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a b s t r a c t

An implicit pressure and explicit saturation (IMPES) finite element method (FEM) incorporating a
multi-level shock-type adaptive refinement technique is presented and applied to investigate transient
two-phase flow in porous media. Local adaptive mesh refinement is implemented seamlessly with
state-of-the-art artificial diffusion stabilization allowing simulations that achieve both high resolution
and high accuracy. Two benchmark problems, modelling a single crack and a random porous medium,
are used to demonstrate the robustness of the method and illustrate the capabilities of the adaptive
refinement technique in resolving the saturation field and the complex interaction (transport phenom-
ena) between two fluids in heterogeneous media.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Modelling of two-phase flow in porous media plays a key role in
many engineering areas such as environmental remediation [1,2],
oil recovery [3–6] and water management in polymer electrolyte
fuel cells [7–12]. In polymer electrolyte fuel cells, which motivated
in part the developments described herein, water produced at the
cathode as a result of the electrochemical reaction can condense
[7,8], and is eventually transported through the porous electrode
by a combination of mechanisms, including capillary diffusion. At
high reaction rates however, an imbalance between liquid water
production and transport can result in flooding of the electrode
and, consequently, restricted access of the reactant gases to the
reactions sites (catalyst layer); this results in a significant perfor-
mance drop. Understanding of the two-phase transport processes
and design of the porous media to mitigate this are therefore cru-
cial and can be facilitated by robust and physically representative
simulations. A number of recent publications have addressed some
of the modelling challenges associated with two-phase transport in
complex porous media. These include the development of
improved numerical schemes for simulation of multi-phase,
multi-component processes [13]; interface conditions and lineari-
zation schemes [14]; advanced numerical procedures based on
high-order time integration schemes [15], fractional flow ap-
proaches [16], and reduced degrees of freedom [17]. Theoretical
investigations based on pore-network models [18], non-oscillation

central scheme [19], and multi-scale finite volume/element meth-
ods [20–24] have also been developed. Helmig et al. [25] note that
numerical methods have to be able to capture both advection or
diffusion/dispersion dominated processes. An excellent review of
the recent modelling efforts and current challenges is provided
by Gerritsen and Durlofsky [5]. A key challenge remains the robust
and accurate resolution of fine-scale localized flow.

In transient two-phase flow simulations related to petroleum
engineering, the implicit pressure and explicit saturation (IMPES)
algorithm, originally developed by Sheldon et al. [26] and Stone
and Gardner [27], is widely used. The basic idea of this classical
method when applied to two-phase flow in porous media is to sep-
arate the computation of pressure from that of saturation. Namely,
the coupled system is split into a pressure equation and a satura-
tion equation, and the pressure and saturation equations are solved
using implicit and explicit time approximation approaches, respec-
tively. This method is easy to implement and efficient to solve, and
requires less memory than other methods such as the simulta-
neous solution method [28]. Detailed discussions of this method
can be found in [26,27], and recent algorithmic improvements
are discussed in Chen et al. [29,30].

The numerical simulation of transient two-phase flow transport
in heterogeneous porous media (Fig. 1) is computationally expen-
sive, and adequate resolution of complex flow features is not
always possible, thus compromising the reliability of the results.
Achieving physically representative simulations that resolve all
salient length and time scales and localized flow features efficiently
remains a challenge. An alternative to global mesh refinement which
demands very large computing resources, is adaptive mesh

0045-7930/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compfluid.2010.05.011

* Corresponding author. Tel.: +1 250 721 6034; fax: +1 250 721 6323.
E-mail address: ndjilali@uvic.ca (N. Djilali).

Computers & Fluids 39 (2010) 1585–1596

Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/ locate /compfluid



Author's personal copy

refinement (AMR). A variety of AMR methods have been proposed
depending on the type of physical problem and associated partial
differential equations (PDE), and a large body of literature [31–33]
exists for these methods. One can use a simple refinement indicator,
such as those proposed in [34], to refine and coarsen the mesh at
each time step, depending on where the discontinuities (phase
boundaries in the present context) propagate. Recent work by Noelle
et al. [35] shows that a central scheme with AMR can be imple-
mented on non-conforming 3D Cartesian grids to extend the classi-
cal hydrodynamics AMR framework [30]. Smoothness indicators for
conservation laws were developed by [36]. Another approach to
adaption is the use of a moving-mesh method such as that of Tang
and Tang [37] to align the mesh with the important features of the
flow. In any case, the major advantages of using grid adaption are
high-quality resolution of the physical features as they evolve in
space and time while simultaneously reducing computational cost
by refining only in areas where necessary and coarsening in areas
where unnecessarily fine grids exist. Note that in the context of mul-
ti-phase flow the porous medium is frequently strongly heteroge-
neous within the computational domain. However, as we will
show below, there is no need to resolve these heterogeneities every-
where unless they interact with flow fronts. Consequently, adaptive
mesh refinement has the potential to significantly reduce the com-
putational cost of multi-phase flow simulations. Despite these obvi-
ous advantages, the literature is relatively limited for transient
adaptive methods suitable for multi-phase flow in porous media.

When a general continuous finite element discretization is
adopted for the saturation transport (advection) equation in two-
phase flow problems, spurious and unphysical oscillations appear
in the solution, requiring the introduction of a stabilizing (diffusive)
term [38]. However, this results in smearing of sharp fronts and can
also cause grid-orientation difficulties [38]. Finding the right bal-
ance between preserving accuracy and providing stability is there-
fore of great importance in the numerical solution of conservation
laws. In this work, we implement the artificial diffusion terms pro-
posed by Guermond and Pasquetti [39]. This entropy-based nonlin-
ear viscosity provides a powerful approach yielding both accuracy
and stability. First, the artificial viscosity term acts only in the vicin-
ity of strong gradients in the saturation and other discontinuities
[39]; secondly, the term does not affect the solution in smooth re-
gions; and finally the scheme offers higher order accuracy and sta-

bility than simple upwind schemes [39]. In this paper, this approach
is combined with an IMPES algorithm and we present an extension
of shock-type adaptive refinement to saturation gradients to inves-
tigate transient transport phenomena in heterogeneous porous
media. The use of this shock-type adaptive refinement technique al-
lows us to provide fine-scale resolution locally and to concentrate
numerical efforts near the area where the two-phase interfaces
evolve.

2. Basic numerical model

Let us consider the flow of two incompressible, immiscible flu-
ids in a porous media domain X � R2 in which the movement (dis-
placement) of two fluids is dominated by viscous effects and the
effects of gravity and capillary pressure are negligible. The two
phases are referred to as wetting and non-wetting, and identified
by subscripts w and nw, respectively. Thus in a water–oil system
(hydrophilic case), water is the wetting and oil the non-wetting
phase; in the and air–water system (hydrophobic case), air is the
wetting phase and water the non-wetting phase. The mass-aver-
aged velocity with which each of the two phases moves is deter-
mined by Darcy’s law. It states that the velocity is proportional
to the pressure gradient [5]:

uj ¼ �
krjðSÞ
lj

K � rp; ð1Þ

where uj is the velocity of phase j = w, nw, K is the permeability ten-
sor, krj is the relative permeability of phase j, p is the pressure, and
lj is the viscosity of phase j. Finally, S is the saturation of the porous
media defined as

S ¼ Vw

Vw þ Vnw
; ð2Þ

where Vw and Vnw are the volume fraction of the wetting and non-
wetting phases. In this work, the permeability tensor, K, is a second-
order diagonal tensor.

After combining Darcy’s law with the mass conservation equa-
tion, the following set of equations is obtained [5]:

ut ¼ �KktðSÞrp; ð3Þ
r � ut ¼ q; ð4Þ

�
@S
@t
þr � ðutFðSÞÞ ¼ 0; ð5Þ

where kt is the total mobility, � is the porosity, F is the fractional
flow of the wetting phase, q is a source term, and ut is the total
velocity. These are given by:

ktðSÞ ¼ kw þ knw ¼
krwðSÞ
lw

þ krnwðSÞ
lnw

; ð6Þ

FðSÞ ¼ kw

kt
¼ kw

kw þ knw
¼ krwðSÞ=lw

krwðSÞ=lw þ krnwðSÞ=lnw
; ð7Þ

ut ¼ uw þ unw ¼ �ktðSÞK � rp: ð8Þ

For the sake of simplicity, we consider the case with no source
term q. Furthermore the porosity � is set to one as it is essentially a
scaling factor that does not affect the qualitative behaviour of Eq.
(5). For the purpose of this paper, we will assume the following
concrete form for the total mobility kt and the fractional flow F(S):

ktðSÞ ¼
S2

lw
þ ð1� SÞ2

lnw
; ð9Þ

FðSÞ ¼ S2

S2 þ 0:2 � ð1� SÞ2
; ð10Þ

where lw = 0.2 and lnw = 1.

Fig. 1. Schematic of fluid flow in a heterogeneous porous medium.
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2.1. Permeability of the porous media

In this and the following section, we will discuss the setup of
the numerical examples used in Section 5. We consider a heteroge-
neous, isotropic porous medium with a permeability tensor K de-
fined as

KðxÞ ¼ kðxÞ � I ð11Þ

where k(x) is a scalar depending on position x, and I is the second-
order unit tensor. In order to demonstrate the robustness of the pro-
posed shock-type adaptive refinement technique we consider the
two model porous media used previously by Li and Bangerth [40].
The first test case corresponds to a single crack along a sine curve,
with a permeability given by

ksmðxÞ ¼max exp � y� 0:5� 0:1 � sinð10xÞ
0:1

� �2
 !

; 0:01

( )
ð12Þ

and k(x) in Eq. (11) is replaced by ksm(x) for the first test case. Tak-
ing the maximum in Eq. (12) ensures boundedness of k(x) from
below.

The second test case corresponds to a porous medium with ran-
dom permeability prescribed using

krmðxÞ ¼min max
XN

l¼1

WlðxÞ; 0:01

( )
;4

( )
ð13Þ

and

WlðxÞ ¼ exp � jx� xlj
0:05

� �2
 !

ð14Þ

where again krm(x) is substituted for k(x) in Eq. (11) for the second
test case, and the centers xl are N randomly chosen locations inside
the domain. This function models a domain in which there are
N = 40 centers of higher permeability, representing regions with
cracks embedded in a matrix of intact background rock.

The permeability fields for these two testcases are shown in
Fig. 2.

2.2. Initial and boundary conditions

The simulations are performed in a computational domain
X = [0,1] � [0,1] for t 2 [0,T]. The initial condition is S(x,0) = 0,
i.e. the reservoir contains only non-wetting fluid. Initial conditions
for pressure or velocity are not necessary because the equations do

not contain time derivatives of these variables. Finally, the follow-
ing pressure boundary condition is used:

pðx; tÞ ¼ 1� x on @X ð15Þ

i.e. a linear pressure drop is assumed on the boundaries. Boundary
conditions for the saturation need only be specified on the inflow
part of the boundary given by

CinðtÞ ¼ fx 2 @X : n � ut < 0g: ð16Þ

On the inflow boundary, we assume that wetting fluid enters
the domain from the left, and consequently prescribe the following
saturation values:

Sðx; tÞ ¼ 1 on CinðtÞ \ fx ¼ 0g; ð17Þ
Sðx; tÞ ¼ 0 on CinðtÞ n fx ¼ 0g: ð18Þ

3. Finite element approximations and numerical methods

The system of partial differential equations (PDE) Eqs. (3)–(5)
that describes two-phase transport in a hydrophilic medium is dis-
cretized using a mixed finite element method [41,38]. The numer-
ical solutions shown below were obtained using a C++ program
based on the deal.II library [42]. The implementation discussed
here also uses parts of the step-21, step-31 and step-33 tutorial
programs of this library [40,43,44] but extends the functionality
compared with all of these programs.

3.1. Time discretization

A standard implicit pressure and explicit saturation (IMPES)
algorithm [26,27] is used for time discretization in conjunction
with an implicit Euler method. In this algorithm, the pressure
and velocity equations are first solved implicitly, and then the sat-
uration equation is solved using an explicit time stepping method.

Using this time discretization, we obtain the following set of
equations for each time step:

uðnþ1Þ
t þ ktðSðnÞÞKrpðnþ1Þ ¼ 0; ð19Þ
r � uðnþ1Þ

t ¼ q; ð20Þ

�
Sðnþ1Þ � SðnÞ

Dtðnþ1Þ

 !
þ uðnþ1Þ

t � rFðSðnÞÞ þ FðSðnÞÞr � uðnþ1Þ
t ¼ 0; ð21Þ

where superscripts (n) and (n + 1) represent physical quantities
existing at times t(n) and t(n+1), respectively, and Dt(n) = t(n+1) � t(n)

is the length of the nth time step.

Fig. 2. Permeability fields for (a) single crack medium (b) random medium.
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Using the fact that r � ut = q, Eq. (21) becomes

�
Sðnþ1Þ � SðnÞ

Dtðnþ1Þ

 !
þ uðnþ1Þ

t � rF SðnÞ
� �

þ FðSðnÞÞq ¼ 0: ð22Þ

To ensure stability of this time stepping scheme, the time step
has to be chosen in accordance with the spatial discretization
and satisfy the Courant–Friedrichs–Lewy (CFL) condition. In our
numerical experiments, we choose the time step adaptively as

Dtðnþ1Þ ¼ minK hK

7kuðnþ1Þ
t kL1ðXÞ

; ð23Þ

where hK denotes the diameter of cell K. This choice is sufficient to
satisfy both the CFL condition that results from the advection of the
saturation as well as from the artificial diffusion term discussed be-
low, while our numerical experiments indicate that larger values
violate these conditions.

Fig. 3 shows the size of the time steps chosen by this criterion
for the two testcases considered below, and compares it with the
time step chosen in the lower-order method used in [40]. We need
to choose our time step smaller since we use a piecewise linear in-
stead of the piecewise constant saturation approximation. The
higher spatial order then requires a correspondingly smaller time
step for stability.

3.2. Weak form and spatial discretization for the pressure/velocity part

By multiplying Eqs. (19) and (20) with test functions v and w
respectively and then integrating terms by parts as necessary,

the weak form of the problem reads: find u, p so that for all test
functions v, w there holds

ðKktðSðnÞÞÞ�1uðnþ1Þ
t ;v

� �
X
� ðpðnþ1Þ;r � vÞX ¼ �ðpðnþ1Þ;n � vÞ@X; ð24Þ

� ðr � uðnþ1Þ
t ;wÞX ¼ �ðq;wÞX: ð25Þ

Here, n represents the unit outward normal vector to @ X and
the pressure p(n+1) can be prescribed weakly on the boundary oX.

We use continuous finite elements to discretize the velocity and
pressure equations. Specifically, we use mixed finite elements to en-
sure high order approximation for both vector (e.g. a fluid velocity)
and scalar variables (e.g. pressure) simultaneously. For saddle point
problems, it is well established that the so-called Babuska–Brezzi or
Ladyzhenskaya–Babuska–Brezzi (LBB) conditions [41,38] need to be
satisfied to ensure stability of the pressure-velocity system. These
stability conditions are satisfied in the present work by using ele-
ments for velocity that are one order higher than for the pressure,
i.e. uh 2 Qd

pþ1 and ph 2 Qp, where p = 1, d is the space dimension,
and Qs denotes the space of tensor product Lagrange polynomials
of degree s in each variable.

3.3. Stabilization, weak form and spatial discretization of the
saturation transport equation

Advection problems such as the transport equation for the sat-
uration are frequently discretized by finite volume schemes (or
their more recent re-formulation in the form of discontinuous
Galerkin (DG) finite element methods [38]). In contrast to this,
we use continuous finite elements to discretize the saturation

Fig. 3. Comparison of adaptive time step size between the present and previous work by Li and Bangerth [40]. (a) Time step vs. IMPES cycle for the single crack medium. (b)
Cumulative time vs. IMPES cycle for the single crack medium. (c) Time step vs. IMPES cycle for the random medium. (d) Cumulative time vs. IMPES cycle for the random
medium.
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equation, i.e. Sh 2 Q1. This choice allows the simple inclusion of a
capillary pressure (diffusion) term in the future: The discretiza-
tion of the diffusion (Laplace) operator using DG methods leads
to a significant number of additional terms that need to be
integrated on each face between cells. Discontinuous Galerkin
finite elements also have the drawback that the use of numerical
fluxes introduces an additional numerical diffusion that acts
everywhere.

These problems can be avoided using a continuous finite ele-
ment space, although we still have to add some form of stabiliza-
tion to make the scheme stable. We add such a stabilization in
the form of a nonlinear viscosity to (22), i.e. we solve

�
Sðnþ1Þ � SðnÞ

Dtðnþ1Þ

 !
þ uðnþ1Þ

t � rFðSðnÞÞ � rðmðuðnþ1Þ
t ; SðaÞ; SðexÞÞrSðnÞÞ

¼ �FðSðnÞÞq; ð26Þ

where m uðnþ1Þ
t ; SðaÞ; SðexÞ

� �
is the artificial viscosity, S(a) is an ‘‘aver-

age” saturation defined as

SðaÞ ¼ SðnÞ þ Sðn�1Þ

2
ð27Þ

and S(ex) is an ‘‘extrapolated” saturation value given by

SðexÞ ¼ 1þ DtðnÞ

Dtðn�1Þ

� �
SðnÞ � DtðnÞ

Dtðn�1Þ Sðn�1Þ: ð28Þ

Note that we treat both advection as well as the artificial diffu-
sion term explicitly in time to avoid having to re-assemble the cor-
responding matrices in each time step. The stabilization factor

m uðnþ1Þ
t ; SðaÞ; SðexÞ

� �
is chosen in such a way that, if the discretized

saturation S satisfies the original Eq. (5) exactly, the artificial diffu-
sion term is zero. In other words, this term acts primarily in the
vicinity of discontinuities in S (or other dependent variables)
where in any case the numerical approximation becomes less
accurate, but does not affect the areas where the saturation varies
smoothly and the numerical approximation is accurate. The litera-
ture contains a number of approaches to achieve this. Here we
adopt a scheme developed by Guermond and Pasquetti [39] which
builds on a suitably defined residual and a limiting procedure for
the additional viscosity. The artificial viscosity is a piecewise con-
stant function defined on each cell K with diameter hK as

m uðnþ1Þ
t ; SðaÞ; SðexÞ

� �
jK ¼ bkuðnþ1Þ

t kL1ðKÞ

� min hK ;h
a
K

kRes uðnþ1Þ
t ; SðaÞ

� �
kL1ðKÞ

c uðnþ1Þ
t ; SðexÞ

� �
8<:

9=;
ð29Þ

where a is a stabilization exponent that we chose to be a = 1, and b
is a user-defined dimensionless stabilization constant that is chosen

Fig. 4. Spurious oscillations in the saturation solution for the random media case in
the absence of a stabilization term.

Fig. 5. Illustration of local mesh adaptation process.

Fig. 6. Effect of refinement indicator threshold: saturation field and adaptive mesh for single crack medium at t = 0.359 s. (a) Cells are coarsened if gK < 1.1 and refined if
gK > 1.7 (2608 computational cells). (b) Threshold values for coarsening and refinement are chosen as 0.21 and 0.28 (2938 computational cells).
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as small as possible but as large as necessary to avoid unphysical
oscillations in the solution. Following Guermond and Pasquetti
[39] as well as Kronbichler and Bangerth [44], the velocity and sat-
uration global normalization constant, c uðnþ1Þ

t ; SðexÞ
� �

, and the resid-
ual Res uðnþ1Þ

t ; SðaÞ
� �

are given by

c uðnþ1Þ
t ;SðexÞ

� �
¼ cRkuðnþ1Þ

t kL1ðXÞvarðSðexÞÞjdiamðXÞja�2
; ð30Þ

Res uðnþ1Þ
t ;SðaÞ

� �
¼ �

SðnÞ � Sðn�1Þ

DtðnÞ

 !
þuðnþ1Þ

t �rF SðaÞ
� �

þðSðaÞÞq
 !

� ðSðaÞÞa�1
;

ð31Þ

where cR is a dimensionless user-defined normalization constant,
diam(X) is the diameter of the domain and var(S(ex)) is the range

of the extrapolated saturation values in the entire computational
domain X, given mathematically by

varðSðexÞÞ ¼maxXSðexÞ �minXSðexÞ: ð32Þ

Guermond and Pasquetti [39] demonstrate excellent perfor-
mance and computational results for this scheme and provide de-
tails on the derivation. The stabilization term is critical in order to
obtain a saturation field that is oscillation free. Spurious oscilla-
tions that occur without the stabilization term are illustrated in
Fig. 4. Results discussed subsequently using the above method
are free of such unphysical oscillations.

With the artificial diffusion term defined as above, we obtain
the weak form of our discrete equations by multiplying Eq. (26)
with a test function r and integrating by parts as necessary. We
then obtain

ð�Sðnþ1Þ;rÞX�Dtðnþ1Þ FðSðnÞÞuðnþ1Þ
t ;rr

� �
X
þDtðnþ1Þ F SðnÞ

� �
n �uðnþ1Þ

t

� �
;r

� �
@X

¼ ð�SðnÞ;rÞX�Dtðnþ1Þ m uðnþ1Þ
t ;SðaÞ;SðexÞ

� �
rSðnÞ;rr

� �
X

þDtðnþ1Þ n � m uðnþ1Þ
t ;SðaÞ;SðexÞ

� �
rSðnÞ;r

� �
@X
: ð33Þ

In Eq. (33), there are two boundary integral terms correspond-
ing to Dirichlet and Neumann boundary conditions. In the present
work, we require only Dirichlet boundary conditions for saturation,

Table 1
Parameters used in the model

Parameter Symbol Value Units

Porosity � 1.0 –
Viscosity (wetting) lw 0.2 kg m�1 s�1

Viscosity (non-wetting) lnw 1.0 kg m�1 s�1

Stabilization exponent a 1.0 –
Stabilization constant b 0.4 –
Normalization constant cR 1.0 –

Fig. 7. Numerical results for the single crack medium in comparison with previous work of Li and Bangerth [40] at t = 0.154 s. (a) Saturation field using discontinuous
Galerkin space (previous work). (b) Saturation field using continuous space with the stabilized term (present work). (c) Saturation profile along y = 0.5 (d) Saturation profile
along x = 0.1.
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as is described in Section 2.2, and therefore the Neumann bound-
ary integral term vanishes.

Since the Dirichlet boundary conditions for saturation are only
imposed on the inflow boundaries, the third term on the left hand
side of Eq. (33) needs to be split further into two parts:

Dtðnþ1Þ FðSðnÞÞ n �uðnþ1Þ
t

� �
;r

� �
@X

¼Dtðnþ1Þ F SðnÞðþÞ
� �

n �uðnþ1Þ
tðþÞ

� �
;r

� �
@XðþÞ
þDtðnþ1Þ F SðnÞð�Þ

� �
n �uðnþ1Þ

tð�Þ

� �
;r

� �
@Xð�Þ

;

ð34Þ

where oX(�) = {x 2 oX:n �ut < 0} and oX(+) = {x 2 oX:n � ut > 0} rep-
resent inflow and outflow boundaries, respectively. We choose val-
ues using an upwind formulation, i.e. SðnÞðþÞ and uðnþ1Þ

tðþÞ correspond to
the values taken from the present cell, while the values of SðnÞð�Þ
and uðnþ1Þ

tð�Þ are those taken from the neighboring boundary oX(�).

3.4. Linear system

Discretization of Eqs. (24), (25) and (33) yields the following lin-
ear system that needs to be solved for time step n + 1:

Mu BT 0
B 0 0
H 0 MS

0B@
1CA Uðnþ1Þ

Pðnþ1Þ

Sðnþ1Þ

0B@
1CA ¼ 0

F2

F3

0B@
1CA; ð35Þ

where the individual matrices and vectors are defined as follows
using shape functions vi for velocity, and /i for both pressure and
saturation:

Mu
ij ¼ ððKktðSðnÞÞÞ�1vi;vjÞX; MS

ij ¼ ð�/i;/jÞX; ð36Þ
Bij ¼ �ðr � vj;/iÞX;Hij ¼ �Dtðnþ1ÞðFðSðnÞÞvi;r/jÞX; ð37Þ
ðF2Þi ¼ �ðFðS

ðnÞÞq;/iÞX; ð38Þ

and

ðF3Þi ¼ ð�S
ðnÞ;/iÞX � Dtðnþ1Þðmðuðnþ1Þ

t ; SðaÞ; SðexÞÞrSðnÞ;r/iÞX ð39Þ

We will solve these equations by first computing the updated
pressures P(n+1) and then the velocities U(n+1). The final step is to
solve for updated saturation S(n+1). To this end, we can form the
Schur complement (i.e., do a block elimination, see [45]) of the
top left 2 � 2 block of the matrix to obtain

BðMuÞ�1BT Pðnþ1Þ ¼ �F2; ð40Þ
ðMuÞUðnþ1Þ ¼ �BT Pðnþ1Þ: ð41Þ

We can therefore obtain the pressure and velocity solution by
first inverting the Schur complement matrix S = B(Mu)�1BT and
next the mass matrix Mu on the velocity space. Both matrices are
symmetric and positive definite and therefore amenable to the

Fig. 8. Numerical results for the random medium in comparison with previous work of Li and Bangerth [40] at t = 0.249 s. (a) Saturation field using discontinuous Galerkin
space (previous work). (b) Saturation field using continuous space with the stabilized term (present work). (c) Saturation profile along y = 0.95. (d) Saturation profile along
x = 0.05.
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conjugate gradient method. There are various strategies to precon-
dition the Schur complement solve, using the fact that S is a dis-
crete representation of the Laplace operator. We choose to
precondition with eS�1 ¼ ½BðdiagMuÞ�1BT ��1 since eS is a matrix that
is cheap to apply and therefore significantly simpler to invert than
S. At the same time, the preconditioned matrix eS�1S has a nearly
constant condition number and can consequently be solved in a
constant number of iterations, irrespective of the refinement level
[46]. An alternative is to precondition with an (approximate) in-
verse of a matrix obtained from a primal (non-mixed) discretiza-
tion of the Laplace operator.

Once the velocity is available, we can assemble H and F3 (which
depend on u(n+1) implicitly) and solve for the saturations as

MSSðnþ1Þ ¼ F3 �HUðnþ1Þ: ð42Þ

4. Adaptive mesh refinement strategy

In analogy with widely used schemes in compressible flow
problems, the adaptive refinement technique adopted here is
based upon the transient saturation gradient. Once a solution S(n)

is computed on a given mesh, we compute a refinement indicator

gK ¼ jrSðnþ1Þ
p ðxKÞj ð43Þ

where xK is the cell center. Here,

Sðnþ1Þ
p ¼ SðnÞ þ Dtðnþ1Þ SðnÞ � Sðn�1Þ

Dtðnþ1Þ ¼ 2SðnÞ � Sðn�1Þ ð44Þ

is a predictor for the saturation profile in the next time step. We
choose a predicted saturation profile for our refinement indicator
since the mesh so created will be used to discretize future time
steps, not the current one: we want to refine ahead of a front, rather
than propagating into a coarse set of elements and thereby smear-
ing the saturation solutions.

With the refinement indicators gK so defined, refinement pro-
ceeds along the following algorithm [33,42]:

(1) If gK is larger than a threshold hr, then mark the cell K for
refinement if the resulting children will not exceed the cho-
sen maximum refinement level.

(2) If gK is smaller than a threshold hc, then mark the cell K for
coarsening if the resulting cell is not coarser than the initial
mesh.

(3) If for a non-active cell not all children are marked for coars-
ening, then remove coarsening flags from all children.

(4) Mark additional cells for refinement to ensure that the
resulting mesh has no interfaces between cells that differ
in refinement by more than one level.

(5) Refine and coarsen all cells marked as above.

This adaptive procedure is illustrated graphically in Fig. 5.

Fig. 9. Comparison of computational mesh distribution and saturation fields at t = 0.278 s using the continuous discretization. (a) Uniform mesh with 16,384 elements and
165,380 degrees of freedom. (b) Adaptive mesh with 1981 elements and 7924 degrees of freedom. (c) Saturation profile along y = 0.95. (d) Saturation profile along x = 0.15.
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To illustrate the effect of selecting different threshold levels, re-
sults obtained for two simulations under otherwise identical con-
ditions are shown in Fig. 6. In the first simulation, cells are

coarsened if gK < hc = 1.1 and refined if gK > hr = 1.7. In the second,
these thresholds are chosen as hc = 0.21 and hr = 0.28. As can be
seen, the saturation fields are essentially identical, but the less
stringent, first set of threshold values result in more coarsening,

Fig. 10. Comparison of computational mesh distribution and saturation fields at t = 0.488 s using the continuous discretization. (a) Uniform mesh with 16,384 elements and
165,380 degrees of freedom. (b) Adaptive mesh with 3220 elements and 12,880 degrees of freedom. (c) Saturation profile along y = 0.95. (d) Saturation profile along x = 0.15.

Fig. 11. Comparison of the number of degrees of freedom in the single crack and
random media cases with the corresponding number for uniform grids. The
adaptive meshes need between 86% and 96% fewer degrees of freedom.

Fig. 12. CPU time per IMPES step for the adaptive and uniform grid simulations.
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particularly along the center of the crack as well as along the inlet
boundary. This yields a computational mesh with about 12% less
cells. To ensure high accuracy, all following computations were
done with the second set of thresholds, however.

5. Results and discussion

The simulations presented and analyzed in this section were
performed using the spatial permeability distributions given in
Section 2.1, and with the input parameters listed in Table 1. It
should be noted that in the validation section, the porosity is set
to 0.6 rather than the value of 1.0 used in all other cases. Our
implementation uses the Open Source finite element library deal.II
[42] written in C++.

5.1. Numerical validation

Here, for numerical validation, we compare the present results
obtained with the adaptive grid method to previous work using
uniform grids in which Raviart–Thomas finite elements are
adopted for velocity and discontinuous Galerkin (DG) elements
for pressure and saturation [40].

Fig. 7a and b compares saturation contours in the single crack
case between these two discretizations at t = 0.154 s in the single

crack case. Fig. 7c and d shows saturation profiles along y = 0.5
and x = 0.1, respectively. The results are essentially identical.

In the case of a random medium, there are a couple of small but
more noticeable differences as shown in the results at t = 0.249 s
presented in Fig. 8. The extent of the penetration of the invading
fluid is predicted to be higher in the DG simulations (see top and
bottom fingers in Fig. 8a), and there are differences of up to 10%
in the saturation as shown in both the longitudinal and transverse
profiled in Fig. 8c and d. These differences are due to the lower
accuracy and higher diffusivity of the low-order DG approxima-
tion. In contrast, the discretization used here shows a more pro-
nounced and less diffused appearance, a consequence of the less
heavy-handed stabilization even though we use far fewer degrees
of freedom compared to the uniformly refined grid used for the DG
method.

5.2. Comparison of global vs. adaptive refinement

Figs. 9 and 10 show the saturation distribution in the random
medium obtained using global and locally adaptive refinement at
t = 0.278 s and t = 0.488 s respectively. Well resolved saturation
distributions that are quasi-identical can be obtained using both
refinement techniques. The effectiveness of the adaptive grid
method is highlighted by the fact that, at time t = 0.278 s for in-
stance (Fig. 9), only 7924 degrees of freedom (DoFs) are required

Fig. 13. Saturation fields for the single crack medium. (a) t = 0.002 s with 520 elements and 2080 degrees of freedom. (b) t = 0.427 s with 3424 elements and 13,696 degrees of
freedom. (c) t = 0.731 s with 5185 elements and 20,740 degrees of freedom. (d) t = 0.979 s with 5551 elements and 22,204 degrees of freedom.
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with local adaptation compared to 165,380 DoFs for the globally
refined uniform grid. The total number of degrees of freedom for
the local adaptive method increases with time: as the wetting
phase (water) gradually invades the areas initially occupied by
the non-wetting phase (oil) a correspondingly larger part of the
computational domain is refined. As the gradients abate in the
water invaded portion of the domain, the mesh is coarsened again.
Overall, the required number of DoFs was reduced by 86 to 96%
(t = 0 and t = 1) for both single crack and random media as shown
in Fig. 11. Fig. 12 compares the computing (CPU) time per IMPES
step as a function of the process simulation time; significant com-
putational performance gains are achieved with the locally adap-
tive method, resulting in an overall reduction of the aggregate
CPU time for the entire simulation of 42% without any reduction
in accuracy in the solution. Experience shows that the savings in
both number of unknowns as well as CPU time would be even lar-
ger for three dimensional simulations.

5.3. Saturation distribution in a domain with a single crack

Having established the accuracy of the adaptive mesh two-
phase flow method, further analysis of the single crack simulations
with the permeability given by Eq. (12) are presented here. Such

simulations can be considered an idealized representation of situ-
ations arising in fuel cell fibrous media when carbon fibres break
due to over-compression [47–49]; in geo-science, a porous med-
ium with a single crack distribution can be found in sandstone res-
ervoir rocks [5,2].

The saturation distribution as a function of time is shown in
Fig. 13. The mobile fluid slowly meanders its way along the central
areas where permeability is highest. In this case, due to the higher
saturation gradients in the central area, locally refined cells are
concentrated in the middle of the domain and propagate in time
with the saturation front.

5.4. Saturation distribution in a porous medium with random
permeability

Simulations presented in this section were performed for a
medium with a permeability distribution given by Eq. (13), see
Fig. 2. The saturation distribution is shown in Fig. 14. Fig. 14b
shows that the more mobile displacing fluid seeks pathways
formed by inter-connected high-permeability zones, faults and
fractures. The fluid appears to form fingers, a phenomenon fre-
quently found in both oil reservoirs and also reported in porous
diffusion media of fuel cells [50].

Fig. 14. Saturation fields for the random medium. (a) t = 0.003 s with 544 elements and 2176 degrees of freedom. (b) t = 0.411 s with 2722 elements and 10,888 degrees of
freedom. (c) t = 0.755 s with 4744 elements and 18,976 degrees of freedom. (d) t = 1.085 s with 6361 elements and 25,444 degrees of freedom.
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6. Conclusions and future work

A numerical method allowing high resolution simulations of
two-phase flow in porous media was presented. The method is
based on a finite element discretization using continuous ele-
ments. It incorporates a new entropy based stabilizing term that
ensures accuracy while providing stability, and locally adaptive
refinement allowing highly resolved time dependent simulations.
The effectiveness of the numerical method was demonstrated by
performing simulations corresponding to two-phase flow in two
types of porous media (single crack and heterogeneous).

The implementation used an implicit pressure and explicit sat-
uration (IMPES) formulation. Compared to a simple finite volume
(or DG scheme), the higher order of approximation used for the
saturation variable, in conjunction with the stabilizing dissipative
term, makes the standard CFL restriction (i.e. Dt 6 h/juj) no longer
suitable for evaluating the adaptive time step for the modified Eq.
(26). In order to further improve computational efficiency, future
work will focus on the development and implementation of more
efficient time stepping schemes, and a particularly attractive ave-
nue is the use of an adaptive time stepping strategy that takes
advantage of the slower variation of pressure compared to satura-
tion [29,30], and allows larger time steps for the computationally
costly pressure equation. Such an algorithm would make it more
practical to perform 3D simulations including enhanced physical
modelling, such as capillary diffusion, that would enhance the
applicability of the method to a broader range of multi-phase
transport problems of practical interest.
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