to pre-
set the sparsity pattern of matrices to avoid re-allocating memory over and over during
matrix assembly. deal.II makes use of this by first building objects with specialized
data structures that allow the efficient build-up of column indices for each row in a matrix,
and then bulk-copying all the indices in one row into the respective PETSc or Trilinos
matrix classes. Both of these libraries can then store the actual matrix entries in a contigu-
ous array in memory. We note here that each processor will only store matrix and vector
rows indexed by Ipl.o. when using either PETSc or Trilinos objects. Since I =

⋃
p I

p
l.o.

and the sets Ipl.o. are mutually disjoint, we achieve a non-overlapping distribution of rows
between the available processors.

In the current context, we are interested in how pre-computing sparsity patterns can
be achieved in a parallel distributed program. We can build the sparsity pattern if every
processor loops over its own cells in Tploc and simulates which elements of the matrix
would be written to if we were assembling the global matrix from local contributions.
It is immediately clear that we will not only write into rows r that belong to the current
processor (i.e., r ∈ Ipl.o.), but also into rows r that correspond to degrees of freedom owned
by a neighboring processor q but located at the boundary (i.e., r ∈ Ipl.a. ∩ I

q
l.o.), and last

but not least into rows which the degree of freedom r may be constrained to (these rows
may lie in Ipl.r. ∩ I

q
l.o.).

It would therefore seem that processor p needs to communicate to processor q the ele-
ments it will write to in these rows in order for processor q to complete the sparsity pattern
of those rows that it locally stores. One may now ask whether it is possible for processor
q to determine which entries in rows corresponding to Ipl.a. ∩ I

q
l.o. will be written to by

processor p, thereby avoiding communication. This is, in fact, possible as long as there are
no constrained degrees of freedom: each processor will simply have to loop over all cells
Tploc∪T

p
ghost, simulate assembly of the matrix, and only record which elements in rows Ipl.o.

will be written to, ignoring all writes to other rows.
Unfortunately, this process does no longer work once constraints are involved, since pro-

cessors cannot always know all involved constraints. This is illustrated in Fig. 4. Consider
the situation that the bottom three cells are owned by processor 0, and the rest by processor
1. Then I0l.o. = [0, 8], I1l.o. = [9, 20], and these two processors will store constraints for
I0c = {6, 17, 19}, I1c = {6, 17, 19, 20} as explained in Section 3.3.2.

Consider now the matrix entries that processor 1 will have to write to when assembling
on cell B (shaded yellow). Since degrees of freedom 17 and 20 are constrained to 5,10 and
10,11, respectively, after resolution of constraints we will have matrix entries (5, 10) and
(5, 11), among others. But because 5 ∈ I0l.o., these entries need to be stored on processor
0. The question now is whether processor 0 could know about this without communicating
with processor 1. The answer is no: we could have known about entry (5, 10) by simulating
assembly on cell A, which is a ghost cell on processor 0. However, processor 0 cannot
possibly know about the matrix entry (5, 11): the cells B and C are not in T0

ghost, and so
processor 0 does not know anything about degree of freedom 20 in the first place, and
certainly not that it is constrained to degrees of freedom 10 and 11.

In summary, we cannot avoid communicating entries into the sparsity pattern between
processors, though at least this communication can be implemented point-to-point. We
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note that in the case of Trilinos, the Epetra FECrsGraph class (implementing
sparsity patterns) can take care of this kind of communication: if we add elements to
rows of the sparsity pattern that are not stored on the current processor, then these will au-
tomatically be transferred to the owning processor upon calling Epetra FECrsGraph’s
GlobalAssemble function. A similar statement holds for PETSc objects though there
does not seem to be a way to communicate entries of sparsity patterns between proces-
sors. Consequently, when interfacing with PETSc, we send the entries generated in rows
that are not locally owned to the corresponding processor after concluding creation of the
sparsity pattern. This way each processor sends one data packet with indices to each of
its neighboring processors. The process is fast because each processor only has to look at
the rows with indices Il.r. \ Il.o. and all communication can be done point-to-point in a
non-blocking fashion. Received indices are then inserted into the local rows of the sparsity
pattern.

4.2 Assembling the linear system

Fig. 4. Illustrating why sparsity patterns can-
not be built up without communication: De-
grees of freedom associated with a Q1 finite
element on a mesh split between two proces-
sors. Processor 0 owns degrees of freedom
0 . . . 8, processor 1 owns 9 . . . 20.

After pre-setting the sparsity pattern of the
matrix, assembling the linear system hap-
pens in the usual way by computing con-
tributions from all cells in Tploc, resolv-
ing constraints, and transferring the entries
into the global matrix and vector objects.
For the same reasons as discussed above,
some communication cannot be avoided,
but both PETSc and Trilinos automat-
ically take care of communicating matrix
entries to the correct processors at the end
of the assembly process.

4.3 Solving the linear system

Once assembled, we need to solve the re-
sulting linear system that can contain bil-
lions of unknowns. Both PETSc and
Trilinos offer a large variety of solvers,
including Krylov-space methods and all of the commonly used preconditioners, including
highly effective algebraic multigrid preconditioners available through the packages hypre
[Falgout et al. 2005; 2006] and ML [Gee et al. 2006].

5. POSTPROCESSING

Once a solution to the linear system has been computed, finite element applications typi-
cally perform a number of postprocessing steps such as generating graphical output, esti-
mating errors, adaptively refining the mesh, and interpolating the solution from the old to
the new mesh. In the following, we will briefly comment on the latter three of these points.
We will not discuss generating graphical output—storing and visualizing tens or hundreds
of gigabytes of data resulting from massively parallel computations is nontrivial and the
realm of specialized tools not under consideration here.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



18 · Wolfgang Bangerth et al.

5.1 Adaptive refinement of meshes

Once a solution has been computed, we frequently want to adjust the mesh to better resolve
the solution. In order to drive this adaptation, we need to (i) compute error indicators for
each of the cells in the global mesh, and (ii) determine which cells to refine, for example
by setting a threshold on the error indicators above which a cell should be refined (and
similarly for coarsening).

The literature contains a large number of methods to estimate the error in finite element
solutions, see for example [Verfürth 1994; Ainsworth and Oden 2000; Bangerth and Ran-
nacher 2003] and the references cited in these publications. Without going into detail, it
is natural to let every processor p compute error indicators for the cells Tploc it owns. The
primary complication from the perspective of parallelization is that in order to compute
these indicators, we not only have to have access to all degrees of freedom located on cells
in Tploc, i.e. to the elements of the solution vector indexed by Ipl.a., but frequently also
solution values on all neighboring cells in order to compute jump residuals at the inter-
faces between cells. In other words, we need access to solution vector elements indexed
by Ipl.r. while by default every processor only stores solution vector elements it owns, i.e.
Ipl.o.. Before computing error indicators, we therefore have to import the missing elements
(and preferably only those since, in particular, we cannot expect to store the entire solution
vector on each processor). Both PETSc and Trilinos support this kind of operation.

Once error indicators ei ≥ 0, i ∈ [0, Ncells), where Ncells = #
⋃
p T

p
loc, have been

computed, we have to decide which cells to refine and coarsen. A typical strategy is to
refine and coarsen certain fractions αr, αc ∈ [0, 1] of all cells. To do that, we need to
compute thresholds θr, θc so that, for example, #{i : ei ≥ θr} ≈ αrNcells. On a single
processor, this is easily achieved by sorting the ei according to their size and choosing
that error indicator as the threshold θr corresponding to position αrNcells, though it is also
possible to find this threshold without completely sorting the set of indicators ei. This task
can be performed using the algorithm commonly referred to as nth element, which
can be implemented with average linear complexity, and is, for example, part of the C++
standard library [Stroustrup 1997]. On the other hand, nth element does more than
we need since it also shuffles the elements of the input sequence so that they are ordered
relative to the n-th element we are seeking.

In distributed parallel computations, no single processor has access to all error indica-
tors. Consequently, we could use a parallel nth element algorithm, see for example
[Tikhonova et al. 2005]. We can, however, avoid the partial sorting step by using the
distributed algorithm outlined in Figure 5. The algorithm computes the threshold θ to an
accuracy ε. For practical reasons, we are not usually interested in very high accuracy for
these thresholds and typically set ε so that the while-loop terminates after, for example, at
most 25 iterations. Since the interval in which θ must lie is halved in each iteration, this
corresponds to a relative accuracy of 1

225 ≈ 3× 10−8. The compute time for the algorithm
with a fixed maximal number of iterations is then O(Ncells

P log2 P ), where the logarithmic
factor results from the global reduce and broadcast operations. Furthermore, the constant
in this complexity can be improved by letting each processor not only compute the number
of cells n1/2t = #{i : e0i ≥ m = 1

2 (b + e)}, but also n1/4t = #{i : e0i ≥ 1
4 (b + e)}

and n3/4t = #{i : e0i ≥ 3
4 (b + e)}, thereby obviating the need for any communication in

the next iteration (because the data needed in the next iteration is already available) and
cutting the number of communication steps in half. This procedure can of course be re-
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bp = min ep, ep = max ep compute local min and max
{b,−e} = MPI Reduce ({bp,−ep}, MPI MIN) compute global min and max on processor 0
while (|e− b| ≥ ε)

if (p==0) then master processor
MPI Bcast ({b, e}, 0→ all) broadcast current interval
m = 1

2
(b+ e) compute interval split point

nt = #{i : e0i ≥ m} count local elements greater than m
nt =MPI Reduce (nt, MPI SUM) count total number of elements
if (nt > αN ) then {b, e} = {b,m} adjust interval

else {b, e} = {m, e}
else worker processor

MPI Bcast ({b, e}, 0→ all) receive current interval
m = 1

2
(b+ e) compute interval split point

nt = #{i : epi ≥ m} count local elements greater than m
MPI Reduce (nt, MPI SUM) accumulate total number of elements on proc. 0

endif
endwhile
return θ = m return threshold

Fig. 5. Pseudo-code for determining a threshold θ so that approximately αN elements of a vector (ei)
N−1
i=0

satisfy ei ≥ θ. Each processor only stores a part ep of np elements of the input vector. The algorithm runs on
each processor p, 0 ≤ p < P . This algorithm is a variant of the parallel binary search described in [Burstedde
et al. 2008].

peated to reduce the number of communication steps even further, at the expense of larger
numbers of variables nt sent to processor 0 in the reduction step. Note that the combina-
tion of MPI Reduce and MPI Bcast could be replaced by MPI Allreduce as done
in [Burstedde et al. 2008, Section 3.1].

In actual finite element computations, the algorithm as stated turns out to not be very
efficient. The reason for this is that for practical problems, error indicators ei are often
scattered across many orders of magnitude, with only large ei. Consequently, reducing the
interval to 1

225 of its original size does not accurately determine a useful threshold value θ.
This problem can be avoided by using a larger number of iterations. A better alternative
is to exploit the fact that the numbers log ei are much more uniformly distributed than ei;
one can then choose m = exp

[
1
2 (log b+ log e)

]
=
√
be. We use this modification in our

code if b > 0, with at most 25 iterations.
The algorithm outlined above computes a threshold so that a certain fraction of the cells

are refined. A different strategy often used in finite element codes is to refine those cells
with the largest indicators that together make up a certain fraction αe of the total error
e =

∑
i ei. This is easily achieved with minor modifications when determining nt. In

either of these two cases, once thresholds θc, θr have been computed in this way, each
processor can flag those among its cells Tploc whose error indicators are larger than θr or
smaller than θc for refinement or coarsening, respectively.

5.2 Transferring solutions between meshes

In time dependent or nonlinear problems, it is important that we can carry the solution
of one time step or nonlinear iteration from one mesh over to the next mesh that we ob-
tain by refining or coarsening the previous one. This functionality is implemented in the
deal.II class SolutionTransfer. It relies on the fact that after setting refinement
and coarsening flags, we can determine exactly which cells will be refined and which will
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be coarsened (even though these sets of cells may not coincide with the ones actually
flagged, for example because the triangulation has to respect the 2:1 mesh balance invari-
ant).

Since the solution transfer is relatively trivial if all necessary information is available
locally, we describe the sequential algorithm first before discussing the modifications nec-
essary for a scalable parallel implementation. To this end, let xi, i = 1 . . . I be the vectors
that we want to transfer to the new mesh. Then the sequential algorithm begins as follows:

—On every terminal (active) cell K that will not be coarsened, collect the values xi|K of
all degrees of freedom located on K. Add the tuple (K, {xi|K}Ii=1) to a list of such
tuples.

—On every non-terminal cell K that has 2d terminal children Kc, c = 1 . . . 2d that will be
coarsened, interpolate or project the values from the children onto K and call the result
xi|K . Add the tuple (K, {xi|K}Ii=1) to a list of such tuples.

Next refine and coarsen the triangulation, enumerate all degrees of freedom on the new
mesh, resize the vectors xi to their correct new sizes and perform the following actions:

—On every terminal cell K, see if an entry for this cell exists in the list of tuples. If so,
which will be the case for all cells that have not been changed at all and those whose
children have been deleted in the previous coarsening step, extract the values of the
solution xi|K on the current cell and copy them into the global solution vectors xi.

—On all non-terminal cells K for which an entry exists in the list of tuples, i.e. those that
have been refined exactly once, extract the local values xi|K , interpolate them to the
children xi|Kc

, c = 1 . . . 2d, and copy the results into the global solution vectors xi.

By ordering the list of tuples in the same way as we traverse cells in the second half of the
algorithm, we can make both adding an element to the list and finding tuples in the list an
O(1) operation.

This algorithm does not immediately work for parallel distributed meshes, first because
we will not be able to tell exactly which cells will be refined and coarsened without com-
munication (a precondition for the first part of the algorithm), and second because, due
to repartitioning, the cells we have after refinement on processor p may not be those for
which we stored tuples in the list before refinement on the same processor.

In our parallel distributed re-implementation of the SolutionTransfer class, we
make use of the fact that the master version of the mesh is maintained by p4est and
stored independently of the deal.II object that represents the mesh including all auxil-
iary information. Consequently, after deal.II notifies p4est of which cells to refine
and coarsen, and p4est performs the necessary mesh modification including the 2:1 mesh
balance (see Section 2.3), we have the opportunity to determine which cells have been re-
fined and coarsened by comparing the modified, p4est-maintained master version of the
mesh and the still unchanged mesh data in deal.II. This allows us to create the list of
tuples in the first part of the algorithm outlined above. In a second step, deal.II calls
p4est to repartition the mesh to ensure a load-balanced distribution of terminal cells; in
this step, p4est allows attaching additional data to cells that are transferred point-to-point
from one processor to another. In our case, we attach the values xi|K . After partitioning
the mesh and re-building the deal.II triangulation, we query p4est for the stored values
on the machine the cell now belongs to. This allows us to perform the second part of the
algorithm like in the serial case, without adding communication to deal.II itself.
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6. MACHINE ARCHITECTURE CONSIDERATIONS

In the description of algorithms and data structures above, we have assumed a rather ab-
stract hardware implementation of a parallel machine whose processor cores are coupled
through MPI. In particular, we have not taken into consideration that some MPI processes
may be “closer” than others (for example because they run on different cores of the same
processor). Neither did we consider that actual program speed depends significantly on
data layout, for example so that we can utilize on-chip vector instructions, or employ off-
chip support through general-purpose graphics processing units (GPUs) that is present in
a number of high-end machines today.

While our numerical results in Section 7 below show that this omission does not affect
the scalability of our approach, it may affect the performance. Consequently, it would be
naive to ignore these considerations given that the “flat” MPI model cannot be expected
to work on future machines with millions of processor cores. This notwithstanding, we
believe that the approach we have chosen is appropriate for the vast majority of large ma-
chines available today and in the near future. We will discuss this in the following subsec-
tions for hybrid computing, GPU acceleration, and vectorization—today’s three primary
directions pointing beyond the “flat”, homogeneous MPI model.

Hybrid computing. Hybrid computing refers to the use of multiple processor cores with
shared memory that form the nodes of a distributed memory machine. In the rest of this
paper, we have assumed that each core hosts a separate, single-threaded MPI process.
One might imagine that it is more efficient to have a single, multithreaded MPI process
per machine. In fact, our implementation in deal.II can be used in this way since
many time-consuming operations (such as assembly and error estimation) are already par-
allelized using the Threading Building Blocks [Reinders 2007], or could relatively easily
be parallelized (e.g. the creation of sparsity patterns or of constraints). However, there are
practical obstacles to this approach. For example, MPI implementations tie processes to
individual cores, ensuring fast access to data that is stored in processor-adjacent memory
whenever possible. On the other hand, multithreaded processes have to deal with the non-
uniform memory access latency if data is stored in the same address space but in memory
chips adjacent to a different processor; starting tasks on new threads almost always also
leads to higher cache miss rates. The biggest obstacle, however, is that while our methods
scale very well in the “flat” MPI model, they would only scale well in a hybrid model if all
parts support multithreaded operation. Unfortunately, this is not the case: in our numerical
experiments, we spend 80-90% of the compute time in solvers provided by either PETSc
or Trilinos, and while those scale well through MPI, neither supports hybrid models. In
other words, utilizing deal.II’s multithreading capabilities will only make sense once
linear solver packages can also do so.

GPU support. While graphics processing units are poorly suited to accelerate the com-
plex and if-then-else laden integer algorithms that form the focus of this paper, they are
ideally suited to accelerate the floating-point-focused linear solvers that consume the bulk
of the compute time in our numerical examples. Again, we have not discussed this interac-
tion in more detail since we use external packages as black box solvers to solve our linear
systems. Once these packages learn to use GPUs, our programs will benefit as well.

Vectorization and streaming. Most CPUs today also have vector operations, though on
a finer scale than GPUs. Their use is, again, primarily confined to the external solver
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packages. At the same time, vectorization is only possible if data can be streamed into
processors, i.e., if data is arranged in memory in a linear fashion. deal.II goes to great
lengths to arrange “like” data in linear arrays rather than scattered data structures, and in
the same order in which cells are traversed in most operations; consequently, it has been
shown to have a relatively low cache miss rate compared to other scientific computing
applications (see, for example, the comparison of SPEC CPU 2006 programs—including
447.dealII—in [Henning 2007]). Similarly, enumerating degrees of freedom in such
a way that vector entries corresponding to neighboring degrees of freedom are adjacent in
memory ensures low cache miss rates; not by coincidence, p4est’s use of a space filling
curve to enumerate cells ensures this property very well, as does our algorithm to assign
degrees of freedom to individual processors (see Remark 2).

In summary, the current lack of support for hybrid and GPU-accelerated programming
models in widely used external solver packages prevents us from using such approaches
in our implementation. At the same time, several of the algorithms discussed here can
efficiently be parallelized using multiple threads once this becomes necessary. Finally,
our numerical results in Section 7 show that our methods scale well on a contemporary
supercomputer and that the limits of the “flat” MPI model have not yet been reached.

7. NUMERICAL RESULTS

In the following, we will present two test cases that are intended to demonstrate the scala-
bility of the algorithms and data structures discussed above. The first test case solves a 2d
Laplace equation on an sequence of adaptively refined meshes. The relative simplicity of
this example implies that the solver and preconditioner for the linear system—while still
the most expensive part of the program—are not completely dominating. Consequently,
we will be able to better demonstrate the scalability of the remaining parts of the pro-
gram, namely the algorithms discussed in this paper. The second test case investigates the
solution of a viscous thermal convection problem under the Boussinesq approximation.

The programs that implement these test cases will be made available as the step-40 and
step-32 tutorial programs of deal.II, respectively. Tutorial programs are extensively
documented to demonstrate both the computational techniques used to solve a problem as
well as their implementation using deal.II’s classes and functions. They are licensed in
the same way as the library and serve well as starting points for new programs.

The computational results shown in the following subsections were obtained on the
Ranger supercomputer at the Texas Advanced Computing Center (TACC) at The Univer-
sity of Texas at Austin. Some computations and the majority of code testing were done on
the Brazos and Hurr clusters at the Institute for Applied Mathematics and Computational
Science at Texas A&M University.

7.1 A simple 2d Laplace test case

The first test case solves the scalar Laplace equation, −∆u = f on the unit square Ω =
[0, 1]2. We choose homogeneous boundary values and

f(x) =

{
1 if x2 > 1

2 + 1
4 sin(4πx1),

−1 otherwise.

The discontinuity in the right hand side leads to a sinusoidal line through the domain along
which the solution u(x) is non-smooth, resulting in very localized adaptive mesh refine-
ment. The equations are discretized using biquadratic finite elements and solved using
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Fig. 6. Two-dimensional scalar Laplace example. Left: Solution u on the unit square. Right: Adapted mesh at an
early stage with 7,069 cells. The partition between 16 processors is indicated by colors.

 0.01

 0.1

 1

 10

 100

 1e+06  1e+07  1e+08  1e+09

W
a
ll 

ti
m

e
 [
s
e
c
o
n
d
s
]

Number of degrees of freedom

256 processors

linear solver
copy to deal.II
error estimation
assembly
init matrix
sparsity pattern
coarsen and refine

 0.01

 0.1

 1

 10

 100

 1e+06  1e+07  1e+08  1e+09

W
a
ll 

ti
m

e
 [
s
e
c
o
n
d
s
]

Number of degrees of freedom

4096 processors

linear solver
copy to deal.II
error estimation
assembly
init matrix
sparsity pattern
coarsen and refine

Fig. 7. Two-dimensional scalar Laplace example. Scaling results on 256 (left) and 4,096 processors (right) for a
sequence of successively refined grids. The various categories of wall clock times are explained in the text. The
labeled categories together account for more then 90% of the total wall clock time of each cycle. In both graphs,
the thick, dashed line indicates linear scaling with the number of degrees of freedom. Each processor has more
than 105 degrees of freedom only to the right of the vertical red line. Both the small number of elements per
processor left of the vertical line and small absolute run times of a few seconds make the timings prone to jitter.

the conjugate gradient method preconditioned by the BoomerAMG implementation of the
algebraic multigrid method in the hypre package [Falgout et al. 2005; 2006]. We call
hypre through its interface to PETSc. Fig. 6 shows the solution along with an adaptive
mesh at an early stage of the refinement process containing 7,069 cells and a partition onto
16 processors.

To demonstrate the scalability of the algorithms and data structures discussed in this
paper, we solve the Laplace equation on a sequence of meshes each of which is derived
from the previous one using adaptive mesh refinement and coarsening (the mesh in Fig. 6
results from three cycles of adaptation). For a given number of processors, we can then
show the wall clock time required by the various operations in our program as a function
of the number of degrees of freedom on each mesh in this sequence. Fig. 7 shows this for
256 and 4,096 processors and up to around 1.2× 109 degrees of freedom.2 While we have

2Note that the next refinement would yield a number of degrees of freedom that exceeds the range of the 32-bit
signed integers used by hypre for indexing (PETSc can use 64-bit integers for this purpose). Unfortunately,
Trilinos’ Epetra package that we use in our second numerical test case suffers from the same limitation.
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measured wall clock times for a large number of parts of the program, the graph only labels
those seven most expensive ones that together account for more than 90% of the overall
time. However, as can be seen, even the remaining parts of the program scale linearly. The
dominant parts of the program in terms of their wall clock time are:

—Linear solver: Setting up the algebraic multigrid preconditioner from the distributed
finite element system matrix, and solving the linear system with the conjugate gradient
method including the application of the AMG preconditioner.

—Copy to deal.II: This is the operation that recreates the mesh in deal.II’s own
data structures from the more compressed representation in p4est. The algorithm is
shown in Fig. 1.

—Error estimation: Given the solution of the linear system, compute and communicate
error indicators for each locally owned cell, compute global thresholds for refinement
and coarsening, and flag cells accordingly (see the algorithm in Fig. 5).

—Assembly: Assembling the contributions of locally owned cells to the global system ma-
trix and right hand side vector. This includes the transfer of matrix and vector elements
locally computed but stored on other processors.

—Sparsity pattern: Determine the locations of non-zero matrix entries as described in 4.1.

—Init matrix: Exchange between processors which non-locally owned matrix entries they
will write to in order to populate the necessary sparsity pattern for the global matrix.
Copy intermediate data structures used to collect these entries into a more compact one
and allocate memory for the system matrix.

—Coarsen and refine: Coarsen and refine marked cells, and enforce the 2:1 cell bal-
ance across all cell interfaces (this includes the largest volume of communication within
p4est; see Section 2.3).

The results presented in Fig. 7 show that all operations appear to scale linearly (or bet-
ter) with the number of degrees of freedom whenever the number of elements per proces-
sor exceeds 105. For smaller element counts per processor, and run times of under a few
seconds, most operations behave somewhat irregularly—in particular in the graph with
4,096 processors—, which can be attributed to the fact that in this situation there is sim-
ply not enough numerical work to hide the overhead and inherent randomness caused by
communication. This behavior is most marked in the Copy-to-deal.II and p4est re-
partitioning operations. (The scalability of the latter has been independently demonstrated
in [Burstedde et al. 2010].)

While the results discussed above show that a fixed number of processors can solve
larger and larger problems in a time proportional to the problem’s size, Fig 8 shows the
results of a “strong” scaling experiment. Here we select two refinement levels that result
in roughly 52 and 335 million unknowns, respectively, and compare run times for different
numbers of processors. Again, above roughly 105 elements per processor we observe
nearly ideal scalability of all algorithms discussed in this paper.

7.2 A thermal convection test case

The second test case considers solving the equations that describe convection driven by
buoyancy due to temperature variations. We model this phenomenon involving velocity,
pressure, and temperature variables u, p, T using the Boussinesq approximation [McKen-
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Fig. 8. Two-dimensional scalar Laplace example. Strong scaling results for a refinement level at which meshes
have approximately 52 million (left) and 335 million unknowns (right), for up to 16,384 processors. The thick,
dashed line indicates linear scaling with the number of processors. Each processor has more than 105 degrees
of freedom only to the left of the vertical red line.

Fig. 9. Solution of the mantle convection test case at two instants in time during the simulation. Mesh adaptation
ensures that the plumes are adequately resolved.

zie et al. 1974; Schubert et al. 2001],

−∇ · (2ηε(u)) +∇p = −ρβTg,
∇ · u = 0,

∂T

∂t
+ u · ∇T −∇ · κ∇T = γ.

Here, ε(u) = 1
2 [(∇u) + (∇u)T ] is the symmetric gradient of the velocity, η and κ denote

the viscosity and diffusivity coefficients, respectively, which we assume to be constant in
space, ρ is the density of the fluid, β is the thermal expansion coefficient, γ represents
internal heat sources, and g is the gravity vector, which may be spatially variable. These
equations are posed on a spherical shell mimicking the earth mantle, i.e., the region above
the liquid iron outer core and below the solid earth crust. Dimensions of the domain,
boundary and initial conditions, and values for the physical constants mentioned above can
be found in the description of the step-32 tutorial program that implements this test case.
Typical solutions at two time steps during the simulation are shown in Fig. 9.

We spatially discretize this system using Qd2 ×Q1 ×Q2 elements for velocity, pressure
and temperature elements, respectively, and use a nonlinear artificial viscosity scheme to
stabilize the advection equation for the temperature. We solve the resulting system in time
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step n by first solving the Stokes part,(
AU B
BT 0

)(
Un

Pn

)
=

(
FnU
FnP

)
, (1)

and then using an explicit BDF-2 time stepping scheme to obtain the discretized tempera-
ture equation at time step n:

(M + αnAT )Tn = FnT . (2)

Here, FnU , F
n
P , F

n
T are right hand side vectors that depend on previously computed solu-

tions. αn is a coefficient that depends on the time step length. AT is a matrix that results
from natural and artificial diffusion of the temperature and M is the mass matrix on the
temperature space.

We solve the Stokes system (1) using Flexible-GMRES and the Silvester-Wathen pre-
conditioner [Silvester and Wathen 1994](

Ã−1U B

0 S̃−1P

)
where Ã−1U , S̃−1P are approximations of the inverse of the elliptic stress operator AU in
the Stokes system and the pressure Schur complement S = BTA−1U B, respectively. We
implement Ã−1U by solving the corresponding linear system using BiCGStab and the ML
implementation [Gee et al. 2006] of the algebraic multigrid method as preconditioner.
S̃−1P is obtained by solving a linear system with the pressure mass matrix, using an ILU
decomposition of this matrix as a preconditioner. This scheme resembles the one also
chosen in [Geenen et al. 2009].

The temperature system (2) is solved using the CG method, preconditioned by an in-
complete Cholesky (IC) decomposition of the temperature system matrix. Note that the
ILU and IC preconditioners are implemented in block Jacobi fashion across the range of
different processors, i.e. all coupling between different processors is neglected.

As expected for simulations of reasonably realistic physics, the resulting scheme is heav-
ily dominated by the linear solver, which has to be invoked in every time step whereas the
mesh and DoF handling algorithms are only called every tenth time step when the mesh
is changed. On the other hand, the highly unstructured mesh and the much larger number
of couplings between degrees of freedom for this vector-valued problem impose additional
stress on many parts of our implementation.

Fig. 10 shows scaling results for this test case. There, we time the first time step with
tn ≥ t∗ = 105 years for a number of different computations with a variable number of cells
(and consequently a variable number of time steps before we reach t∗). The “weak” scaling
shown in the left panel indicates that all operations scale linearly with the overall size of the
problem, at least if the problem is sufficiently large. The right panel demonstrates strong
scalability. Here, scalability is lost once the number of degrees of freedom per processor
becomes too small; this happens relatively soon due to the small size of the problem shown
here (22 million unknowns overall).

8. CONCLUSIONS

In this paper, we present a set of algorithms and data structures that enable us to paral-
lelize all computations associated with adaptive finite element methods. The design of
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Fig. 10. Thermal convection example. Weak scaling with 512 processors (left) and strong scaling with roughly
22 million unknowns (right). In both graphs, the thick, dashed line indicates optimal scaling. In the left graph,
processors have more than 105 degrees of freedom to the right of the vertical red line; in the right graph to the
left of the vertical red line.

our methods is based on a complete distribution of all data structures and avoiding global
communication wherever possible in favor of scatter/gather and point-to-point operations.
However, the key to making this work in practice is not only to distribute storage but also
to think about the details of finite element applications—such as constraints on degrees of
freedom or sparsity patterns—and in particular what kind of information each processor
needs. The question of what processors need to know about what happens on ghost cells
turns out to be crucial to the correctness of resulting programs.

The numerical results presented in Section 7 demonstrate that we can achieve optimal
scalability for those components of the two finite element applications that are within the
scope of this paper. In particular, we could show that all operations scale linearly with the
overall problem size (with fixed number of processors) and with the number of processors
(with fixed problem size, at least for large enough problems). While we have only shown
results for up to 16,384 processors, these scaling results indicate that the methods presented
here are likely to scale significantly further once the required technology for the solution
of even larger problems becomes available in linear solver packages.

Given the complexity and size of typical finite element libraries, it must necessarily be
a significant concern to convert such codes to support massively parallel computations.
In Section 2 we lay out one avenue to perform such a conversion. There, we show how
an existing finite element library can be extended to support fully distributed meshes by
using an external scalable adaptive-mesh provider which we refer to as an “oracle”. This
oracle has to answer a small number of relatively simple questions, and to encapsulate
mesh modification directives for refinement and coarsening, 2:1 mesh balance, and re-
partitioning. In our case, the interface between the deal.II library and the oracle p4est
has only around 600 lines of code (lines of C++ code with a semicolon on it), and the
entire extension of deal.II to support distributed parallel computations required us to
write only approximately 10,000 lines of code (some 2,000 of which have a semicolon, the
majority of the rest being comments and class or member documentation). The external
p4est implementation contains about 25,000 lines of code. These numbers have to be
compared with the overall size of the deal.II library of currently approximately 540,000
lines and its average growth per month of 4,000 lines. A major benefit of this approach is
that it allows us to re-use almost all of the existing code that has been validated for years.
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Generally, we believe that our implementation of the methods introduced here can be
used with relative ease by applications developers. For example, the step-40 tutorial pro-
gram used in Section 7.1 has only around 150 lines of code, which can be compared to the
125 lines in its sequential predecessor step-6 upon which it is based. As a consequence, we
believe that our work not only shows the efficiency of our approach with respect to scaling
to very large problems, but also the possibility of implementing these methods efficiently
with respect to code complexity. We also hope that this article may serve as a guideline to
realize dynamic mesh parallelization within other numerical software packages, and thus
can help making true scalability available to an even broader range of scientists.

The results of our work are available under an open source license starting with re-
lease 7.0 of the deal.II library, as well as through two extensively documented tutorial
programs—step-32 and step-40—that explain the use of these techniques and their imple-
mentation.
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Birkhäuser Verlag.

BANK, R. E. 1998. PLTMG: a software package for solving elliptic partial differential equations. SIAM,
Philadelphia. Users’ guide 8.0.

BRUASET, A. M. AND LANGTANGEN, H. P. 1997. A comprehensive set of tools for solving partial differential
equations; DiffPack. In M. DÆHLEN AND A. TVEITO (Eds.), Numerical Methods and Software Tools in
Industrial Mathematics, pp. 61–90. Birkhäuser, Boston.
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