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Abstract – We investigate application of goal-oriented mesh adaptivity to the SPN multigroup equations.
This technique utilizes knowledge of the computational goal and combines it with mesh adaptivity to accu-
rately and rapidly compute quantities of interest. Specifically, the local error is weighted by the importance
of a given cell toward the computational goal, resulting in appropriate goal-oriented error estimates. Even
though this approach requires the solution of an adjoint (dual) problem, driven by a specific source term for
a given quantity of interest, the work reported here clearly shows the benefits of such a method.

We demonstrate the level of accuracy this method can achieve using two-dimensional and three-
dimensional numerical test cases for one-group and two-group models and compare results with more
traditional mesh refinement and uniformly refined meshes. The test cases consider situations in which the
radiative flux of a source is shielded and are designed to prototypically explore the range of conditions
under which our methods improve on other refinement algorithms. In particular, they model strong con-
trasts in material properties, a situation ubiquitous in nuclear engineering.

I. INTRODUCTION

Mesh adaptation techniques aim at locally refining
or coarsening mesh cells in a computational domain in
order to obtain an accurate approximate solution of a
partial differential equation with lower memory require-
ments and in less CPU time compared to a uniform mesh
approach. In the past two decades, these techniques have
received significant attention in the mathematical1 and
engineering sciences communities2 and, more recently,
in nuclear science and engineering; see, e.g., Refs. 3 and
4 for one-group two-dimensional ~2-D! discrete ordi-
nates transport, Refs. 5 and 6 for one-group 2-D diffu-
sion, Ref. 7 for multigroup one-dimensional diffusion,
Refs. 6 and 8 for 2-D and three-dimensional ~3-D! multi-
group diffusion, and Ref. 9 for multigroup 2-D SPN .

Standard adaptive mesh refinement ~AMR! tech-
niques are based on the availability of a quantity that
estimates or approximates the error locally, i.e., the dif-
ference between the exact and numerical solutions, for
each cell; one then aims at equi-distributing the error
throughout the mesh by refining cells that have a large
error and possibly coarsening cells with small errors un-
til the overall error is below a prescribed threshold.10–13

While such methods have been proven to be highly effi-
cient and accurate compared to uniformly refined meshes,
this “traditional” approach to adaptivity is not always
optimal for the following reasons and can be further
improved:

1. Obtaining a highly accurate solution in every sin-
gle mesh cell of the computational domain may not be
necessary from a practical engineering point of view.
Rather, one frequently runs a simulation with a particu-
lar goal in mind. Consequently, the ultimate answer soughtE-mail: ragusa@ne.tamu.edu
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may be a functional of the solution rather than the solu-
tion itself. In nuclear engineering, examples of such func-
tionals may include reaction rates, fluxes, and currents,
either at a single point or integrated over a subdomain,
for all or a portion of the energy range.

2. In some cases, where the solution can vary by
orders of magnitude over the whole domain, the absolute
error in regions of low values may be negligible, whereas
the relative error in these same regions may still be un-
acceptably high. Examples of such situations include
shielding problems, where standard AMR techniques
would tend to refine the mesh where the solution is large
and experiences significant spatial variations, e.g., in the
source region and at the source0shield interface, whereas
the zone past the shield ~often the region of interest!
would not be refined and can present large relative er-
rors, even when standard AMR is used.

In order to address these points, goal-oriented adap-
tivity has been developed over the course of the last
decade.10,11,14–18 This method derives error estimates for
the goal of the computation rather than for the global
error in the solution. Cellwise refinement indicators are
then composed of both the local error ~i.e., how well we
approximate the exact solution on this cell! as well as a
quantity ~the “dual weight”! that describes how impor-
tant the accuracy of the solution on a given cell is toward
the goal of the computation. For example, it may be that
a large error can be tolerated on a cell far away from the
region of interest, and a small dual weight will then in-
dicate that this cell does not need to be refined despite its
large absolute error. Conversely, a cell with a relatively
small error may still require further refinement if this
cell is important for our goal as indicated by a large dual
weight.

The quantities of interest that drive the adaptation in
the goal-oriented calculations are user-defined ~see the
examples given in Sec. III.D!. In the formalism that we
outline in Sec. III, it becomes clear that the goal func-
tional defines the source terms of an adjoint equation
whose solution ~the dual or adjoint solution! will give
rise to the dual weights for the goal-oriented error indi-
cators. This process requires that not only the original
primal ~or forward! problem but also the adjoint prob-
lem be solved at each mesh adaptivity cycle. We show
that this combined process is still significantly more ef-
ficient than using uniform meshes or standard AMR be-
cause it can generate meshes that are tailored toward a
particular goal rather than resolving the solution every-
where. As a consequence, one is able to achieve greater
precision with fewer unknowns and smaller run time. As
will be shown through our numerical results, the reduc-
tion in CPU time is at least one order of magnitude and
sometimes more. Finally, we note that the use of a deter-
ministic adjoint solution is widely spread in the Monte
Carlo community to devise automatic variance-reduction
algorithms; see, e.g., Refs. 19 and 20.

In this paper, we apply goal-oriented adaptivity to
the multigroup SPN equations. The SPN equations have
been observed to yield improved results when com-
pared to the diffusion approximation of transport phe-
nomena and are less computationally demanding than
other higher-order transport approximations such as the
spherical harmonics ~PN ! and discrete ordinates ~SN !
methods.21 In addition, the SPN equations can be recast
into a set of coupled diffusion-like equations, with La-
place operators, and standard linear algebra techniques
such as preconditioned conjugate gradient can easily be
used to solve such systems of equations. Moreover, the
error estimates used in this work have been shown to
perform well for elliptic problems, and the results of
this paper demonstrate that this is also the case for the
problems considered here. In fact, using the techniques
described below, we believe that we are able to drive
the numerical error far below the modeling error that
results from replacing the transport equations by the
SPN approximation. As a consequence, one can argue
that this level of accuracy may not be necessary in the
current context. Nevertheless, we believe that the cur-
rent study serves as an important proof of concept that
duality-based error estimation techniques are a useful
tool for high-fidelity numerical simulations in nuclear
engineering applications. We expect that such tech-
niques can also be extended to higher-fidelity transport
approximations, using the methods described in Ref. 22
for the demonstration of AMR applied to the SN approx-
imation and Ref. 23 for AMR applied to the PN form of
the transport equation. Finally, Refs. 24 and 25 describe
techniques to extend goal-oriented techniques to eigen-
value problems; such methods could be used to com-
pute the critical eigenvalue keff in reactor calculations.

The outline of this paper is as follows. In Sec. II, we
briefly review the SPN equations and their finite element
discretization. Section III reviews the principles of mesh
adaptation and provides a derivation of the goal-oriented
error estimator used herein. Refinement strategies and
quantities of interest are also discussed in Sec. III. We
present 2-D and 3-D results for one-group and multi-
group problems in Sec. IV and give concluding remarks
in Sec. V.

II. MATHEMATICAL FORMULATION FOR
THE SPN EQUATIONS

The aim of this paper is to discuss the feasibility of
goal-oriented simulations in nuclear science and engi-
neering applications. It is meant to be a proof of prin-
ciple, and given the high phase-space dimensionality of
the transport equation, only the simplified PN ~SPN !
equations21,26–28 are solved here instead of the full trans-
port equations. Since the focus of this paper is on ad-
vanced numerical techniques, the reader is referred to
the cited references for a more complete discussion of
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the approximations and the validity of the SPN equations.
However, we note that the numerical examples em-
ployed here have been shown to be adequately treated
with the SPN approximation,29 even though in general
the SPN answers do not converge to the exact transport
answers.

II.A. Variational Form

The multigroup SPN approximation is employed. Let
g denote the energy group index ~1 � g � G! and con-
sider N flux moments Fg,n~r! for a given group g, with
0 � n � N ~N is odd! denoting the moment index. In the
SPN approximation, one can recast the system of N � 1
coupled first-order differential equations as a system of
M � 1

2
_ ~N � 1! coupled second-order differential equa-

tions, with the M even modes Fg,n~r! ~n � 0, 2, . . . , N �
1! as unknowns. Using appropriate linear combinations
of these even fluxes into a vector of composite even
fluxes Fg~r! � ~Fg,1,Fg,2 , . . . ,Fg,M !T of size M, the SPN

approximation then yields the following set of coupled
diffusion-like equations:

�¹{~s o !�1¹F � C�Ts eC�1F

� C�TS e � ¹{~s o !�1So . ~1!

where

so, se � G � G matrices of M � M matrices encod-
ing the absorption and scattering coeffi-
cients and their angular moments

C � M � M matrix coupling different angular
modes

S e, So � mode-dependent even and odd source
terms.

Summation over appropriate indices is implied; for
example,

~C�Ts eC�1F !g, m � (
g '�1

G

(
m ', m '', m '''�1

M

~C�T !mm '

� sgg ', m 'm ''
e ~C�1 !m ''m '''Fg ', m ''' .

The above equations are complemented by Marshak
boundary conditions

n{¹F � n{So � s oAo
�1 BC�1F � s oAo

�1 J inc , ~2!

where

Ao , B � M � M matrices coupling individual modes

Jg, m
inc � incoming boundary sources for energy group

g and mode m.

We have used a particular Legendre polynomial scaling
that makes the matrices Ao , B, and C less cumbersome,
resulting in a simpler code implementation. For addi-
tional details, we refer the reader to Refs. 9 and 30.

The weak or variational formulation of the SPN equa-
tions is obtained by multiplying Eq. ~1! with a test func-
tion b~r! ~also composed of group and mode components!,
integrating over the domain V, and integrating second
derivatives by parts. This yields the weak form

�
V

@¹b# T~s o !�1 @¹F # ��
V

bTC�Ts eC�1F

��
]V

bTn{~s o !�1¹F

� �
V

bT @C�TS e � ¹{~s o !�1So # , ~3!

where contraction over mode and group indices is again
implied. In the third term of Eq. ~3!, we use the boundary
condition Eq. ~2!. Furthermore, we can integrate by parts
to obtain �*V bT ¹{~so !�1So � *V @¹b# T~so !�1So �
*]V bTn{~so !�1So . Inserting this relation and Eq. ~2! into
the weak form, Eq. ~3!, yields

�
V

@¹b# T~s o !�1 @¹F # ��
V

@C�1b# Ts e @C�1F #

��
]V

bTAo
�1 BC�1F

� �
V

bTC�TS e ��
V

@¹b# T~s o !�1So

��
]V

bTAo
�1 J inc . ~4!

Using abbreviations for the left and right sides, the
problem to solve is then to find composite flux moments
F such that

a~b,F ! � l~b! for all test functions b , ~5!

where a~{,{! is the bilinear form and l~{! is the linear
form associated with the left and right side terms, respec-
tively. Note that the bilinear form is nonsymmetric be-
cause of the boundary terms, whereas the domain terms
are symmetric in the one-group case ~so is then a diag-
onal matrix!. In the multigroup case, the diagonal blocks
of so and se contain the intergroup scattering matrices,
which are nonsymmetric.

II.B. Discrete Problem

Galerkin methods approximate the solution F of
Eq. ~5! by considering linear combinations of basis func-
tions bj~r!,

Fh~r! � (
j�1

P

gj bj ~r! , ~6!
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and determining the P coefficients gj by requiring that
the following P equations hold:

a~bi ,Fh ! � l~bi ! for 1 � i � P . ~7!

Expanding Fh in this way, Eq. ~7! leads to the following
linear problem:

AG � L , ~8!

where

Aij � a~bi , bj !

Gi � gi

Li � l~bi !.

For future use, let us subdivide the P coefficients gi and
the shape functions bi by energy groups g and angular
modes m. For each component g, m, we will then have
Pg,m shape functions bg,m, i , i � 1, . . . , Pg,m ; each of these
shape functions is still a vector of GM components, but
only the g, m’th of these components is nonzero. Corre-
spondingly, gg,m, i , i � 1, . . . , Pg,m are the unknown coef-
ficients. There is a total of P � (g�1

G (m�1
M Pg, m such

shape functions and coefficients. Using this subdivision,
we can conceptually think of A as a matrix with GM �
GM blocks, and G and L as vectors with GM blocks. We
then solve the linear system in Eq. ~8! using a block
Gauss-Seidel method, where each block represents one
energy and mode. The diagonal blocks are symmetric
and positive definite, and we invert them using a stan-
dard conjugate gradient method, preconditioned by suc-
cessive overrelaxation.

In finite element methods, the basis functions are typ-
ically defined on a grid composed of triangles0quadri-
laterals ~in two dimensions! or tetrahedra0hexahedra ~in
three dimensions!, and using functions that are polynomi-
als on each cell and continuous across cell faces. Theoret-
ically, we could use shape functions bg, m, i defined
independently on GM different meshes Tg, m . Some or
all of these meshes may, but need not, coincide. Allow-
ing meshes to differ allows a proper distribution of mesh
cells to achieve high accuracy with a reduced number of
cells but at a possibly increased algorithmic cost. For
traditional AMR methods applied to the multigroup dif-
fusion approximation, this idea is investigated in Ref. 8.
In particular, note that using different meshes per group
and moment also gives us the freedom to approximate
certain energy groups or moments with higher accuracy
than others, which is a feature that we use for the goal-
oriented AMR techniques discussed below.

Whether such a level of flexibility in choosing dif-
ferent meshes is necessary in practice to achieve effi-
cient solution methods is a question that we investigate
in Sec. IV. It will turn out that at least for the cases
tested, there is in fact little additional benefit from using
different spatial meshes for different angular modes,
though this question is far from obvious. On the other

hand, as determined in Ref. 8, using different meshes
for different energy groups can make computations less
costly, and therefore, we always employ different spatial
meshes for each energy group. We would like to point
out in this context that the computational overhead of
working with different meshes compared to only a single
mesh is not very large if we can make a number of basic
assumptions on the meshes; for instance, efficient algo-
rithms and data structures for this case have been pro-
posed and investigated in the context of the multigroup
diffusion approximation in Ref. 8.

III. ERROR ESTIMATION AND h-ADAPTIVITY

As mentioned in Sec. II, we would like to assume, at
least conceptually, that we have GM different meshes
Tg,m on which we discretize the variables Fg,m for the
g’th energy group and the m’th angular moment. In order
to use this flexibility, we need to define a practical way
in which we can construct these different meshes. In
finite element approximation, mesh adaptivity is typi-
cally driven through the use of error estimates. In its
most basic form,31 adaptivity requires that we solve the
problem on a coarse mesh and then evaluate an error
estimator or error indicator that provides, for any given
cell, an estimation of the cell contribution to the global
error. Then, for mesh refinement, we select the cells that
have the largest errors, and for mesh coarsening, we se-
lect those with the smallest errors. We thereby arrive at
an adapted mesh on which this procedure is repeated
until the overall error is satisfactorily small.

The key to applying such an approach is error indi-
cators. For model problems, a vast body of literature
exists ~see, for example, Refs. 1, 10, 12, and 13 and the
references therein!. In this work, however, we have to
deal with three nonstandard complications: ~a! a fairly
complex mathematical model that lacks many of the prop-
erties often used in the derivation of error estimates,
such as coercivity or symmetry; ~b! a multitude of meshes,
all of which could be adapted independently; and ~c! the
fact that the quantities of interest are not natural norms
of the solution but are often localized quantities.

III.A. Duality-Based Error Estimates

We approach this problem by basing our refinement
indicators on the idea of duality-based or goal-oriented
error estimates ~see, for example, Refs. 10, 11, and 14
through 18!. To this end, let us assume that we are not
interested in the solution F ~r! itself but in a functional
J ~F !. One particularly simple functional could be the
average over area v � V of the zeroth moment of the
composite flux in the third energy group, i.e., J ~F ! �
~106v6!*vF3,0~r! dr; other examples are given later in
this section. For simplicity, we assume that J ~{! is a linear
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functional, though the formalism can easily be extended
to nonlinear functionals as well.11

Our goal is then to accurately compute J ~F !, but all
we have available is J ~Fh !, computed from the numeri-
cal approximation Fh on our current mesh. To assess the
accuracy of our answer, we would, therefore, need to
estimate the error in the quantity of interest 6J ~F ! �
J ~Fh !6� 6J ~e!6, where the error is defined as e �F �Fh .
In order to estimate this error in J, let us assume that we
have access to the solution ZF of the dual or adjoint prob-
lem defined by

a~ ZF , b! � [a~b, ZF ! � J ~b! for all test functions b .

~9!

Note that compared to Eq. ~5!, the order of test func-
tions and solution on the left has been inverted, resulting
in the use of the adjoint operator, obtained by taking
the transpose of matrices appearing in the bilinear form

of Eq. ~5!. In a similar vein to Eq. ~7!, let us define the
numerical approximation ZFh to ZF :

a~ ZFh , bi ! � J ~bi ! for 1 � i � P . ~10!

Since Eq. ~9! has to hold for all test functions b, it is
also true for b � e, yielding the equation

J ~F ! � J ~Fh ! � J ~e! � a~ ZF , e! .

Next, we use the Galerkin orthogonality property of
Galerkin methods: From Eq. ~7! and Eq. ~5!, it follows
that a~bh ,Fh ! � l~bh ! and a~bh ,F ! � l~bh ! for all finite
element functions bh . Consequently, a~bh , e! � 0. Since
ZFh is a finite element function as well, we conclude that

also a~ ZFh , e! � 0. As a consequence, we obtain

J ~F ! � J ~Fh ! � a~ ZF , e! � a~ ZF , e! � a~ ZFh , e! � a~ [e, e! ,

where the dual error is defined as [e � ZF � ZFh . Using the
definition of the bilinear form in Eq. ~4!, we can write
this equation as a sum over all cells K that appear on the
various meshes Tg,m :

J ~F ! � J ~Fh ! � (
g, g '�1

G

(
m, m '�1

M

(
K �Tg, m

�
K

@¹ [eg ', m ' #
T~s o !g 'g, m 'm

�1 @¹eg, m #

� (
g, g '�1

G

(
m, m ', m '', m '''�1

M

(
K �Tg, m

�
K

@Cm ''m '''
�1 [eg ', m ''' #

Tsg 'g, m ''m '
e @Cm 'm

�1 eg, m #

� (
g�1

G

(
m, m ', m '', m '''�1

M

(
K �Tg, m

�
]K�]V

[eg, m '''
T @Ao

�1#m '''m '' Bm ''m 'Cm 'm
�1 eg, m .

This equality can be used to define a cellwise error quantity hK, g,m for each cell K of each of the meshes Tg,m :

hK, g, m � (
g '�1

G

(
m '�1

M �
K

@¹ [eg ', m ' #
T~s o !g 'g, m 'm

�1 @¹eg, m #

� (
g '�1

G

(
m ', m '', m '''�1

M �
K

@Cm ''m '''
�1 [eg ', m ''' #

Tsg 'g, m ''m '
e @Cm 'm

�1 eg, m #

� (
m ', m '', m '''�1

M �
]K�]V

[eg, m '''
T @Ao

�1#m '''m '' Bm ''m 'Cm 'm
�1 eg, m . ~11!

These error quantities could then be used to determine whether a cell K on a mesh Tg,m should be refined, coarsened,
or left unchanged. Note that we have the equality J ~F ! � J ~Fh ! � (g�1

G (m�1
M (K�Tg, m

hK, g, m .

III.B. Duality-Based Refinement Indicators

While accurate, the error quantities defined in Eq. ~11! have two significant drawbacks: ~a! their computation
requires that we know the errors e, [e for which one would have to know the exact primal and dual solutions F , ZF ; this
problem can be addressed by approximating the errors in various different ways ~see, for example, Ref. 11! and
~b! the formula is long and would be awkward to implement.

Instead of using the full definition of hK, g,m and approximating e and [e, we use here a simpler approach. Rather
than implementing an error estimator that evaluates approximations of hK, g,m as best as possible, let us define a
quantity IhK, g,m that may not be a mathematically exact approximation but that captures the essential features of
hK, g,m . Here, it is important to remember that a local criterion to determine whether a cell should be refined,
coarsened, or left unchanged is all that is required. Hence, cells with large error contributions hK, g,m must also have
large refinement indicators IhK, g,m and vice versa. To this end, note that each term in hK, g,m contains both the primal
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and dual errors e, [e. Intuitively, this means that in order
to estimate J ~F ! � J ~Fh !, we have to consider the error e
in the primal solution on each mesh cell and also weigh
it with a factor that contains the error in the dual solution
[e � ZF � ZFh . The equation that ZF has to satisfy involves

J ~{! as its right side source term and transports informa-
tion into the opposite ~adjoint! direction from the primal
problem. Thus, the weighting factor indicates how im-
portant a cell’s contribution is toward computing J ~F !.
For simplicity, goal-oriented adaptivity often employs
the same adapted meshes for the primal and dual prob-
lems; our implementation follows this prescription. We
note that the price one pays for abandoning hK, g,m in
favor of IhK, g,m is that we will no longer be able to accu-
rately estimate the actual level of error in our computa-
tions. On the other hand, if our goal is only the
computation of refinement indicators, our results below
show that this simplification is certainly still useful.

One way to define refinement indicators is, there-
fore, to use the product of primal and dual errors, IhK,g,m �
7¹eg,m7K7¹ [eg,m7K . While this still requires knowledge
of the exact primal and dual solutions, we can use the
following widely used approximation for elliptic
problems8,32:

IhK, g, m � hK7@@]nFh, g, m ##7]K7@@]n ZFh, g, m ##7]K , ~12!

where hK is the diameter of cell K on mesh Tg,m and
@@]n c## is the jump of the gradient of quantity c across
the boundary ]K between cell K and its neighbors.

It is clear that a sharp mathematical bound of the
error may have been lost in the derivation of this indica-
tor. As a consequence, we note that refining meshes based
on IhK, g,m could be less efficient than if we had used
hK, g,m ; i.e., we expect that more cells will be necessary
to achieve a certain accuracy. Nevertheless, as we dem-
onstrate in our numerical results in Sec. IV, our heuristic
derivation for a goal-oriented error indicator still leads
to more accurate answers than standard AMR tech-
niques. In particular, we show that our approach is more
efficient than global ~uniform! mesh refinement and more
efficient than using a refinement indicator that only takes
into account the accuracy in the primal solution and dis-
regards the importance factor derived from the dual so-
lution. The latter constitutes the standard AMR approach,
and as a representative of this class of algorithms, we
compare our goal-oriented refinement indicator against
the one commonly referred to as the Kelly refinement
indicator32 and defined by

IhK, g, m
Kelly � hK

1027@@]nFh, g, m ##7]K . ~13!

III.C. Refinement Strategies

Once refinement indicators IhK, g,m have been ob-
tained using, for example, Eq. ~12! ~goal-oriented AMR!
or Eq. ~13! ~standard AMR!, we have to decide which
cells to refine. There are several strategies that are com-

monly used in the case that the partial differential equa-
tion is discretized using only a single mesh. However,
the use of different meshes per group and per moment
presents some additional complications. In this work, we
consider the following two strategies:

1. Refining meshes individually: In this strategy,
we consider each mesh individually. For a given energy
group g and moment m, we then consider the cells K �
Tg,m . Let Ng,m be the number of cells in Tg,m, and let
0 � fr , fc � 1 be the refinement and coarsening fractions
~with fc � fr � 1!. Then we will refine those fr Ng,m cells
of Tg,m that have the largest indicators hK,g,m and coarsen
those fc Ng,m cells with the smallest indicators.

2. Refining meshes jointly: In this alternate strategy,
we consider all cells on all meshes at the same time. Let
the total number of cells be N � (g�1

G (m�1
M Ng, m . Then

we refine those fr N cells among all cells on all meshes
that have the largest indicators hK, g,m , and coarsen those
fc N of all cells with the smallest indicators.

Note that when using the first strategy, all meshes will
grow by the same amount in each refinement step ~be-
cause on each mesh a fraction fr of all cells is refined
and a fraction of fc is coarsened!. When employing the
second strategy, some group-dependent or moment-
dependent meshes may only be refined whereas some
others may only be coarsened. In the latter meshes, the
solution in these groups and moments is not as impor-
tant to achieve accuracy in our goal functional as in the
former meshes.

The latter strategy has the advantage that it can tell
us which meshes ~and energy groups0modes! are impor-
tant by simply keeping the other meshes much coarser
and therefore comparatively inexpensive. However, the
choice of the simplified estimator Eq. ~12! over the exact
form Eq. ~11! carries the risk that we miss important
contributions to the actual error if meshes diverge too
far, for example, if some meshes remain unrefined en-
tirely. In particular, a closer mathematical analysis re-
veals that Eq. ~11! contains terms that indicate the error
that stems from projecting solutions Fg,m onto meshes
Tg ', m ' when computing the right side terms for the partial
differential equation for Fg ', m ' . If meshes are too differ-
ent, these projection errors may dominate the errors in-
troduced by numerically approximating the Fg,m on Tg,m .
Unfortunately, the simplified indicator Eq. ~12! has no
representation for these projection errors, and it may be
better to use the first refinement strategy above to ensure
that all meshes have roughly the same degree of mesh
refinement. We investigate the choice of refinement strat-
egy in Sec. IV below. In particular, one outcome will be
that in the cases considered there, the choice is actually
not important.

Finally, we point out that for ease of implementa-
tion, it may also be desirable to limit the number of
adapted meshes. In Ref. 8, it is found that utilizing
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group-dependent meshes is clearly beneficial. Here, we
have kept this recommendation but investigate whether
adapting each moment separately yields important
memory0CPU gains.

III.D. Examples of Quantities of Interest

In the final part of this section, we discuss the choice
of the goal functional J ~{! that constitutes the right side
of the adjoint problem Eq. ~9!. The functional J ~{! ex-
tracts from a solution F the quantity that for a given
simulation we are most interested in computing accu-
rately. For example, we may be interested in averages or
point values of the solution; more generally, any linear
functional of the solution could be chosen.

By construction, the functional J ~{! acts on the so-
lution F . We are typically not interested in the composite
moments F but in the scalar flux F0. However, to trans-
late between the two representations, we use the follow-
ing relation:

Fg, 0 � (
m�1

M

@C�1 #0mFg, m � (
m�1

M

~�1!m�1Fg, m

� Fg,1 �Fg, 2 � {{{ � ~�1!M�1Fg, M . ~14!

By the Riesz representation theorem, we can then write
every linear functional of the scalar flux in which we
may be interested in the form

J ~F ! � (
g�1

G �
V
ZQg~r!F0~r! dr

� (
g�1

G

(
m�1

M �
V
ZQg~r!~�1!m�1Fg, m dr , ~15!

where ZQ is a weight function that may also include dis-
tributions ~delta functions!. By recalling that the dual
problem has the form a~b,F ! � J ~b! �b, we can con-
clude that the source term of the adjoint equation
for group g and mode m equals ~�1!m�1 ZQg~r!.

Let us now give three prototypical cases of such
goal functionals. First, a classical example in nuclear
engineering is the detector reading, given by the absorp-
tion reaction rate in the detector volume Vdet :

J ~F ! � (
g�1

G �
Vdet

Sa
g~r!Fg, 0~r! dr

� (
g�1

G

(
m�1

M �
Vdet

~�1!m�1 Sa
g~r!Fg, m~r! dr . ~16!

For this functional, the source term in the adjoint equa-
tion for ZFg,m then equals ~�1!1�m Sa

g~r!xVdet
~r!, where

the characteristic function is defined as xVdet
~r! � 1 if

r � Vdet and zero outside the detector volume.

As a second example, let the goal of the calculation
be the average scalar flux in group g and in subdomain
v; i.e., the goal functional is

J ~F ! �
1

6v6
�

v

Fg, 0~r! dr

� (
g�1

G

(
m�1

M �
v

1

6v6
dgg~�1!m�1Fg, m~r! dr , ~17!

where dgg � 1 if g � g and zero otherwise. Conse-
quently, the sources for the adjoint equation are now
~106v6!dgg~�1!m�1xv~r!; in particular, this implies that
only the adjoint equation for group g has a nonzero source.

Third, if we are interested in pointwise estimates,
such as the pointwise scalar flux at r0 in group g, the
goal functional is

J ~F ! � Fg, 0~r0 !

� (
g�1

G

(
m�1

M �
V

d~r � r0 !dgg~�1!m�1Fg, m~r! dr .

~18!

Consequently, the adjoint source terms are ~�1!m�1

dgg d~r � r0 !.
Finally, let us note that the formalism also allows for

goal functionals defined on odd moments. For example,
the net current along the x-direction at position r0 in
group g can be written as

J ~F ! � Fg,1~r0 !{ex � �~s 1 !�1¹Fg,1~r0 !{ex

� �(
g�1

G

(
m�1

M

dgg dm1�
V

d~r � r0 !@s 1 #�1]xFg, m~r! dr .

~19!

After integration by parts, it is immediately clear that the
adjoint source is ~s1 !�1dgg dm1¹d~r � r0 !{ex . Note that
here, as in the point flux evaluation above, no particular
difficulties are associated with the fact that adjoint sources
may contain Dirac functions or their derivatives. In fact,
in the finite element setting, evaluating J ~b! for any test
function b � @bg,m~r!#g�1. . .G,m�1. . .M when the source
terms contain a Dirac function ~or its derivative! simply
translates into the evaluation of the test function ~or its
derivative! at point r0.

IV. NUMERICAL RESULTS

In the following, we present a series of numerical ex-
periments that illustrate the adaptive refinement strat-
egies outlined above. With these experiments, we ~a! show
that the goal-oriented refinement indicator Eq. ~12! is su-
perior to the more traditional Kelly refinement indicator
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Eq. ~13! as well as uniform global refinement, ~b! com-
pare the different refinement strategies introduced in
Sec. III.C, and ~c! investigate whether the use of different
meshes for the individual moments Fg,m of the same en-
ergy group g leads to more efficient solution schemes ~it
was already demonstrated in Ref. 8 that using separate
meshes for different energy groups is beneficial!. We in-
vestigate these three questions using two 2-D examples in
Sec. IV.A., retaining the full generality of using different
meshes for different modes. Two further examples illus-
trate our claims in three dimensions as well.

All results shown here were obtained with a pro-
gram based on the Open Source finite element library
deal.II ~Refs. 33 and 34!. Unless otherwise mentioned
below, we compute solutions using the SP3 approxima-
tion ~i.e., M � 2, using two different modes! for one-

group problems, and we use bi-quadratic ~in two
dimensions! and tri-quadratic ~in three dimensions! fi-
nite elements throughout our experiments. However, in
example 1 we will also use the SP5 approximation, and
example 4 employs two energy groups.

IV.A. Two-Dimensional Test Cases

For the 2-D test cases, consider the situation de-
picted in Fig. 1. A source at the left is partially shielded
by an absorbing region in the upper center. This could be
considered a model for the shielded source problem. In
cases like these, we may be interested in radiation levels
behind the shielding to determine exposure to shielded
components or persons ~example one!, or just inside the
shielding to determine radiation damage to the shielding

Fig. 1. Two-dimensional test cases, examples 1 and 2. Geometry layout ~top left!; graph of the solution ~top right!; material
parameters and locations of points of interests ~middle row!. Adjoint solutions for the two points of interest ~bottom row!.
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material ~example two!. We are, therefore, interested in
point values of the flux F0~ri ! at one of the two points of
interest r1, r2 and employ Eq. ~18! as the target func-
tional. The adjoint solutions corresponding to this target
functional at the two points of interest are shown in the
bottom row of Fig. 1. In all cases, mesh refinement starts
from a coarse mesh of 20 � 20 cells.

Example 1: First Evaluation Point (r1)

Point r1 lies in the upper right corner behind the
shielding absorber. At this point, the particle flux is much
smaller than in the vicinity to the source; in fact, the
maximal value at the source is approximately 4.66
whereas F~r1! � 0.022, i.e., smaller by a factor of ;200.
It is therefore not surprising that attempts at reducing the
error globally will have limited effect; for example, using
standard AMR with the Kelly refinement indicator
Eq. ~13! will mostly refine around the source region and
the front part of the absorber, as shown in Fig. 2.a Had
our goal been to obtain a numerical solution that is ac-
curate everywhere, this would be sensible since these are
the areas where the magnitude of the error is in fact
larger. However, for our goal of computing F~r1!, an
error that is small everywhere is not required. On the
contrary, we need to refine cells where the error is both
large and where it is important for our goal. In this case,
this will yield a mesh refinement close to the point of
interest, as well as on the backside of the absorber, as
shown in Fig. 3.

While these meshes make intuitive sense, the suc-
cess of the method proposed here hinges on whether we
can show that it is actually more efficient. To this end,
Fig. 4 shows the accuracy in J ~F ! that can be achieved

for a given number of degrees of freedom ~or a given
amount of compute time! for global uniform refinement,
refinement based on the Kelly refinement indicator
Eq. ~13!, and refinement based on the goal-oriented in-
dicator Eq. ~12!. As can be seen from Fig. 4, the method
proposed here can achieve the same accuracy with far
fewer cells ~by a factor of .10! than for the other two
refinement methods. In particular, standard refinement
by the Kelly indicator proceeds somewhat unpredictably
in steps because no refinement is happening at all in the
vicinity of the point r1 where we want to know the so-
lution accurately. For the relatively predictable goal-
oriented adaptive and uniform refinement strategies, the
error 6J ~F ! � J ~Fh !6 as a function of N, the overall num-
ber of unknowns in the problem, can be computed to be
O~N�1.5 ! and O~N�1.1 !, respectively, confirming the bet-
ter convergence order of the goal-oriented adaptive
approach.

Figure 4b shows that the savings in the number of
cells immediately translate into corresponding savings
in compute time despite the fact that in the goal-oriented
approach, we now have to solve both a primal problem
and a dual problem ~a fact that can be seen for the first
data point where our method requires twice as much
time as the others!.

Finally, we have investigated which of the two strat-
egies outlined in Sec. III.C for refining the two meshes
used in this problem is more efficient. We found that the
differences are marginal and that the curves would be
indistinguishable if plotted in Fig. 4. The reason is that
even for the strategy that globally determines which cells
to refine ~comparing cells from different meshes!, the num-
ber of cells on the two meshes differs by ,20%. One can
conclude that the magnitude of error indicators for both
meshes is approximately equal, indicating that both mo-
ments are important to accurately compute J ~F !.

In order to determine whether this is because we
have only two modes, we reran the same test case but
with the SP5 approximation ~three angular modes!. There,
the second refinement strategy generated meshes that,
on the finest level, had 1 635 627, 1 357 471, and 1 265 128
degrees of freedom for F1,F2,F3, respectively. Yet, this

aThe meshes shown here contain refined islands and other
artifacts that are due to the cutoff strategy employed ~fractions
fr and fc ! and do not contribute significantly to a more accurate
solution. However, their presence is also not harmful, and they
are mostly a visual nuisance. If desired, their generation can
easily be suppressed in deal.II, leading to “smoother” adapted
meshes.

Fig. 2. Example 1: ~a!, ~b!, ~c! Meshes for F1 after AMR steps 1, 3, and 5 using the “traditional” Kelly indicator Eq. ~13! and
~d! mesh for F2 after five refinement steps.
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strategy performed only marginally better than the first
one outlined in Sec. III.C ~the error was some 10 to 20%
smaller for the same number of degrees of freedom!. It is
again apparent that the choice of mesh adaptation strat-
egy is not crucial for the moments.

Example 2: Second Evaluation Point (r2)

While the test case of the previous section may seem
to be made to benefit the goal-oriented method proposed
in this work, this second example shows that it is univer-
sally better than more traditional AMR approaches. To
this end, let us consider the same setup as in example 1
but with an evaluation point that lies just inside the ab-
sorbing region, i.e., in a region where the standard AMR
approach would preferentially refine mesh cells. Fig-
ure 5 shows the meshes produced by the goal-oriented
refinement indicator, while the meshes generated by the
Kelly indicator of course remain unchanged from Fig. 2
since this refinement criterion does not depend on the
quantity of interest. We see that again the goal-oriented

indicator emphasizes refinement around the point of in-
terest and neglects refinement of most of the rest of the
boundary layer around the absorber region as that is not
important for our current goal.

Even though one could expect that the Kelly indica-
tor should perform well for this example, Fig. 6 shows
that the proposed method again does significantly better
after the first few refinement iterations, producing re-
sults that are orders of magnitude better than the ones
obtained using the two other methods for the same num-
ber of unknowns, or order of magnitude faster for the
same error. In fact, goal-oriented adaptive refinement
performs even better than for the first test case, with a
convergence order 6J ~F ! � J ~Fh !6 � O~N�2.5 ! as com-
pared to O~N�1.1 ! for global uniform refinement. Stan-
dard AMR and goal-oriented AMR produce equivalent
error reduction as long as standard AMR refines in the
regions of importance toward the computational goal;
after several adaptations, standard AMR refines in re-
gions that bear no importance toward the goal, hence
leading to a stagnation in the error, as seen in Fig. 6.

Fig. 3. Example 1: ~a!, ~b!, ~c! Meshes for F1 after AMR steps 1, 3, and 5 using the goal-oriented indicator Eq. ~12! and
~d! mesh for F2 after five refinement steps.

Fig. 4. Example 1: Absolute error 6J ~F ! � J ~Fh !6 as a function of ~a! the number of degrees of freedom and ~b! CPU time.
For comparison, note that J ~F ! � 0.02189817737.
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As for the first example, we have compared the two
refinement strategies of Sec. III.C and have found no
significant difference. The number of degrees of free-
dom on the two meshes again differed by ,20% for this
test case.

IV.B. Three-Dimensional Test Cases

For our 3-D test case, we generalize the setting of
Fig. 1 by adding a third spatial dimension. The source
is located in the area 0 cm � x � 2 cm, 9 cm � y �
11 cm, and 9 cm � z � 11 cm at the center of a face of
the domain @0 cm, 20 cm# 3. The absorber is a hexa-
hedron in the area 7 cm � x, z � 9 cm, and 9 cm � y �
18 cm. In the multigroup case, the source produces par-
ticles only in the first energy group ~fast particles!.

Figure 7a shows isocontours of the solution of ex-
ample 3 below, along with the locations of the source
and absorber. To present as wide a range of examples as
possible, for the 3-D examples we consider the situa-
tion where we are interested not in the flux, but in the

three components of the current, i.e., Fg,1~r0 ! �
�~s1 !�1¹Fg,1~r0 ! with a point of interest at r1 �
~19.1 cm, 19.1 cm, 19.1 cm!; see Eq. ~19!. For the
one-group computation of example 3, g � 1 is obvi-
ously the only choice. For the two-group calculation of
example 4, we choose g � 2 as the energy group of
interest ~whereas the source emits only in group 1!.

In this situation where the three components of the
current are quantities of interest, we have multiple goal
functionals. However, in the goal-oriented approach, we
need only a single functional as the right side of the dual
problem. To this end, we here use J ~F ! � Jx~F ! � Jy~F ! �
Jz~F !, where we let Ju~F ! be the goal functional for the
current in direction u given by Eq. ~19!. Strictly speak-
ing, using this functional, meshes will then be adjusted
to compute J ~{! with maximal accuracy, not any of its
components. In the examples below, we nevertheless show
that the meshes are well suited to compute each of its
components, in particular, Jx~{!, for which we show con-
vergence graphs. We note that in general, computing cur-
rents accurately is more difficult than computing fluxes

Fig. 5. Example 2: ~a!, ~b!, ~c! Meshes for F1 ~bottom row! after AMR steps 1, 3, and 5 using the goal-oriented indicator
Eq. ~12! and ~d! for F2 after five refinement steps.

Fig. 6. Example 2: Absolute error 6J ~F ! � J ~Fh !6 as a function of ~a! the number of degrees of freedom and ~b! CPU time.
For comparison, note that J ~F ! � 0.19345929975.
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since it requires evaluating derivatives of the solution.
This can also be seen in the equation for the dual solu-
tion, whose source is now the derivative of a Dirac delta
function, leading to a highly singular dual solution. Our
results show that we can efficiently handle this situation
as well.

Example 3: One-Group SP3

For this test case, we use a single energy group with
material properties chosen as in the 2-D examples. For
the chosen source and region of interest, we expect the
goal-oriented mesh to resolve only that part of the radi-
ation that reaches the point of interest coming from the
source. Figure 7b confirms this, showing for example
that the goal-oriented AMR mesh does not resolve any

radiation going downward at all ~in the lower half the
mesh is essentially the coarse 20 � 20 � 20 initial mesh!.

In our 2-D experiments, we have seen ~see Figs. 3c,
3d, 5c, and 5d! that the adapted meshes for the first and
second composite moments F1,F2 are not significantly
different. This can be understood by realizing that the
two variables both satisfy diffusion equations with the
similar diffusion and absorption coefficients; the regu-
larity of solutions is, therefore, quite similar, unlike the
case of different energy groups ~see Ref. 8!. Likewise,
because all composite moments enter in the definition of
the scalar flux F0 ~and consequently in the goal func-
tional! with equal absolute weight @see, for example,
Eq. ~18!# , no moment is necessarily more important than
others. Hence, it is justified that using the same mesh for
all moments does not make the method notably less ef-
ficient than employing moment-dependent meshes, though
it would simplify the implementation significantly.

To this end, Fig. 8 compares the reduction in error in
the functional Jx~{! for uniform refinement, goal-oriented
refinement using independent meshes for different angu-
lar modes, and goal-oriented refinement where we use a
single mesh for all modes. First, we note that goal-
oriented refinement is again much more efficient. Sec-
ond, we can confirm our conjecture that using a single
adapted mesh is sufficient for all moments. This is also
in line with our observation in the 2-D case.

Example 4: Multigroup SP3

In this final example, we consider a two-group SP3
case. We choose the same general setup as in example 3,
with material properties given in Table I ~no upscatter-
ing and only isotropic scattering for simplicity!.

Fig. 7. Example 3: ~a! Iso-surfaces of the solution sepa-
rated by factors in flux of approximately 1.6. ~b! Mesh when
using the same mesh for all moments and after three cycles of
using Eq. ~12! for refinement.

Fig. 8. Example 3: Absolute error 6Jx~F ! � Jx~Fh !6 as a function of ~a! the number of degrees of freedom and ~b! CPU time.
Mesh refinement proceeds for a sequence of uniformly refined meshes; adaptively refined meshes that are used for all modes
simultaneously; and adaptively refined meshes where each mode has its own, separately refined mesh. For comparison, note that
Jx~F ! � 0.0001008117.
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Following our discussion above, we here employ the
same mesh for all angular moments of the solution, al-
though we use different meshes for different energy
groups. For this case, Fig. 9 shows the error in Jx~{! as a
function of degrees of freedom and CPU time for the
refinement methods already used in previous examples.
It is again apparent that goal-oriented adaptive meshes
are much more efficient than global or traditional AMR.
In particular, it is even more obvious that traditional adap-
tivity is actually counterproductive in this case, as has
already been observed in example 2 ~see Fig. 6!.

V. CONCLUSIONS

As a proof of concept, we have applied the paradigm
of goal-oriented mesh adaptivity to the multigroup SPN

equations to obtain accurate local quantities of interest.
Goal-oriented adaptivity combines the benefits of stan-
dard AMR with knowledge about the end goal of the
computation. Hence, the adaptivity proceeds by refining
mesh cells whose errors are large and whose importance
toward the computational goal is high. As we have shown,

the resulting calculations are much more efficient than
either global uniform mesh refinement or traditional mesh
adaptivity approaches. In particular, in our experiments,
we have observed improvements in the number of de-
grees of freedom ~and consequently in memory consump-
tion! as well as in CPU time of factors of 10 and more,
opening the door to simulations that were previously im-
possible. The error indicators used to drive the goal-
oriented adaptivity are, in essence, similar to the ones
used for standard adaptivity, except that the product of
the error indicators for both a primal and a dual ~adjoint!
problem is employed. Appropriate adjoint source terms
have been defined for various quantities of interest. The
cost of solving an adjoint problem is easily absorbed as
the adaptivity proceeds.

As part of our investigation, we have also tested
different strategies for mesh refinement. In particular,
we have noted, at least for the test cases considered,
that it is not important whether we refine meshes indi-
vidually or jointly, in the latter case comparing refine-
ment indicators of cells from different meshes. Likewise,
for one-group calculations, it was sufficient to use
only a single adapted mesh for all moments rather than
using a different adapted mesh per moment. Owing to
these observations—and to simplify the algorithmic
implementation—multigroup calculations have been car-
ried out using one adapted mesh for all moments be-
longing to the same energy group; as previously noted
in Ref. 8, it is nonetheless important for efficiency that
different meshes be used for different energy groups.
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