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Abstract. The simulation of multiphase flow in porous media is a ubiquitous problem in a
wide variety of fields, such as fuel cell modeling, oil reservoir simulation, magma dynamics, and
tumor modeling. However, it is computationally expensive. This paper presents an interconnected
set of algorithms which we show can accelerate computations by more than two orders of magnitude
compared to traditional techniques, yet retains the high accuracy necessary for practical applications.
Specifically, we base our approach on a new adaptive operator splitting technique driven by an a
posteriori criterion to separate the flow from the transport equations, adaptive meshing to reduce the
size of the discretized problem, efficient block preconditioned solver techniques for fast solution of
the discrete equations, and a recently developed artificial diffusion strategy to stabilize the numerical
solution of the transport equation. We demonstrate the accuracy and efficiency of our approach using
numerical experiments in one, two, and three dimensions using a program that is made available as
part of a large open source library.
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1. Introduction. Multiphase flow models in porous media are used in a wide
variety of fields, such as oil reservoirs [4, 38, 39, 60], the flow of magma in the earth’s
crust [44, 58], and transport processes in fuel cells [53, 59]. To illustrate the importance
of such models, let us consider the example of fuel cells. There, current interest is
primarily focused on polymer electrolyte membrane (PEM) fuel cells in which the gas
diffusion layer (GDL) provides pathways for gaseous fuel to reach the catalyst sites,
for electrons produced electrochemically at the catalyst sites [27] to be conducted
to the current collector, and, very importantly, for excess liquid water to exit the
system. Excess water can curtail transport of reactant gases [11] as well as exacerbate
degradation [77]. Improvements in PEM fuel cells are therefore contingent upon
advancements in water management, which crucially relies on the simulation of two-
phase transport phenomena in three-dimensional (3D) heterogeneous porous media
using realistic, complex flow models.
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A number of recent publications have dealt with some of the modeling issues as-
sociated with multiphase flow in porous media. These include the development of im-
proved numerical schemes for simulations of multidimensional wave-oriented upwind
schemes [33], an exponential integrator for advection-dominated reactive flow [73], and
an unconditionally convergent nonlinear solver for hyperbolic conservation laws [45].
An open-source MATLAB implementation offering a flexible discretization which can
be used in more complex structures has also been developed [56]. A good review
of recent efforts to develop either semianalytical solutions for one-dimensional (1D)
verification or novel numerical schemes for solving the governing equations efficiently
is provided by Geiger, Schmid, and Zaretskiy [38].

For PEM fuel cells as well as other applications involving more than one phase
in porous media, the bottleneck for simulations is the speed with which complex 3D
problems can be solved. In this regard, classical finite element and finite volume
methods—while having the potential to accurately represent all the salient physics—
do not always compare favorably against other methods such as pore network modeling
[9, 12, 57, 62, 63] or the lattice Boltzmann method (LBM) [72, 84]. On the other hand,
finite element methods are well understood and integrate easily into many other parts
of the engineering workflow, unlike some of the other methods listed above. Increasing
the computational efficiency of the finite element/volume numerical methods while
retaining their accuracy therefore remains a central challenge.

There are at least five areas which a high performance simulator needs to address
to improve computational speed for a given level of accuracy:

e Higher order spatial discretizations that can yield the same accuracy at
smaller computational cost, but need to incorporate nontrivial stabilization
mechanisms for hyperbolic problems (such as those representing multiphase
flow) to benefit from the higher accuracy.

e Adaptive mesh refinement that can vastly reduce the number of cells required
to resolve the flow field.

e Adaptive time stepping methods that allow the use of large time steps limited
solely by the physical time scale rather than numerical stability.

e Operator splitting methods for coupled problems to transform a complex,
coupled problem into a sequence of simpler problems for which more efficient
solver techniques are available.

e Efficient solver and preconditioning methods that can accelerate the solution
of the linear problems.

In this paper, we discuss a framework that addresses all of these issues and demon-
strate that, with judicious choice of algorithms, we can accelerate the numerical simu-
lation of multiphase flow problems by more than two orders of magnitude compared to
widely used, traditional methods, making possible the simulation of previously inac-
cessible scenarios. At the core of these algorithms is the development of a new criterion
for operator splitting and the adaptation of methods from other fields to accelerate
the solution of linear systems and to stabilize the transport equations. The imple-
mentation of these methods is described in detail, and the associated code is made
available as part of the widely used open source finite element library deal.II [6, 7]
through the extensively documented tutorial program Step-43 [20]. We note that for
more complex models than the ones considered here, an additional point that needs
to be thoroughly addressed is the design of nonlinear solvers (see, for example, [45]),
but we will not consider this here.

To place the proposed techniques into their proper context, in the remainder of
this introduction, we summarize the main contributions of this paper and provide
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an overview of the related literature. The mathematical formulation and algorithm
description are discussed in the subsequent sections.

Higher order discretizations and stabilization issues. Stability issues aris-
ing from the discretization of advection-dominated problems have long led to the
belief that finite volume or upwinding schemes [79] (or their modern incarnation in
the form of discontinuous Galerkin (DG) finite element methods [17]) combined with
the usual set of flux/slope limiters are the only choice; in other words, upwinding
schemes should be preferred over the introduction of artificial diffusion [49]. The pri-
mary reason for this belief is that diffusive stabilization often excessively smoothes
out sharp fronts [42, 82].

On the other hand, it is not completely straightforward to derive upwind schemes
of higher order (see, however, [13, 33]). Higher order methods are attractive because—
up to a certain point—they typically provide the same accuracy with fewer degrees
of freedom and less numerical work. Consequently, the development of stabilization
methods for higher order methods applied to transport dominated problems is an
important step to achieving higher computational efficiency. We have previously
demonstrated an artificial diffusion method that, when used with a general continuous
finite element discretization for the saturation transport (advection) equation in two-
phase flow in porous media, ensures stability and accuracy of the solution [21]. The
method uses an entropy-based diffusion term, proposed by Guermond and Pasquetti
[41], and is able to efficiently damp unphysical oscillations while providing the same
or better resolution for the saturation field as typical low-order DG methods without
upwinding [55]. The trick is to ensure that the artificial viscosity term acts only in the
vicinity of strong gradients in the saturation and other discontinuities, while disabling
it in regions where the solution is smooth. The scheme offers higher order accuracy
at least in smooth regions while providing stability where necessary [41].

Adaptive mesh refinement. In many engineering problems involving fluid dy-
namics, structural mechanics, etc., automated adaptive mesh refinement (AMR) has
been used to obtain numerical solutions with higher accuracy and resolution, while
requiring less memory and shorter computational times. Adaptivity, which can be
traced back to the late 1970s [5], is based on the idea that in order to improve nu-
merical accuracy, a fine mesh is not necessarily required everywhere but only in areas
where the solution varies significantly. A variety of AMR methods have been pro-
posed depending on the type of physical problem and associated partial differential
equations, and a large body of literature exists for these methods (see, for exam-
ple, [2, 8, 16, 80] for a general overview, and [34, 43] for overviews in multiphase
flow). Adaptive methods can be grouped into a number of categories: h-adaptive
methods change the local element size h in response to smoothness properties of the
solution; p-adaptive methods vary the local polynomial order p of the finite element
space; hp-adaptive methods combine the previous two methods; r-adaptive methods
move mesh points [24, 25, 26, 54, 74, 75, 76, 87]; and subgrid methods superim-
pose finer meshes over the original grid where necessary [10]. Despite this variety,
h-adaptive methods are most commonly used in engineering applications today. We
note that the literature on the use of adaptive meshes remains relatively limited for
transient multiphase flow in porous media.

Adaptivity is driven by refinement indicators that specify which cells of the mesh
should be refined, which should be coarsened, and which should remain as they are.
These indicators may be based on error estimates for the underlying partial differ-
ential equation [2, 8, 80]; however, for many applications, simpler error indicators
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based on the smoothness of the solution, such as those proposed in [37, 49], are often
sufficient. In particular, for hyperbolic problems, most refinement criteria will yield
very similar meshes that refine sharp fronts as they evolve in space and time, while
reducing computational cost by keeping the mesh coarse in areas where fine meshes
are not required. For the purpose of this work, we use a relatively simple but effective
refinement criterion that is based on the gradient of the saturation.

Operator splitting techniques. Multiphase porous media flow is a coupled
problem in which the flow and pressure fields affect the transport of individual phases,
but the phase composition also nonlinearly affects the flow and pressure fields. Such
couplings significantly complicate the numerical solution. Operator splitting methods,
first introduced by Douglas, Peaceman, and Rachford [28, 29, 30, 31, 61] and in the
form of fractional step methods by D’yakonov [32] and Yanenko [85], alleviate the
problem by breaking up the coupled problem into a sequence of simpler problems
whose solution can, if necessary, be iterated until sufficient accuracy is reached.

In the context of nonreactive systems of multiphase flow in porous media, two
kinds of operator splitting are typically used: splitting the pressure-velocity calcula-
tion from the saturation calculation (see, for example, [39, 69, 71]), and splitting the
saturation calculation into convection and diffusion components [23, 35, 36, 46]. We
will here focus on the first variant, leading to time stepping schemes that are most
commonly referred to as IMPES (implicit pressure, explicit saturation). In these
schemes, one first solves the implicit, time independent pressure/velocity system with
the current saturation values, and then uses an explicit time stepping scheme to ad-
vance the saturation by one time step.! While this effectively decouples the two
equations, one is left with the important problem that solving the equations for flow
velocity and pressure is much more expensive than solving that for the saturation,
and vastly dominates the overall computational effort. On the other hand, the effect
of the saturation on the flow field is typically weak; i.e., the flow field evolves only
slowly, while the saturation changes significantly at each time step.? Consequently,
we will here explore the possibility of not solving the computationally expensive flow
equations at every time step but only when necessary, thereby significantly reducing
computing time.

Such methods have previously been developed (see, for example, [1, 18, 19]) but
with a fixed number of saturation time steps between each solution of the flow field.
We will here make the timing of solving the flow equations adaptive using a new a
posteriori criterion (see Theorem 3.1 below) relating the change in the velocity to the
change in the saturation since the flow equations were solved last.

Solver and preconditioner techniques. The result of operator splitting meth-
ods is a sequence of linear systems—frequently ill-conditioned, nonsymmetric, and/or
indefinite—that need to be solved efficiently. Their size typically leaves Krylov sub-
space methods as the only viable choice, hence requiring good preconditioners for
efficient solution. In the context of the mixed formulation of porous media flow, the

L An alternative are IMPIS schemes, in which the saturation equation is solved implicitly as well,
thereby avoiding the Courant—Friedrichs-Levy condition on the time step size. The observations of
this article largely remain valid for this variation on the splitting algorithm.

2This is true because in the model we will introduce below, the saturation only enters the equation
defining the velocity as a coefficient in an elliptic operator; see (2.1). On the other hand, for models
that include capillary forces and gravity, the saturation enters the velocity equation as a source term,
and one would need to expect a more immediate impact of changes in the saturation on the velocity
field.
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saddle point structure of the flow problem presents a particular complication. An
overview of solvers can be found in [3, 64, 65, 67]. We will here adapt a method orig-
inally proposed for the Stokes system by Silvester and Wathen [70] that leads to very
efficient preconditioners that can also be shown to easily scale to very large parallel
computations [48].

Overview of the paper. The remainder of the paper presents the mathemati-
cal formulation of the methods outlined above and shows how they can be combined
to form a method that achieves a speed-up of more than two orders of magnitude
compared to a traditional two-phase porous medium solver. Section 2 presents the
mathematical flow model, followed in section 3 by a discussion of the time stepping,
discretization, operator splitting, and stabilization methods. We show numerical re-
sults in section 4. We conclude in section 5.

As mentioned above, the code in which our methods are implemented is available
as part of the open source library deal.II [7] in the form of the extensively docu-
mented Step-43 tutorial program [20]. It is meant as the basis for further experiments
by others. We note that while we only show examples below that use rectangular
grids, nothing in the design of Step-43 prevents the use of deal.II’s facilities for
unstructured meshes approximating complex geometries.

2. Mathematical model of two-phase porous media flow. We consider the
flow of a two-phase immiscible, incompressible fluid. Capillary and gravity effects are
neglected, and viscous effects are assumed dominant. The governing equations for
such a flow are then [39]

(21) U = —KAt (S) Vp,
V- u; =g,
(2.3) eaa—f YV (wF(S)) =0,

where S is the saturation (volume fraction) of the second (wetting) phase, p is the
pressure, K is the permeability tensor, \;(.S) is the total mobility, € is the porosity,
F(S) is the fractional flow of the wetting phase, ¢ is the source term, and u; is the
total velocity. The exact dependency of F, A; on S rests on the chosen media param-
eterization; we will give concrete examples in section 4 when presenting numerical
results. If the porosity € in (2.3) is constant, it can be considered a scaling factor
for the time variable, and could be omitted. However, we will continue to carry this
coefficient for generality.

Equations (2.1)—(2.3) are augmented by initial conditions for the saturation and
boundary conditions for the pressure. Since the flow equations do not contain time
derivatives, initial conditions for the velocity and pressure variables are not required.
The flow field separates the boundary into inflow or outflow parts. Specifically,

(2.4) Lin(t)={x€0Q:n - u <0},

and we arrive at a complete model by also imposing boundary values for the saturation
variable on the inflow boundary T';,,.

3. Numerical methods. As noted in the introduction, the numerical solution
of (2.1)—(2.3) is computationally costly. In the following subsections, we will discuss
the numerical methods we use to solve them efficiently and accurately.
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3.1. Adaptive operator splitting and time stepping. The time stepping
schemes most commonly used to solve equations of the kind (2.1)—(2.3) are of IMPES
type in which one first solves the implicit pressure/velocity system (2.1)—(2.2) with
the current saturation values, and then uses an explicit time stepping scheme to
advance the saturation by one time step using (2.3). In IMPES schemes, the vast
majority of computing time is spent in the implicit solver for the pressure and velocity
variables. Computing efforts may be significantly reduced by noting that the pressure
and velocity fields depend only weakly on the saturation, and therefore do not change
significantly between time steps, whereas saturation fronts typically move by one cell
in each step. We here propose a scheme that solves for the saturation at every time
step, and only updates the velocity and pressure whenever necessary (we will call the
intervals between such updates “macro time steps”). During saturation time steps
in which we do not solve for the velocity, we find a velocity field by extrapolation
from the previous two available velocity solutions. A similar method is described by
Abreu et al. in [1] where the pressure system is only solved once per fixed number of
saturation time steps. A better approach would let the length of the macro time steps
depend adaptively on the changes incurred in the saturation since the last update.

To derive such a scheme, let superscripts in parentheses denote the number of
the time step at which a quantity is defined. Furthermore, let n(*) be the number
of the time step in which we computed the velocity and pressure variables for the

kth time, and consider a time step n so that n®) < n < n®*+1_ For the coupling in

the saturation equation, we only need the velocity u,E”); however, we do not want to

compute u,E”’ but rather use a quantity already computed. Consequently, we need a

criterion that tells us when this approximation becomes inadequate; i.e., we need to
estimate ||u§n) - uin(k)) || without actually computing u§”>.

We will not attempt to derive such an estimate at the level of the original partial
differential equation. Rather, let us assume (as discussed further down below) that we
have discretized the velocity-pressure equations with one of the usual finite element
methods. Then, if we were to solve for the discretized pressure and velocity in time

step n, they would have to satisfy the system of equations

o (G ) (B - ().

where B, BT correspond to the operators —div and V, respectively, and M%(S) cor-
responds to K~1);(S)~!. Obviously, U™, P(™) have to satisfy a corresponding
set of equations. Then we have the following theorem.

TuEOREM 3.1. Let UM™) PO gnd UM P™ be solutions to (3.1) at time
steps n'®) and n, respectively, and assume that the source terms and pressure boundary

conditions are constant in time, i.e., an(k)) = an) = Fo. Furthermore, assume (i)
that the mesh T consisting of cells k is shape regular, (i) that the finite element
space results in a stable discretization, (iii) that [KA:(S)]™! is bounded for the range
of saturations S that appear in the solution, and (iv) that the source term q(x) is
bounded and consequently ||F|| < oo.

Then there exist constants C1,Cs such that

1 1
At (S(nfl)) a A\t (S(n(k>—l))

HU(n) _ U(mm)H < Oy max |x| 1K
1 keT

Lo (x)

71H1||Loo(ﬁ)’

(3.2)
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1 1
A (SC=D) O (SM-1)

HU(”) — U(”(k))H < Coo max ||
oo reT

B e [ e -
(3.3) e

In other words, the theorem provides a way to estimate, up to a constant, how far
)
the unknown velocity ui”) has deviated from the previously computed u," ). using
only the saturations computed at the two time steps involved. We will construct a
concrete indicator from this below.

Proof. Let

() v (8) ee(2)

Under the assumptions of the theorem, A(S) is an invertible matrix and the norm of
G is bounded. Consequently, V(") = A(S("~1)~1G and v = A(S(”(k)’l))’lG
and we have for any vector norm and associated matrix norm

o -0

IN

v _ V("(k))H
= | [as=)1 = a0y G
< a0yt - a0 g

= a0t [ase D) — ase0)] a0y a)

IN

AseDy1| a2 [l agse ) - aseD)|el).

Next observe that among the components of A only M* depends on the saturation,
Le., [JA(SM D) = ASC=D)|| = [ M(SPY 1) — pe(SMD)||. Thus, we get

(5.4 [ut - v < o) - wese )|

by setting C' = supg [|A(S) ™! ||?||F2|| and using the assumed boundedness of A(S) as
a function of saturation S.

Since this holds for any vector and associated matrix norm, we may choose one
that allows for the convenient evaluation of (3.4). To this end, recall that M"(5);; =
(KA(9)) vy, Vj)g- Furthermore, for all common finite element shape functions, we
have },v; = e with e = (1, )T in two dimensions and similar in three dimensions.
Then

sy - nan(s )|

o0

_ mlax; ‘ ({(K& (S(”*l)))il - (K/\t (SW“” D ))1} vmu)

1 1
= max/ — ] Kty
toJa

[At (SG-D) X, (S™-D)
By our choice of finite element space, each of the shape functions v; is nonzero in
only one vector component. Furthermore, it is nonzero only on a patch w; C  that

Q

ds.
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is the union of a number of cells. Let n, be the maximal number of cells meeting at
any one vertex of the triangulation T; then

HMU(5<"—1>) _ M“(SW’”—”)H

< max /
) wi

< n, max ||
weT

1 1

At (S(”*l)) N At (S(n(k)_l)) HK ||1 dw;

(3.5) X .

¢ (S("_l)) At (S("(k)fl))

1K~
Lo (k)

1H1HLm(K)'

The first statement of the theorem follows from this by using (3.4), combining the
norm-dependent constant C' and n, into C7. The second claim of the theorem is
proven in exactly the same way. O

Remark 3.2. Intuitively, one would expect [|[UM™ — U®™)||; to grow with the

distance of S®= from S~ but be more or less independent of the spatial
discretization. On the other hand, the previous theorem seems to indicate that the
difference in velocities decreases with the size of mesh cells x € T since h? = |k|
appears on the right-hand side (with d = dim 2). However, this latter conclusion is
a fallacy; the constant C' in the previous lemma grows like =%, canceling this factor.
Consequently, it is indeed the change in inverse mobilities A\;'(S) along with the
permeability that determines the change in velocities.

Following this reasoning, let us define the following indicator function derived
from the first estimate of the theorem above:

1 1

(k)Y —
(3.6) e(n,n ) = max Y (S("_l)) A (S(n(k)_l))

rET

I I o vy

Lo (x)

This quantity is easily and cheaply evaluated in each time step n. We then update
the velocities and pressures by solving (3.1) whenever we find that 8(n,n*)) > §*,
with 6* a user-provided threshold.

Remark 3.3. In the common case of a diagonal permeability tensor K(x) = k(x)1
the evaluation of (3.6) can be simplified using ||HK’1||1||LQQ(R) = ||I€*1HLOO(K).

Remark 3.4. The criterion above recomputes velocity and pressure whenever the
current velocity would deviate more than a certain amount from the last computed
one. On the other hand, at time steps where we do not recompute it, we use a velocity
field extrapolated from the previous two times it was computed. A more appropri-
ate criterion would therefore compare the (unknown) U (") against the extrapolated
velocity (i.e., a second order change) rather than against U (n™) (a first order change).

A proof of such a statement is immediately apparent. That said, we suspect that
the resulting criterion replacing (3.6) would likely not make a significant difference
other than that we would have to choose a different threshold 8*. The reason is that
we essentially only consider significant changes in the saturation, not infinitesimal
ones. Furthermore, because the saturation is contained in a rather small interval, any
large first order change must necessarily be accompanied by a significant second order
change as well (linear change simply can’t go on for very long if the function has to
be bounded in [0, 1]). Thus, we conjecture that a second order version of the theorem
would result in an indicator that, as far as practical consequences are concerned,
would yield similar results to the first order version described above.
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In summary, the algorithm outlined above allows us to perform a number of

saturation time steps of length Atg") until criterion (3.6) tells us to recompute velocity

and pressure variables, leading to a macro time step of length

At = 3 A

i=n(k) 41

We choose the length of (micro) steps subject to the Courant—Friedrichs-Lewy con-
dition according to the criterion

_ € Mingerhy
20ps ([0 F"(S) oo @)

(3.7) At,

which we have confirmed through numerical experimentation to be stable for the
choice of finite element and time stepping scheme for the saturation equation discussed
below. Here, h, denotes the diameter of cell x and pg the polynomial degree of the
shape functions used to discretize the saturation variable (where we choose ps = 1
in all examples below). The result is a scheme where neither micro nor macro time
steps are of uniform length, and both are chosen adaptively.

As an implementation detail, we note that we always solve the pressure-velocity
part in the first three micro time steps to ensure accuracy at the beginning of com-
putation, and to provide starting data to linearly extrapolate previously computed
velocities to the current time step. A detailed description of the overall algorithm is
shown in Algorithm 1.

Algorithm 1. Adaptive operator splitting for time steps n > 3.

n® « 1;
nM) 2
k=1,
for n+ 3 tol do
Compute the indicator 8(n, n™)) for recomputing u,, p from (3.6);
if 8 > 6* then
Solve the pressure-velocity system for u§">, p();
u; u§”>;
nk+h)  p.
k=k+1;
else
. . n*) nF=1
Compute u} by linear extrapolation to (™) of ug ),u,g ) defined at
t(n(k>), t(n(k_l));
end

Solve the saturation transport equation for S using u;
end

3.2. Spatial discretization and AMR strategy. The IMPES scheme de-
scribed above requires the separate solution of velocity/pressure and saturation equa-
tions. We discretize these on the same mesh composed of quadrilaterals or hexahedra,
using continuous @2 elements for the velocity and @ elements for the pressure; this
choice satisfies the usual Ladyzhenskaya—Babuska—Brezzi (LBB) conditions [14, 17].
We use continuous ()7 finite elements to discretize the saturation equation.
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As mentioned in the introduction, choosing meshes adaptively to resolve sharp
saturation fronts is an essential ingredient to achieving efficiency in our algorithm.
Here, we use the same shock-type refinement approach used in [21] to select those
cells that should be refined or coarsened. The refinement indicator for each cell k of
the triangulation is computed by

(38) Nk = |vsh(xn)|7

where Sp, (%) is the discrete saturation variable evaluated at the center of cell k. This
approach is analogous to ones frequently used in compressible flow problems, where
density gradients are used to indicate refinement. Cells are coarsened if 7, < 6, and
refined if 7, > 6, for given thresholds 6., 0,; see also [21]. Meshes resulting from this
choice can be seen, for example, in Figures 4.4 and 4.10 below.

3.3. Artificial diffusion stabilization of the saturation equation. The
chosen ;1 elements for the saturation equation do not lead to a stable discretization
without upwinding or other kinds of stabilization, and spurious oscillations will appear
in the numerical solution. Adding an artificial diffusion term is one approach to
eliminating these oscillations [17]. On the other hand, adding too much diffusion
smears sharp fronts in the solution and suffers from grid-orientation difficulties [17].
To avoid these effects, we adapt an artificial diffusion term originally proposed by
Guermond and Pasquetti [41].

This method modifies the (discrete) weak form of the saturation equation (2.3)
to read

(3.9)

(Gt ) = ek (51),9) + (- (81).9) -+ ({51751 Vi) =

where v is the artificial diffusion parameter and F' is an appropriately chosen numerical
flux on the boundary of the domain (we use the obvious full upwind flux for this).

Following Guermond and Pasquetti [41], we choose v(S},) as a piecewise constant
function, set on each cell k with diameter h,, as

Res(S)|| 1 (x
(3810)  w(S)|w = Bllur max{F'(S). 1}y min{hmhﬁ‘m},

C(ut, S)

where « is a stabilization exponent and 3 is a dimensionless user-defined stabilization
constant. We choose u; max{F’(S5),1} instead of the true fluid velocity u;F’(S) to
avoid difficulties at so-called sonic points where F”(S) = 0.3 The velocity and satura-
tion global normalization constant, ¢(ug, S), and the residual Res(S) are, respectively,
given by

(3.11) c(ug, S) =cr HutF’(S)HLOO(Q) var(S)® |diam(Q)|* 2

3Taking the maximum with the constant 1 rather than any other number is motivated by the
observation that for physical reasons we need to have F(0) = 0, F'(1) = 1, and so on average over the
interval [0,1] we have F/ = 1. In models such as those used in section 4.1, the saturation remains
within a narrower interval [Swr, 1—Snwr] and one typically has F'(Swr) = 0, F(1—Snwr) = 1. In that
case, one may want to define the artificial viscosity by using the maximum with 1/(1 — Swr — Snwr)
since this is the average value of F/(S) over the physically relevant interval. We believe that either
choice is appropriate—the purpose of the modification is simply to have an artificial viscosity that
is nonzero to ensure convergence to the viscosity limit even in places where F’(S)(x) = 0.
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and
(3.12) Res(S) = (eaa—f +u, - VF(S) + F(S)q) gt

where cp is a second dimensionless user-defined constant, diam(Q2) is the diameter
of the domain, and var(S) = maxqS — mingS is the range of the present saturation
values in the entire computational domain ().

This stabilization scheme has a number of advantages over simpler schemes such
as finite volume (or DG) methods or streamline upwind Petrov Galerkin (SUPG)
discretizations. In particular, the artificial diffusion term acts primarily in the vicinity
of discontinuities since the residual is small in areas where the saturation is smooth. It
therefore provides for a higher degree of accuracy. On the other hand, it is nonlinear
since v depends on the saturation S. We avoid this difficulty by using an explicit
Euler time stepping method, which leads to the following fully discrete problem at
time step n:

(3.13) (65,5”% @h) = (ES,S”‘”, @h) + At (u:;F (s,ﬁ”‘”) ,w)

— A (i B (S0 o) = AR (ST VST V) Ve,

o0

* : . . (n(k)) (n(k—l))
where uj is the velocity linearly extrapolated from u; and u, to the current

time (™ (see Algorithm 1). Consequently, the equation is linear in S’,(l") and all that
is required is to solve with a mass matrix on the saturation space.

3.4. Linear solvers and preconditioning. Following the discretization of the
governing (2.1)—(2.3) discussed above, we are left with solving linear systems first for
the velocity and pressure (if necessary, as determined by the criterion (3.6)) and then
for the saturation. The first of these two has the form

oo (% %) (0 )-(8)

where the individual matrices and vectors are defined as follows using shape functions
v; for velocity and ¢; for pressure:

(3.15) M;lj = <(K)\t (S(n—l)))fl Viavj> , B;j = — (V- Vi, sz)g )

Q
(3.16) (F2); = — (F (S(WU) @ d))ﬂ

We solve this linear system using the generalized minimal residual (GMRES)
method [68]. Ideally, one would want to use the following preconditioner:

s e (F %) e (B 2

where S = B (M") ' BT is the Schur complement [86] of the system. With this
preconditioner, we have

(3.18) p-! ( M BOT ) - ( ! (M")I_lBT )
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It has been shown that GMRES converges in two iterations for this matrix [70]. On
the other hand, we can of course not expect to use exact inverses of the velocity mass
matrix and the Schur complement. We follow an idea by Silvester and Wathen [70]
originally proposed for the Stokes system. Adapting it to the current set of equations
yields the preconditioner

—_~

(3.19) R D0 )

S-1B(Mw)~! —s-1

where a tilde indicates an approximation of the exact inverse matrix. Since (M") -
-1
( (KAt) Vi, Vj)

—_~—

(M“)_1 a single application of a sparse incomplete Cholesky decomposition of this
matrix [40]. On the other hand, the exact Schur complement S corresponds to the
porous media flow operator in nonmixed form, i.e., the operator —V - [KA;(S)]V
applied to the pressure space; consequently, the matrix S = ((K\;) Vi, V;), should
be a good approximation of the actual Schur complement matrix S when applied to
the pressure. S is again symmetric and positive definite, and we use an incomplete

o 18 a sparse symmetric and positive definite matrix, we choose for

Cholesky decomposition of S for S=1. It is important to note that S needs to be built
with Dirichlet boundary conditions to ensure its invertibility. An alternative to the
left preconditioner (3.19) would be to use a right-preconditioner; for ill-conditioned
problems, this can make determining a stopping criterion for GMRES simpler (see
[48]), though we have not found this to be necessary here.

Once the velocity uf is available (either by direct computation or by extrapola-
tion from time steps n*~1) n(*); see Algorithm 1), we can assemble and solve the
saturation equation using

(3.20) MIS™) = Fg,

where ij = (e¢i, ¢;)q, and Fj as given in (3.13). The mass matrix M? is solved by
the conjugate gradient method, using once more an incomplete Cholesky decomposi-
tion as preconditioner.

4. Results and discussion. In this section, we show numerical results that
illustrate the efficiency and accuracy of our combined methods in solving (2.1)—(2.3).
We first verify the accuracy of the methods by solving a 1D test case and evaluating
the numerical solution against an analytical one. We then compare two-dimensional
(2D) simulations with those previously obtained with a simpler finite element method
and then consider a simulation with an unfavorably high mobility ratio that has in the
past been used to demonstrate grid alignment effects. We finally utilize the approach
for 3D computations and in particular show the speed-up obtained to test its efficiency.
In the problems considered here, there will be no internal source term (i.e., ¢ = 0)
and flow will only be driven through pressure and saturation boundary conditions.

4.1. 1D verification. In order to verify the reliability of the proposed methods,
we choose the standard Buckley—Leverett problem [15] as a benchmark test. This set
of equations describes the transient displacement of oil by injected water in a homo-
geneous, 1D horizontal system in the absence of capillary effects. We parameterize
the flow using constant total mobility \; and permeability K, and choose the relative
permeability models for both phases as

kpw = Sg, krnw = (]- - 56)2(1 - 562)7
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TABLE 4.1
Physical parameters used in the 1D verification (Buckley—Leverett) case.

PARAMETER SYMBOL VALUE UNITS
Computational domain Q [0, 300] m
Absolute permeability k 1.0 x 1077 m?
Porosity € 0.2 -

Total mobility At 2.0 kg™!.-m-s
Residual saturation (wetting) Swr 0.2 -
Residual saturation (nonwetting) Snawr 0.2 -
Viscosity (wetting) L 0.001 kg-m~t.s71
Viscosity (nonwetting) Hnw 0.001 kg -m~1.s71
Stabilization exponent a 1.0 -
Stabilization constant B 0.35 -
Normalization constant CR 0.0003 -

where subscripts w,nw represent the wetting and nonwetting phases, respectively,
and where S, = (Sy — Swr)/ (1 — Swr — Snwr) is the effective saturation and S, is the
residual saturation for each phase. It is important to note that physical saturation
levels cannot fall below the residual (or immobile) saturation levels; we therefore set
Se=0if S < Sy, and S, =1 if S > (1 — Spuwr), thus ensuring the fractional flow of
water remains bounded between 0 and 1.

With the two relative permeability models, the fractional flow of water with u,, =
Hnw (see [83]) is then

Mo Era(S)/ s

F S = —— = = = .
) = 3 T e 5o (S) e + i (S) i~ ST+ (1= 5.2 (1=52)

The values of the physical parameters are summarized in Table 4.1. In addition, we
choose initial and boundary conditions as follows:

S(x,0) = 0.2, x € Q,

5(0,t) = 0.795, te[0,7],

p(0,t) =2 x 10°, t € 10,77,
u(300,¢) -n=15x10"", te0,7).

This model, describing the invasion of a water front from left to right, allows
for a semianalytic solution against which we can compare our numerical solution at
t = 1500 days (see [4, 83]). In particular, it is possible to compute the location of
the discontinuity at this time accurately to 198.8. We note that in this test case, the
incompressibility of the fluid leads to a constant velocity and the constant mobility
results in a linear pressure profile. Neither of these two variables changes as a result
of changes in the saturation and can therefore be solved only once at the beginning
of the simulation (this is reflected by the fact that the adaptive operator splitting
indicator (3.6) will always be zero for subsequent time steps).

Figure 4.1 shows convergence of the solution and that the artificial viscosity for-
mulation allows us to resolve shocks with a width of some 5-6 cells and no oscillations.
Figure 4.2 investigates whether using the entropy-based artificial viscosity (3.10) is
indeed better than using a simple, first order artificial viscosity of the form

v(9)|k = Bhu luy max{F"(S), L}H| oo 1)
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F1G. 4.1. 1D test case: Convergence of saturation profiles at t = 1500 days for different levels of
mesh refinement. Left: Global view of the solution. Right: Zoom of the location of the discontinuity.
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F1G. 4.2. 1D test case: Comparison in convergence between the first order artificial viscosity
and the entropy-based artificial viscosity using solutions at time t = 1500 days. Top row: Solutions
after T refinement cycles in the vicinity of the shock (left) and in the leftmost part of the domain
(right). Bottom row: Sizes of the first order and entropy-based artificial viscosity terms in (3.10)
from which the actual artificial viscosities are chosen by taking the smaller one (left), and error
measured in the L1 norm (right).

as is frequently done. The figure shows that the shock is moderately better resolved;
the primary difference, however, is in the resolution of the rarefaction wave at the
left end of the domain, which is accurately represented using the entropy-based for-
mulation, but not so with the first order viscosity that is too diffusive in this area
(as shown in the bottom left panel of the figure, the first order viscosity is orders of
magnitude larger than the entropy-based one). The figure also shows convergence in
the L1 norm that is appropriate for hyperbolic problems, at a rate of approximately
0.9 (the theoretical convergence rate approaches 1 as the polynomial degree of the
finite element space increases) and that the entropy-based artificial viscosity leads to
errors smaller by about a factor of 2 compared to the first order viscosity. We con-
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TABLE 4.2
Physical parameters used in the 2D single-crack and 3D simulations.

PARAMETER SYMBOL VALUE UNITS
Computational domain Q [0,1]¢ m
Porosity € 1.0 -
Viscosity (wetting) Hw 0.2 kg -m~!.s7!
Viscosity (nonwetting) Hnw 1.0 kg-m~t.s7!
Stabilization exponent a 1.0 -
Stabilization constant B 0.3 in 2D; 0.27 in 3D -
Normalization constant CR 1.0 -
Operator splitting threshold o* 5.0 -

clude that even for the relatively simple 1D Buckley—Leverett problem, the benefits
of the entropy-based artificial viscosity are substantial.

4.2. 2D comparison against existing methods. The results of the previous
section show that the method converges to the exact solution as expected. In this
section, we will investigate the level of accuracy we can expect from our method by
comparing it with a widely used method for these equations, namely, using uniform
grids together with discretization by Raviart-Thomas finite elements [66] for velocity
and piecewise constant, discontinuous DG elements for pressure and saturation. This
discretization is equivalent to a standard finite volume method for the saturation in
conjunction with a staggered mesh discretization for the flow variables and satisfies
the usual stability condition [14]; it is the basis for the program used in [55] against
which we will compare results obtained with our algorithms.

To do so, let us consider a 2D test case where we parameterize total mobility \;
and fraction flow F' as follows:

(4'1) /\t(S):/\w(S)+/\nw(S): + )

_ AW(S) _ /\w(S) _ krw(S)/Nw
(42 P =305 = 208 1 a8~ Fra(S) i + hrma(S)frimn

Coefficients are chosen as in Table 4.2. Following a commonly used prescription for
the dependence of the relative permeabilities k.., and k,,,, on saturation, we use

(4.3) kpw(S) = S2, b (S) = (1 — )2

Initial conditions are required only for the saturation variable, and we choose S(x,0) =
0; i.e., the porous medium is initially filled by the nonwetting phase. We prescribe a
linear pressure on the boundaries:

(4.4) p(x,t)=1—x on 90 x[0,T].

As discussed in section 2, pressure and saturation uniquely determine a velocity, and
the velocity determines whether a boundary segment is an inflow or outflow boundary.
On the inflow part of the boundary, I';,(t), we impose

(4.5) S(x,t) =1 on Iy (t)Nn{z =0},
(4.6) S(x,t) =0 on Iy (¢)\{z=0}.

In other words, the domain is flooded by the wetting phase from the left. No boundary
conditions for the saturation are required for the outflow parts of the boundary.
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Fic. 4.3. 2D Single crack porous medium. Left: Permeability contour. Right: Streamline field.

We consider a heterogeneous but isotropic porous media; i.e., we choose the per-
meability tensor as K (x) = k(x) - 1, and choose k(x) as in [55] in the shape of a high
permeability region that meanders from the left to the right (see the shape of the
solution in Figure 4.4):

. 2
(4.7) k(x) = ksm(x) = max {exp <— (y —05- (())..ll-sm(le)) ) ,0.01} .

This permeability field and streamlines for the resulting flow are shown in Figure 4.3.

In order to compare solutions, consider the case when the pressure-velocity sys-
tem is solved once every 10 saturation time steps (fixed operator splitting). Figure 4.4
compares saturation contours between our discretization and the reference discretiza-
tion outlined above at ¢t = 0.589. The results are essentially identical, but it is clear
that the adaptive mesh has far fewer degrees of freedom. Figure 4.5 shows the same
saturation profiles but where the pressure-velocity system is solved only once every
30, 60, and 90 saturation time steps; it is obvious that the errors are getting more
noticeable as the frequency of solving the pressure-velocity part decreases.

In contrast to this, when we drive the operator splitting by criterion (3.6) with
6* = 5, the difference between the two methods vanishes (see Figure 4.6), justifying
our proposed indicator for the operator splitting algorithm. In particular, the solution
so obtained is less diffusive than the one obtained by the reference approach using
DG elements despite the use of a computationally far cheaper approach.

4.3. 2D quarter five-spot problem. The accurate simulation of miscible dis-
placement plays an important role in the prediction of physical representation. Many
such simulations involve adverse mobility ratio displacement; that is, the displacing
fluid flows more easily through the porous medium than does the displaced fluid. For
such cases, it has been demonstrated that numerical methods can suffer from fronts
that are excessively smeared or that suffer from grid-orientation effects depending
on whether flow is parallel or diagonal to mesh lines (see, for example, [47]). The
grid-orientation phenomenon was first observed for immiscible displacement by Todd,
O’Dell, and Hirasaki [78] in 1972. A more dramatic demonstration of the issue was
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F1G. 4.4. 2D test case: Numerical results for our method in comparison with previous work of Li
and Bangerth [55] at t = 0.589. The pressure-velocity system is solved once every 10 saturation time
steps (fized operator splitting). (a) Saturation field using DG space (previous work). (b) Saturation
field using continuous space and adaptive meshes with the stabilizing term and operator splitting
(present work). (c) Saturation profile along y = 0.5. (d) Saturation profile along x = 0.2.

given by Coats et al. [22] in 1974. For a more complete discussion see Vinsome and
Au [81].

Kozdon, Gerritsen, and Christie [47] noted that for some numerical schemes, with
favorable mobility ratios, numerical solutions converge with grid refinement on both
aligned and diagonal grids, while for unfavorable mobility ratios, convergence to the
same solutions is not achieved with grid refinement. In order to verify that our nu-
merical combination with adaptive grids is able to be used to obtain grid-independent
solutions, let us consider results in which the mobility ratio is 30, i.e., the viscosity
ratio fhy/finw = 1/30. As the geometry for this test case, we use a quarter five-spot.
Here an initially nonwetting phase is drained through water injection happening at
the lower left corner. The nonwetting fluid flows out of the domain at the upper right
corner as shown in Figure 4.7. The relative permeability models and fractional flow
of wetting phase used here are the same as described in the previous section.
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comparison with previous work of Li and Bangerth [55] at t = 0.589 when the pressure-velocity
system is solved once every (a) 30, (b) 60, or (c) 90 saturation time steps (fized operator splitting).
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Fic. 4.7. Setup for the quarter five-spot benchmark.

The initial and boundary conditions are defined as

S(x,0) = 0.0, X € Q,

S =1.0, x € [y,
u-n=0.0 x € U'yall,
u-n=0.1 x € 'y,

p=20.0 X € oyt

Material parameters for this setup are summarized in Table 4.3. The corresponding
saturation field is shown in Figure 4.8 at ¢t = 7.773, corresponding to roughly 0.19
pore volumes injected (PVI). This flow field is in good agreement with the results
previously obtained by Kozdon, Gerritsen, and Christie [47] and Edwards [33].



B168 CHIH-CHE CHUEH, NED DJILALI, AND WOLFGANG BANGERTH

TABLE 4.3
Physical parameters used in the 2D quarter five-spot problem.

PARAMETER SYMBOL  VALUE UNITS
Computational domain Q [0,1]? m

Inlet or outlet side length lo 0.1 m
Absolute permeability k 0.1 m?
Porosity € 0.8 -
Residual saturation (wetting) Swr 0.0 -
Residual saturation (nonwetting) Snwr 0.0 -
Viscosity (wetting) Haw 1/30 kg-m~1.s71
Viscosity (nonwetting) Hnw 1.0 kg -m~1.s71
Stabilization exponent « 1.0 -
Stabilization constant B 0.8 -
Normalization constant CR 0.001 -
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Fic. 4.8. Quarter five-spot problem: Saturation contour with puw/pnw = 1/30 and adaptive
grids at t = 7.773.

4.4. 3D simulations. To evaluate the solution approach in three dimensions,
we choose initial and boundary conditions in the same way as in the 2D simulations in
section 4.2. Furthermore, we consider a heterogeneous but isotropic porous medium
with a pseudo-random permeability described by

N
k(%) = kppm(x) = min ¢ max > Wy(x),0.01 5,45,

(4.8) =1

2
X —X
i) =exp (- (2
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F1G. 4.9. 3D test case: Permeability fields of random porous media (N = 200). Left: Values
on the surface of the domain. Right: Values along cutplanes through the center of the domain.

Fia. 4.10. 3D test case: Saturation distribution in a random porous medium with N = 200 at
t =0.75 (8,464 elements and 262,949 degrees of freedom).

The N centers x; of high permeability regions are randomly chosen in 2. The per-
meability field is truncated from above and below to ensure a reasonable limit on
the heterogeneous contrast. We will present results for N = 200, for which k(x) is
depicted in Figure 4.9.

Figure 4.10 shows the saturation distribution and corresponding adaptive grids
as simulations progress, while Figure 4.11 shows a volume rendering of the invading
wetting phase. The results of the inhomogeneity on the shape of the invading front
are clearly visible.

In order to evaluate the adaptive operator splitting method, let us consider the
number of saturation time steps between successive solves for the velocity and pressure
variables, as determined by criterion (3.6). This is shown in Figure 4.12 for two
different values of the threshold 6*. Not surprisingly, choosing a larger value for
the threshold relaxes the constraints and leads to more saturation time steps between
macro solves. In both cases these numbers increase as the simulation progresses. This
can be explained by observing that flow initially happens along only a few fingers but
then spreads out across higher permeability areas; the average velocity of the front
therefore declines, leading to smaller saturation changes per time step. From this
figure, it is obvious that even with the tighter of the two criteria, the savings in
the number of flow solves are at least a factor of 10 when averaged over the entire
simulation; given that the flow solve is far more expensive than that for the saturation
equation, the savings in computing time are corresponding. In addition, the variability
of the time between macro solves shown in the figure illustrates the need for an
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Fic. 4.11. 3D test case: Time evolution of the invading wetting phase front in the same
situation as in Figure 4.10. (a) t = 0.19. (b) t =0.38. (c¢) ¢ = 0.57. (d) ¢t = 0.74.
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F1a. 4.12. Numbers of saturation time steps between two solutions of the wvelocity-pressure
system (i.e., between n(®) and n(¥=1)) for thresholds 0* = 5 and 60* = 8 in criterion (3.6).

adaptive criterion, rather than simply solving the flow equations every fixed number
of time steps.

4.5. Performance evaluation. In our final set of numerical experiments, we
will compare the performance of our approach with algorithms that use simpler
meshes, solvers, or operator splitting methods. We will do so both in two as well
as in three dimensions, where computations are typically very expensive due to the
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TABLE 4.4
Comparison of performance (total wall clock time in days from t = 0 to t = 2 with N =
200 and 0* = 5) for four combinations of our algorithms: uniform mesh (“UM”), adaptive mesh
(“AM?”), adaptive mesh plus adaptive operator splitting (“AM+AOS”), and adaptive mesh plus
adaptive operator splitting plus block preconditioning (“AM+AOS+BP”).

UM AM AM+AOS AM+AOS+BP
CPU time (days), 2D single crack 7.2 4.2 0.2 0.04
CPU time (days), 3D random porous | 96.5 55.9 7.5 0.58

number of degrees of freedom required to solve sharp fronts. In particular, we com-
pare the run time of different combinations of the methods discussed herein (adaptive
mesh, adaptive mesh plus adaptive operating splitting, and adaptive mesh plus adap-
tive operating splitting plus block matrix preconditioning). The number of degrees of
freedom ranges from 2,176 to 41,732 in two dimensions, and from 63,490 to 449,999
in three dimensions. All other conditions, including the use of the same CPU (AMD
Opteron 2.2 GHz), are identical between simulations, and we use the same parameters
as well as the same minimum element size h. The base line code uses a uniform mesh,
solves the velocity/pressure system in each saturation time step, and uses the Schur
complement solver previously used in [55].

Table 4.4 shows run times for the various combinations. Mesh adaptivity alone
improves performance in the 2D/3D cases by about 43%. The adaptive operator
splitting plus adaptive grids (third column) already provides up to 92% reduction in
computing time compared with using uniform grids and solving the velocity-pressure
system in each time step. Finally, the combination of all methods considered in this
paper reduces compute time by a factor of 160-180, making computations possible
that would otherwise be unachievable. The compute times could be further acceler-
ated by parallelizing operations across multiple cores of a single computer, or across
the nodes of a cluster. For example, we report in [48] that all of the techniques out-
lined here can be scaled to hundreds or even thousands of processors in the context
of solving a problem described by the Boussinesq approximation that is structurally
similar to the equations used here.

5. Conclusions and future work. Motivated by the computational expense
of the methods that are traditionally used for this task, we have presented efficient
integrated numerical methods allowing high-resolution simulation of two-phase flow
in porous media. The methods are based on a finite element discretization using
continuous elements and consist of (i) an adaptive operator splitting method that
only recomputes the velocity and pressure variables whenever necessary, as determined
by a new objective indicator; (ii) block matrix preconditioning methods that greatly
reduce the compute time needs; (iii) an entropy-based stabilization term that preserves
accuracy and ensures stability; and (iv) locally adaptive mesh refinement allowing
highly resolved time-dependent simulations. The robustness and effectiveness of the
numerical methods were demonstrated through a number of simulations and compared
with regard to both their accuracy as well as the required CPU time. In addition, the
methods described here provide no significant bottleneck to parallelization and can
be made to run on clusters of computers using the techniques discussed in [48] for
even greater computational efficiency. As also shown there, the cost of refining the
mesh occasionally is negligible, and thus even small reductions in the number of cells
due to adaptivity pay off in terms of overall run time.

More complex multiphase flows involve additional physical processes, such as
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multiple interacting phases or capillary effects with a capillary pressure relationship
that is fundamentally dependent on material properties and operating conditions,
saturation, wettability, and other material properties [50, 51, 52]. The addition of
such terms obviously complicates the computation of solutions, but we believe that the
techniques described herein can readily be extended to such problems. In particular,
following a similar mathematical procedure to that described in section 3.1, it should
be possible to extend our operator splitting indicator to these more complex situations.

A natural starting point for experiments in this direction would be the freely avail-
able and extensively documented source code for the experiments discussed herein [20].
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