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Abstract. Optical tomography is a recent addition to the available set of computerized imaging
methods available to characterize live or inanimate matter. It uses light in the optical and near-
infrared ranges and is thus particularly suited to study samples that exhibit significant variation in
their optical properties in this wavelength range. This includes, for example, biological tissues as
well as some inhomogenous fluids of industrial interest. We will focus here on the use of the method
for biomedical imaging.

One of the advantages of optical tomography over many of the established methods is that
it is relatively fast, inexpensive, and does not use ionizing radiation. The latter is particularly
important when studying live tissue as the near infrared radiation does not induce ionization.
Another advantage is that the variant of optical tomography described here, namely fluorescence
enhanced optical tomography, can be made molecularly targeted, i.e. it can be used to determine the
three-dimensional distribution of biochemical events of interest, as long as they can be targeted by
antibodies or other targeting moeties.

In contrast to most traditional imaging methods such as X-ray tomography, optical tomography
does not use a linear mapping from the desired description of an object to the detected signal.
Consequently, we can not hope for explicit inversion formulas such as the inverse Radon transform,
and have to resort to numerical procedures for imaging. We will explain and demonstrate such a
procedure in this contribution.
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INTRODUCTION

Fluorescence enhanced optical tomography is a recent addition to the set of biomedical
imaging methods that is currently intensely researched. It attempts to reconstruct interior
tissue optical properties using light in the red and infrared range. Its main current use is
for biological tissues since these are highly scattering but not strongly absorbing in the
NIR (700-900nm) window.

For tissues, optical tomography is developed as a tool for imaging up to depths of
several centimeters (some 20–40 scattering length scales), which includes in particular
important applications to breast and cervix cancer detection and staging, lymph node
imaging, as well as imaging of the brains in neonates.

Optical tomography improves on a number of shortcomings of established cancer
imaging techniques. In particular, most currently available techniques only image tissue
structure variation created by tumors such as calcification of blood vessels (X-rays),
density and stiffness differences (ultrasound) or water content (MRI) of tissues. In
biomedical imaging, such effects are often associated with tumors. However, since they
are not specific to the presence of actual tumor cells, imaging these secondary effects



frequently lead to both false positive and false negative assessments. In addition, X-
ray imaging uses ionizing radiation and is therefore harmful and potentially cancer-
inducing. In contrast, optical tomography is a functional imaging method that (i) does
not use harmful radiation, and (ii) can be made specific to the presence of certain cell
types on the molecular level, distinguishing proteins and other molecules that are only
expressed in certain tissues we are interested in (for example tumor cells, or lymph
nodes if the goal is to track the spread of a tumor). Similar specificity may be possible in
applications to inanimate matter as well. Since the main focus of the authors’ work is on
biomedical imaging, we shall in the following only address this application; however,
translation to other kinds of objects under investigation should be readily possible with
the mathematical framework outlined below.

Originally, optical tomography [1] was envisaged as illuminating the tissue surface
with a known laser source. The light will diffuse and be absorbed in the tissue. By ob-
serving the light flux exiting the tissue surface, one hopes to recover the spatial structure
of absorption and scattering coefficients inside the sample, which in turn is assumed to
coincide with anatomical and pathological structures. This rests on the observation that
hemoglobin concentration, blood oxygenation levels, and water content affect optical
tissue properties, all of which are correlated with the presence of tumors. As a result dif-
fuse optical tomography (DOT) can image the in vivo metabolic environment [2, 3, 4, 5].

However, during the 1990s, it was recognized that DOT is a method that is hard to
implement because it does not produce a very large signal to noise ratio. This follows
from the fact that a relatively small tumor, or one that does not have a particularly high
absorption contrast, does not produce much dimming of the light intensity on the surface,
in particular in reflection geometry, i.e. where illumination and measurement surfaces
coincide. DOT is also not specific: it detects areas of high light absorption, but does
not distinguish the reasons for absorption; for example, it can not distinguish between
naturally dark tissues as compared to invading dark diseased tissues.

Since then, a number of approaches have been developed that attempt to avoid these
drawbacks. One is fluorescence-enhanced optical tomography, in which a fluorescent
dye (or “fluorophore”) is injected that specifically targets certain tissue types, for exam-
ple tumor or lymph node cells. The premise is that in living tissues, the dye is naturally
washed out from the rest of the tissue and is only left at sites where it specifically at-
taches. If the dye is excited using light of one wave length, then we will get a fluorescent
signal at a different wavelength, typically in the infrared, from areas in which dye is
present (i.e. where the tumor or a lymph node is). In other words, if we illuminate the
skin with a red laser, light will travel into the tissue, be absorbed by the dye, and will be
re-emitted at a different wave length (in the infrared range). This secondary light is then
detected again at the skin: here, a bright infrared spot on the surface indicates the pres-
ence of a high dye concentration underneath, which is then indicative of the presence of
the tissue kind the dye is specific to.

As the signal is now the presence of a different kind of light, not a faint dimming of
the incident light intensity, the signal to noise ratio of fluorescence optical tomography
is much better than in DOT. It is also much better than, for example, in positron
emission tomography (PET) because dyes can be excited millions or billions of times
per second, each time emitting an infrared photon. In addition, the specificity of dyes
can be used for molecularly targeted imaging, i.e. we can really image the presence



of diseased cells, not only secondary effects. This has been used in recent years for
small animal imaging applications [6] as well as for the clinical imaging of large tissue
volumes [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

The challenge in optical tomography, as compared to more traditional imaging meth-
ods such as X-ray tomography or MRI is that the imaging process, i.e. the mapping from
the three-dimensional dye concentration to the two-dimensional images in the infrared
range that we can record at the tissue surface is not linear. This means that we can not
hope for the existence of an inversion formula, such as the inverse Radon transform, that
would recover the dye concentrations from surface images explicitly or through solv-
ing a single linear integral equation. Rather, we will have to develop numerical iterative
methods that can solve this problem.

Herein, we will therefore review the numerical techniques necessary to solve nonlin-
ear inverse problems on adaptively refined meshes, using a realistic optical tomography
testcase. The general approach to solving the problem is similar as used in work by
other researchers [21, 22, 23]. However, we will present adaptivity as a central compo-
nent to our strategy. Our exposition will follow the framework laid out in [24, 25] and
applied in [26, 27]. The rest of the paper is structured as follows: we will first present the
mathematical formulation of the optical tomography problem, then discuss the numeri-
cal algorithm used to solve it, and then show an example of numerical reconstructions
using synthetic data before presenting conclusions and an outlook.

OPTICAL TOMOGRAPHY PROBLEM FORMULATION

Nonlinear inverse problems such as fluorescence optical tomography are typically per-
formed in a model-based framework, wherein a partial differential equation (here the
photon transport model) is used to predict measurements for a given set of absorption or
scattering parameters in the tissue interior. This distributed map of the absorption owing
to fluorophore is then iteratively updated until the predicted measurements match the
experimentally observed ones. This iterative process will be driven by a Newton-type
method that attempts to minimize the difference between prediction and actual measure-
ments.

Let us start with the model, a set of partial differential equations: For time-periodic
sources modulated at a frequency ω , the following set of coupled diffusion equations
accurately describes the complex-valued photon fluences u = u(r) at the excitation
wavelength and v = v(r) at the fluorescent wavelength (u,v describe amplitude and
phase-shift relative to the source of the photon waves at all points r):

−∇ · [Dx(r)∇u(r)]+ kxu(r) = 0, (1)
−∇ · [Dm(r)∇v(r)]+ kmv(r) = βxmu(r), (2)

where

Dx,m =
1

3(µax,mi + µax,m f + µ ′
sx,m)

,

kx,m =
iω
c

+ µax,mi(r)+ µax,m f (r), βxm =
φ µax f

1− iωτ(r)
.



Subscripts x and m denote material properties at excitation and emission wavelengths,
respectively: Dx,m are the photon diffusion coefficients; µax,mi the absorption coefficients
due to endogenous chromophores; µax,m f the absorption coefficients due to exogenous
fluorophore; µ ′

sx,m the reduced scattering coefficients; φ the quantum efficiency of the
fluorophore; and finally, τ is the fluorophore lifetime associated with first order fluores-
cence decay kinetics. These equations are solved with Robin-type boundary conditions
on the boundary ∂Ω of the domain Ω:

2Dx
∂u
∂n

+ γu+S(r) = 0, 2Dm
∂v
∂n

+ γv = 0, (3)

where n denotes the outward normal to the surface and γ is a constant depending on the
optical reflective index mismatch at the boundary. The complex-valued function S(r) is
the excitation boundary source.

The goal of fluorescence tomography is to reconstruct the spatially variable coeffi-
cients µax f (r) and/or τ(r) from measurements of the emission fluence v on the bound-
ary. Here, we will focus on the recovery of only µax f (r). For notational brevity, we set
µax f = q in the following paragraphs. The remaining optical properties were assumed
known, with values corresponding to a 2% Liposyn solution [28].

The model laid out above is able to predict measurements v(r) at the measurements
part Γ of the boundary whenever the source term S(r) is specified. In our experiments,
we use a shaped laser beam that scans across M positions on the tissue surface, repre-
senting sources Si(r), i = 1,2, . . . ,M. We can then predict vi(r) given these sources. In
the experiment, we take fluorescence measurements zi at the measurement surface Γ for
each source position i.

A mathematical description of the imaging problem is then: find that coefficient q(r)
for which the predicted values vi|Γ are closest in some sense to zi|Γ. This problem can be
posed as a constrained optimization problem wherein an L2 norm-based error functional
of the distance between boundary fluorescence measurements z = {zi, i = 1,2, . . . ,M}
and predictions v = {vi, i = 1,2, . . . ,M} is minimized by variation of the parameter q.
The diffusion model above connecting q and vi is used as an explicit constraint. In a
function space setting this minimization problem reads as:

min
q,u,v

J(q,v)

subject to Ai(q; [ui,vi])([ζ i,ξ i]) = 0, i = 1, . . . ,M.
(4)

Here, the error functional J(q,v) incorporates a least square error term over Γ and a
Tikhonov regularization term:

J(q,v) =
M

∑
i=1

1
2

∥∥vi −σzi∥∥2
Γ
+β r(q). (5)

σ is a factor that describes the relationship between actual fluorescent fluence at the
tissue surface and the CCD camera signal. The constraint Ai(q; [ui,vi])([ζ i,ξ i]) = 0 is
the weak or variational form of the coupled photon diffusion equations in frequency



domain with partial current boundary conditions for the ith excitation source, and with
test functions [ζ ,ξ ] ∈ H1(Ω):

Ai(q; [ui,vi])([ζ i,ξ i]) =

(Dx∇ui,∇ζ
i)Ω +(kxui,ζ i)Ω +

γ

2
(ui,ζ i)∂Ω +

1
2
(Si,ζ i)∂Ω

+(Dm∇vi,∇ξ
i)Ω +(kmvi,ξ i)Ω +

γ

2
(vi,ξ i)∂Ω − (βxmui,ξ i)Ω.

To solve this problem, we use that the solution of the constrained minimization
problem (4) is a stationary point of the Lagrangian [29]

L(x) = J(q,v)+
M

∑
i=1

Ai(q; [ui,vi])([λ ex
i ,λ em

i ]). (6)

Here, λ ex
i ,λ em

i are the Lagrange multipliers corresponding to the excitation and emission
diffusion equation constraints for the ith source, respectively, and we use the abbreviation
x = {u,v,λ ex,λ em,q} for brevity. The stationary point is found using the Gauss-Newton
method which computes an update direction δxk = {δuk,δvk,δλ

ex
k ,δλ

em
k ,δqk} by solv-

ing the linear system

Lxx(xk)(δxk,y) = −Lx(xk)(y) ∀y, (7)

where Lxx(xk) is the Gauss-Newton approximation to the Hessian matrix of second
derivatives of L at point xk, and y are test functions.

NUMERICAL ALGORITHM

Equations (7) are partial differential equations of their own, defining the update δxk(r)
whenever the previous iterates xk(r) are given. While linear, these are a complicated set
of coupled equations with non-constant coefficients (through the dependence on xk) for
which we can not expect to find analytical solutions.

To make a practical scheme out of this, we will therefore have to discretize the
equations. In our work, we use the finite element method. State and adjoint variables
ui,vi,λ ex

i , and λ em
i for each excitation source are discretized and solved for on indi-

vidual meshes with continuous finite elements, while the unknown parameter map q is
discretized on a separate mesh with discontinuous finite elements. Hence for M sources,
M + 1 finite element meshes are employed. After this discretization step, we obtain a
large but sparse linear system of equations of the following structure: M AT 0

A 0 C
0 CT βR

 δuk,h
δλ k,h
δqk,h

 =

 Fu
Fλ

Fq

 , (8)

where δuk,h,δλ k,h,δqk,h are the vectors of nodal values of updates for [u,v], [λ ex,λ em],q,
respectively. The size of this linear system equals the number of all M solution vectors



and Lagrange multipliers plus the number of unknowns in the parameter. It is therefore
very large already on modestly refined three-dimensional meshes and can be on the
order of several ten millions. To make things worse, the linear system is indefinite
and usually very badly conditions, with condition numbers often exceeding 1012. The
solution of this linear system is therefore not possible with direct solvers, and not
straightforward with the usual set of iterative linear solvers such as Conjugate Gradients
or GMRES [30].

In order to compute the Newton updates defined by (8) we therefore re-formulate this
set of linear equations using block elimination. We then arrive at the following sequence
of equations that need to be solved and whose solution is equivalent to the one above:

S δqk,h = Fq −
N

∑
i=1

CiT Ai−T
(Fi

u −MiAi−1Fi
λ
), (9)

Ai
δui

k,h = Fi
λ
−Ci

δqk,h, (10)

AiT
δλ

i
k,h = Fi

u −Mi
δqk,h, (11)

where S denotes the Schur complement

S = βR+CT A−T MA−1C. (12)

This sequence of linear systems is much simpler to solve (i) since the first equation that
defines the update δqk,h requires only the inversion of a symmetric and positive matrix
S that is furthermore relatively small, involving only the number of unknowns in the
parameter qk,h; (ii) because the rest of the matrices to be inverted are either Ai or (Ai)T ,
i.e. matrices that stem from the discretization of the ith forward model that computes
the fluxes ui,vi from a source term, or from the adjoint operator. While these matrices
can still be large (with sizes in the 100,000s to a few millions), devising forward and
adjoint solvers for partial differential equations is a well-understood process for which
good solvers and preconditioners are readily available. The overall solution process has
therefore been reduced to applying a CG method to S and to applying traditional solvers
for the forward and adjoint operators. While the resulting process is not trivial, it is also
not too complicated to implement on a parallel machine and a Newton iteration can be
performed in a few minutes even on relatively fine meshes with many unknowns.

After solving a few Newton iterations as outlined above, our algorithm examines the
solution and refines the M + 1 meshes we use to discretize the M forward and adjoint
variables and the one parameter. We then adaptively refine each of the meshes to obtain
new grids that are better adjusted to where the solution is not smooth. The pictures shown
in the next section will demonstrate this.

AN IMAGE RECONSTRUCTION EXAMPLE

In the following, let us illustrate our imaging scheme using a synthetic example. Exam-
ples using experimental data can be found in [31]. The computations shown here were
implemented using the Open Source finite element library deal.II [32]. More details on
the numerical methods can be found in References [25, 24].



FIGURE 1. Solutions for measurements i = 1,4,7 for a laser line scanning over the top of the tissue
sample.

The example we show uses a realistic geometry obtained stereographically using a
pair of cameras trained to the groin region of a pig (the experiment was performed to
image the lymph nodes in this area). Fig. 1 shows a simulated laser source at three posi-
tions while scanning over the surface of this region (a total of M = 8 source positions is
used in this example). At each of these positions, we take measurements zi of the fluores-
cent light intensity and relative phase emitted by the dye that has been injected at that is
predominantly attached to the tissue kind under consideration here, i.e. lymphatic cells.
For the purpose of illustration, measurements zi are computed numerically (rather than
obtained experimentally) using a separate computer program that employs a different
numerical method to avoid an inverse crime.

Using these measurements, we then employ the inversion algorithm outlined in the
previous sections. As mentioned, we refine each of the involved meshes every few
Newton iterations. For the first of the source positions shown in the Fig. 1, we show
a sequence of meshes used after zero, two, and four adaptive refinements. It is easy to
see that the mesh becomes gradually finer around those locations where a high mesh
resolution is necessary to resolve features of the solution, whereas it remains coarse
where resolution is not needed. Using this adaptive scheme allows us to focus on those
areas where it is necessary while keeping the overall number of degrees of freedom, and
consequently the numerical effort involved in all steps, as small as possible. In cases
like the ones shown here, the use of adaptivity reduces the size of the involved problems
by factors of 10–100, and is consequently indispensible to make the solution of such
inverse problems feasible.

Similarly, the unknown parameter q(r) is discretized on a sequence of meshes that
are also adapted successively. Fig. 3 shows these meshes at the same iterations as Fig. 2
for the state and adjoint variables. As can be seen, the mesh is refined towards an object
at the center of the domain to provide high resolution there. Fig. 4 illustrates that the
reason for this refinement pattern is that the reconstructed parameter q(r) has a high
dye concentration at the center of the domain, indicative of a lymph node or tumor. The
refinement pattern is clearly appropriate for this purpose.



FIGURE 2. Meshes for experiment i = 1 after zero, two, and four refinement cycles. Note that the mesh
density is localized around where it is necessary to resolve the structure of the solution.

FIGURE 3. Meshes on which the parameter q is discretized after zero, two, and four refinement cycles.

CONCLUSIONS AND OUTLOOK

In this paper, we have given a brief overview of the various techniques necessary
and available for the solution of nonlinear inverse problems, illustrated using a recent
biomedical imaging technique: fluorescence enhanced optical tomography. For this and
similar cases, uniformly refined meshes can not deliver the necessary resolution within
compute times that are clinically acceptable because they lead to nonlinear optimization
problems that are orders of magnitude too large for today’s hardware. Our approach to
this problem is to introduce adaptively refined meshes for solving the forward/adjoint
problems and the unknown parameter updates. They are able to focus numerical effort
to regions in the domain where high resolution is actually necessary. Other advantages
of such schemes are that they also regularize the inverse problem and in particular make
the initial Gauss-Newton iterations extremely cheap since we can compute on coarse
meshes while we are still far away from the solution.

Using multiple excitation source patterns is essential for acquiring high information
content measurements for nonlinear inverse problems (as it is necessary for high res-
olution in linear inverse problems such as X-ray tomography). We have integrated the
treatment of multiple experiments into our approach by using a mathematical formula-
tion that considers all measurements at once. Our algorithmic implementation exploits
the availability of multiprocessor computers and Beowulf clusters to rapidly solve the
resulting problem. Finally, we have demonstrated the application of the developed algo-
rithms and methods to a problem of clinical importance, namely locating lymph nodes



FIGURE 4. Identified parameter q(r) after 25 Newton iterations. The cells shown are those where the
reconstructed dye concentration is more than 50% of the maximum identified value.

marked with fluorescent contrast agents.
Although the results shown here and elsewhere [25, 24, 31] demonstrate that we are

able to efficiently solve inverse fluorescence tomography problems with practically suf-
ficient resolution, further progress is necessary in several areas to improve the numerical
performance. This includes improving linear and nonlinear solvers, regularization, and
stabilization by imposing additional constraints on the solution. For practical applica-
bility, numerical methods also have to work in the presence of significant background
heterogeneity, unknown or large noise levels, systematic measurement bias, and other
practical constraints. Systematic testing of reconstructions for statistically sampled sce-
narios with Objective Assessment of Image Quality (OAIQ) methods is therefore neces-
sary to achieve clinical recognition for fluorescence optical tomography.

Looking beyond the application use in this paper, adaptive finite elements and many of
the other techniques demonstrated here can also be used for a wide variety of other non-
linear inverse problems. This includes, among many others, electrical impedance tomog-
raphy (EIT), eddy current imaging, diffuse optical tomography, and magnetoresistivity,
all of which are used in areas outside biomedical imaging for the characterization of
materials, nondestructive testing, or in geophysical applications. In each of these cases,
the model is a partial differential equation in which the predicted oberservable quantity
depends nonlinearly on the parameter that we would like to identify. In all these cases,
an iterative nonlinear algorithm and a discretized version of the partial differential equa-
tion is necessary, and the methods shown herein are immediately applicable to achieve
this goal.
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