
Pubblicazioni del Centro De Giorgi
Proceedings of the Interdisciplinary Workshop on Mathematical Methods in Biomedical Imaging and Intensity-ModulatedRadiation
Therapy (IMRT), Pisa, Italy, October 2007.

Non-Contact Fluorescence Optical Tomography
with Adaptive Finite Element Methods

Amit Joshi and Wolfgang Bangerth

Key words and phrases.Optical Tomography, Adaptive Finite Element Methods, Inverse
Imaging Problems.

c©200x Scuola Normale Superiore

1



2

ABSTRACT. Fluorescence optical tomography is a rapidly expand-
ing biomedical imaging modality, which exploits the deep penetra-
tion of near infrared light in tissue and molecularly targeting fluores-
cence agents, to locate diseased tissue regions in three dimensions.
Mathematically, the fluorescence optical tomography problem is an
inverse problem which involves the identification of coefficients of a
coupled elliptic PDE system describing the propagation of NIR pho-
tons in tissue. The inverse optical tomography problem is typically
cast as a nonlinear optimization problem and solved by Newton-type
methods. However, the computational expense of repeatedly solv-
ing the coupled elliptic system for generating image updates restricts
how fine a discretization of the partial differential equation can be
employed. Further, since light rapidly attenuates by multiple scat-
tering and absorption in tissue, the tomography problem for deter-
mining the concentration of a fluorescence agent in tissue is highly
ill-posed, which also affects the choice of discretization level. In
the past, we have proposed novel dual adaptive finite element based
strategies for high resolution (around 1 mm) yet rapid (under 20 min-
utes) fluorescence optical tomography for large tissue volumes of ap-
proximately 1 liter.

A promising application of adaptive finite element-based fluo-
rescence tomography is the identification of the lymph nodes drain-
ing from the primary tumor in breast cancer patients. Breast cancer
predominantly spreads through the lymph system. Localization of
small fluorescently tagged regions of cancerous tissue in the lymph
nodes around the breast can guide the surgeon for resection. In ad-
dition, 3D imaging of cancerous tissue with suitably designed agents
can also act as a tool for tracking the spread of the disease, and mon-
itoring the response to therapy. In this article, we detail the devel-
opment and implementation of an adaptive finite element based non-
contact fluorescence tomography algorithm and demonstrate the 3D
localization of fluorescently tagged targets in tissue from both syn-
thetic and real experimental measurements acquired on physiological
geometries.

1. Introduction

As near infrared (NIR) light can travel several centimeters in tissue,
fluorescence enhanced NIR optical imaging promises to open new path-
ways for the characterization of biological processes in living animals at
cellular and molecular levels. In the past decade, several approacheshave
been proposed for fluorescence enhanced optical tomography involving
the determination of the fluorophore yield and/or fluorescence lifetime
distribution in the tissue from a finite number of boundary measurements.
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These approaches include perturbative localization [16, 30, 39], back-
projection type methods [24–26, 37], Born Approximation [14, 29, 31],
random walk theory [10], and more recently, fast fluorescence localiza-
tion [33]. Other researchers have cast the image reconstruction prob-
lem as an optimization problem in which a least squares type minimiza-
tion is performed in order to determine the fluorescence map which best
predicts the measured boundary fluorescence distribution. Optimization
approaches are more general in their scope and can handle heteroge-
neous backgrounds as well as large sample volumes albeit at increased
computational cost. Typically, Newton-type or conjugate gradient meth-
ods [2, 17, 32, 35] have been employed to solve the optimization for-
mulation of the problem, both in deterministic and in Bayesian frame-
works [11–13,27].

The achievable resolution for fluorescence tomography is determined
by multiple factors including the signal to noise ratio, target depth, and
the level of discretization. Traditionally, the discretization level has been
selecteda priori based on knowledge of the domain and/or computa-
tional constraints. The image quality can often be improved by uniformly
refining the level of discretization throughout the domain. However,
this global refinement further increases the ill-posedness of the prob-
lem and quickly results in insurmountable computational requirements
by increasing the number of unknowns. To avoid this problem, we have
previously proposed adaptive finite element methods for reconstructing
high resolution 3D fluorescence images by employing separate and inde-
pendently evolving meshes for the forward and inverse problems arising
in optical tomography and demonstrated resolution gains up to the mean
transport length scales (approximately 1 mm) [20]. These algorithms
were experimentally verified with frequency domain fluorescence mea-
surements acquired on tissue-mimicking phantoms [19].

NIR fluorescence imaging is applicable to a number of applications,
but lymph node tomography is a particularly promising area. The lymph
system is thought to be responsible for the metastatic spread of can-
cer, and proximal lymph nodes are often resected in hopes to curb the
spread of a tumor. Consequently, the development of a molecular imag-
ing method for locating lymph nodes in 3-D can be a potent tool for di-
agnostics, image guided surgery, and monitoring response to cancer ther-
apy. Optical agents such as fluorescent indocyanine green [15], quantum
dots [23], and other organic dyes [18] have been shown to image lymph
nodes in animals using planar imaging. While planar imaging is suffi-
cient for qualitative studies, the development of a tomographic modality
to locate molecular probe distribution in three dimensions is needed to
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quantitatively track probe transport through the lymphatic system and for
accurate image guided lymph node resection procedures.

As NIR light can not penetrate though the thickness of human or
swine bodies, only reflectance measurements can be acquired. In prior
work, we have demonstrated localization of fluorescent targets buried
in homogeneous tissue-like media from frequency domain fluorescence
measurements acquired with an area illumination and area detection sys-
tem [19]. While sufficient for simple phantom experiments, measure-
ments using only a single expanded laser excitation source can not suc-
cessfully reconstruct multiple fluorescence targets buried in large hetero-
geneous volumes. We proposed and demonstrated the use of multiple
spatially patterned excitation sources for tomography in resolving multi-
ple fluorescence targets distributed in clinically relevant volumes in [21].
In this contribution, we demonstrate the use of such spatially patterned
excitation sources for locating multiple fluorescent anomalies in tissue,
using both simulated and real measurements on physiological swine bod-
ies geometries captured by a stereo vision system.

The layout of this paper is as follows: In Section 2, we derive the
formulation of and algorithms for multiple excitation based fluorescence
tomography, as well as discuss its computational implementation. In Sec-
tion 3, we briefly describe the synthetic and real experimental measure-
ment configurations for frequency domain fluorescence imaging of swine
and present image reconstruction examples. We conclude in Section 4 we
summarize our work and point out implications and future directions.

2. Adaptive Fluorescence Tomography Algorithm

Fluorescence optical tomography is typically performed in a model-
based framework, wherein a photon transport model is used to predict
boundary fluorescence measurements for a given fluorescence absorption
map in the tissue interior. The map of the absorption owing to fluorophore
is then iteratively updated until the predicted measurements match the
experimentally observed ones. For time-periodic sources modulated at
a frequencyω, the following set of coupled photon diffusion equations
accurately describes the complex-valued photon fluencesu = u(r) at the
excitation wavelength andv = v(r) at the fluorescent wavelength:

−∇ · [Dx(r)∇u(r)] + kxu(r) = 0, (2.1)

−∇ · [Dm(r)∇v(r)] + kmv(r) = βxmu(r). (2.2)
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Here,

Dx,m =
1

3(µax,mi + µax,mf + µ′
sx,m)

,

kx,m =
iω

c
+ µax,mi(r) + µax,mf (r), βxm =

φµaxf

1 + iωτ(r)
.

Subscriptsx andm denote material properties at excitation and emission
wavelengths, respectively:Dx,m are the photon diffusion coefficients;
µax,mi the absorption coefficients due to endogenous chromophores;µax,mf

the absorption coefficients due to exogenous fluorophore;µ′

sx,m the re-
duced scattering coefficients;φ the quantum efficiency of the fluorophore;
and finally,τ is the fluorophore lifetime associated with first order flu-
orescence decay kinetics. These equations are solved with Robin-type
boundary conditions on the boundary∂Ω of the domainΩ:

2Dx
∂u

∂n
+ γu + S(r) = 0, 2Dm

∂v

∂n
+ γv = 0, (2.3)

wheren denotes the outward normal to the surface andγ is a constant
depending on the optical reflective index mismatch at the boundary. The
complex-valued functionS(r) is the excitation boundary source.

The goal of fluorescence tomography is to reconstruct the spatial map
of coefficientsµaxf (r) and/orτ(r) from measurements of the emission
fluencev on the boundary. In this work we focus on the recovery of
only µaxf (r). For notational brevity, we setµaxf = q in the following
paragraphs. The remaining optical properties were assumed known, with
values corresponding to a2% Liposyn solution [19].

In our imaging scheme, a laser shaped into a line profile is scanned
acrossM positions on the tissue surface, representing sourcesSi(r), i =
1, 2, . . . , M . For each source position, fluorescence measurements are
taken on the illumination plane. The image reconstruction problem can
then be posed as a constrained optimization problem wherein anL2 norm-
based error functional of the distance between boundary fluorescence
measurementsz = {zi, i = 1, 2, . . . , M} and predictionsv = {vi, i =
1, 2, . . . , M} is minimized by variation of the parameterq. The diffusion
model above connectingq andvi is used as an explicit constraint. In a
function space setting this minimization problem reads as:

min
q,u,v

J(q,v)

subject to Ai(q; [ui, vi])([ζi, ξi]) = 0, i = 1, . . . , M.
(2.4)



6 AMIT JOSHI AND WOLFGANG BANGERTH

Here, the error functionalJ(q,v) incorporates a least square error term
over the measurement partΓ of the boundary∂Ω and a Tikhonov regu-
larization term:

J(q,v) =
M
∑

i=1

1

2

∥

∥vi − σzi
∥

∥

2

Γ
+ βr(q). (2.5)

The parameterσ models the relationship between actual fluorescent flu-
ence at the tissue surface and the CCD camera signal. As the detector
amplification and the laser diode power are typically kept constant for all
M source positions, the sameσ is used for all line source positions and is
empirically determined. In practice fluorescence phase measurements are
made relative to the excitation source S, henceσ can be treated as a real
number since only the amplitude of the excitation source is treated as un-
known. Whileσ can be efficiently fitted, in practice a constant value can
be predetermined for fixed instrument gain settings.β is the Tikhonov
regularization parameter.

The constraintAi(q; [ui, vi])([ζi, ξi]) = 0 is the weak or variational
form of the coupled photon diffusion equations in frequency domain with
partial current boundary conditions for theith excitation source, and with
test functions[ζ, ξ] ∈ H1(Ω):

Ai(q; [ui, vi])([ζi, ξi]) =

(Dx∇ui,∇ζi)Ω + (kxui, ζi)Ω +
γ

2
(ui, ζi)∂Ω +

1

2
(Si, ζi)∂Ω

+ (Dm∇vi,∇ξi)Ω + (kmvi, ξi)Ω +
γ

2
(vi, ξi)∂Ω − (βxmui, ξi)Ω.

It is known that the solution of the constrained minimization problem
(2.4) is a stationary point of the Lagrangian [20]

L(x) = J(q,v) +
M
∑

i=1

Ai(q; [ui, vi])([λex
i , λem

i ]). (2.6)

Here, λex
i , λem

i are the Lagrange multipliers corresponding to the ex-
citation and emission diffusion equation constraints for theith source,
respectively, and we use the abbreviationx = {u,v, λex, λem, q} for
brevity. The definition of a stationary point is that at this point, all
derivatives with respect to its arguments are zero. For complex-valued
functions, this means that both real and imaginary part of the derivative
are zero. The stationary point is found using the Gauss-Newton method
which computes an update directionδxk = {δuk, δvk, δλ

ex
k , δλem

k , δqk}
by solving the linear system

Lxx(xk)(δxk, y) = −Lx(xk)(y) ∀y, (2.7)
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FIGURE 1. Geometry for the first numerical experiment.
The animal surface in the groin region was characterized
with a photogrammetric measurement and two coarse FE
meshes were created for discretizing the forward/adjoint
variables as well as the unknown parameter.

whereLxx(xk) is the Gauss-Newton approximation to the Hessian matrix
of second derivatives ofL at pointxk, andy are test functions. The norm
of the first derivative of the Lagrangian, i.e. the residual of the optimality
conditions‖∇L‖, is tracked to monitor the progress of the solution and
it is used as one of the triggers of mesh refinement decisions [4,5].

Equations (2.7) are discretized by the finite element method. State
and adjoint variablesui, vi, λex

i , andλem
i for each excitation source are

discretized and solved for on individual meshes with continuous finite el-
ements, while the unknown parameter mapq is discretized on a separate
mesh with discontinuous finite elements. Hence forM sources,M + 1
finite element meshes are employed. These meshes are adaptively refined
and fast Gauss-Newton updates to the unknown parameter map are calcu-
lated by carrying out the forward and adjoint computations correspond-
ing to different sources in parallel. The mesh adaptation criteria and the
parallelized Gauss-Newton update strategy is detailed in Ref. [21]. The
computations were implemented using the Open Source finite element
library deal.II [6]. More details can be found in References [4,5,7].

3. Image Reconstruction Examples

Here, we present image reconstructions from numerical experiments
employing both synthetically generated and real measurement data to
demonstrate the utility and efficiency of the techniques described in the
previous section for practical lymph node imaging.
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 2. Scanning line source simulation setup for
the first numerical experiment: (a-d) 1st, 2nd, 8th and 16th

source locations. (e-f) Evolution of the state mesh for the
8th source.

Example 1. In the first example, we employ a geometry extracted
with photogrammetric techniques from the region of a swine’s groin, see
Fig. 1. A10.8cm×7.4cm×9.1cm box was projected to the acquired ge-
ometry to form our computational domain. We then generated synthetic
measurement data corresponding to three embedded 5mm fluorescence
targets containing1µM of Indocyanine Green (ICG) dye solution. ICG
excites in a wavelength band around 785nm and emits around 830nm.
To generate the synthetic data, a 785nm laser line source (2mm wide,
6cm long) was simulated to scan across the tissue surface, see Fig. 2a–d,
and fluorescence amplitude and phase at the illumination surface were
computed for each ofM = 16 source positions.

The two initial meshes shown in Fig. 1 were prepared to start the
image reconstruction iterations. The state mesh was refined according to
a Kelly-type error indicator [38] for the stateu,v and adjoint variables
λex, λem. Fig.s 2(e-f) show several iterations of the state mesh evolution
for the 8th source position. Similar meshes were generated in parallel for
the other source positions. The unknown parameterq = µaxf (r) was
discretized on a sequence of coarser meshes.

Using these succesions of meshes, we performed Gauss-Newton up-
dates. For this example, no further progress in the image reconstruction
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(a) (b) (c) (d)

FIGURE 3. (a-c) Parameter mesh evolution for the re-
construction of three fluorescence targets. (d) Those
cells whereqk(r) ≥ 50% maxr

′∈Ω qk(r
′) are shown as

blocks, whereas the actual location and size of the tar-
gets are drawn as spheres. In addition, the mesh on three
cut planes through the domain is shown.

was achieved after 6 adaptive mesh refinements and a total of 29 iter-
ations. Fig.s 3a–c indicate the parameter mesh evolution. Fig. 3d illus-
trates the recovered fluorescent targets. True target locations and sizes are
shown as black wireframes. True and recovered target locations coincide.
However, the recovered magnitude of reconstructed fluorescence absorp-
tion is lower than the true level of0.598cm−1, primarily because of the
smoothing effect of Tikhonov regularization; furthermore, the recovered
µaxf (r) values differ in the three targets owing to different reconstruction
sensitivities at different depths from the illumination/detection surface.

Example 2.In our second example, we demonstrate inversion of real
experimental measurements. To acquire the measurements, a live and
anesthetized Yorkshire Swine was injected with a lymph targeting flu-
orescent contrast agent. Measurements corresponding to 6 line sources
positioned symmetrically about the suspected lymph node location (as
ascertained from 2-D images) were employed. Fig. 4 shows four of
the raw measurement datasets at excitation and emission wavelengths.
The excitation wavelength images illustrate the scanning line source;
these images were used to construct the source termS(r) for the bound-
ary condition (2.3). The emission amplitude and phase images consti-
tuted the boundary measurements used in the inversion for the parameter
q = µaxf (r). More details about the experimental configuration can be
found in Ref.s [19,34].

A cubical region of roughly(8cm)3 around the suspected node lo-
cation was used as the measurement and image reconstruction volume.
Forward and adjoint variables where initially discretized on meshes with
cell sizes of 1cm, while for the unknown image the initial mesh resolution
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FIGURE 4. Real measurement data at the illumination
and detection surface. Top row: Excitation wavelength
images of the scanning line source. Middle row: Corre-
sponding fluorescence emission amplitude images. Bot-
tom row: Associated fluorescence phases.

was 2cm. As the Gauss-Newton parameter update iterations proceeded,
the mesh refinement algorithm produced grids that for forward/adjoint
computations better resolve the laser line source and accurately solve the
photon diffusion equations, while the parameter mesh increasingly bet-
ter delineated the target and became coarser in regions away from the
suspected target location. No further image update was obtained af-
ter 26 Gauss-Newton iterations during which 7 automatic mesh refine-
ments/derefinements were triggered.

Fig. 5a depicts the mesh used to discretize the parameter after the
final refinement step. Fig. 5b shows only those cells where the recon-
structed parameter exceeds50% of its maximum. The depth of the re-
constructed targets (lymph nodes in this case) was estimated to be3cm;
this agreed with the observation of the surgeon that the resected lymph
node in the imaged location was3 − 3.5cm deep.

Computational considerations.The linear Karush-Kuhn-Tucker, or
KKT, system resulting from the discretization of the Newton update (2.7)
can rapidly become quite large (hundreds of thousands to millions of un-
knowns) for the case of multiple excitation source measurements. Hence,
it is essential that the image reconstruction process be started from coarse
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(a) (b)

FIGURE 5. Lymph node image reconstruction from ex-
perimental measurements. (a) Final adaptively refined
parameter mesh. (b) Cells where the reconstructed pa-
rameter is larger than 50% of its maximum. In addition,
the mesh on three cut planes through the domain is
shown.

state and parameter meshes. Fig. 6a–b shows the growth in the global
number of unknowns and the number of parameter unknowns as Gauss-
Newton iterations progress for the two numerical experiments described
above. The total size of the system exceeds one million by the end of the
reconstruction process; however, we are able to keep the compute time
within 20-25 minutes by distributing computations onto different nodes
of a Beowulf cluster computer.

Fig. 6c–d illustrates the decrease in data misfit
∑M

i=1

1

2

∥

∥vi − σzi
∥

∥

2

Γ

and the residual of the first order optimality condition‖Lx(x)‖ as itera-
tions pregress. As described in [7], the regularization parameterβ is ad-
justed after each iterations to avoid that the regularization term dominates
the misfit term. Most of the decrease in the data misfit and the residual
is obtained in the initial few iterations on the coarse meshes, however the
images keep on improving in terms of target location accuracy along with
adaptive mesh refinements in succeeding iterations.

4. Conclusions

In this contribution, we briefly reviewed the adaptive finite element
method approach to fluorescence optical tomography, a rapidly growing
biomedical imaging modality that is currently undergoing its first clinical
studies. Uniformly refined meshes can not deliver clinically necessary
resolutions because they lead to nonlinear optimization problems that are
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FIGURE 6. Progress of computations for examples 1
(left) and 2 (right column) as Gauss-Newton iterations
progress. (a-b) Increase in the size of linear KKT sys-
tem (i.e. the number of global degrees of freedom) and
the number of unknowns to discretize the parameter
q(r). (c-d) Reduction in data misfit

∑M
i=1

1

2

∥

∥vi − σzi
∥

∥

2

Γ

and residual of the first order optimality condition
‖Lx(x)(y)‖, as well as our choice of the Tikhonov reg-
ularization parameterβ in each iteration.

orders of magnitude too large for today’s hardware to solve within clin-
ically acceptable time scales. Our solution to this problem was the in-
troduction of adaptively refined meshes for solving the forward/adjoint
problems and the unknown parameter updates. They not only are able to
focus numerical effort to regions in the domain where high resolution is
actually necessary, but also regularize the inverse problem and in particu-
lar make the initial Gauss-Newton iterations extremely rapid since we can
compute on coarse meshes while we are still far away from the solution.
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Using multiple excitation source patterns is essential for acquiring
high information content measurements of tissue with non-contact in-
strumentation setups. We have integrated a multiple experiment inver-
sion approach with the adaptive tomography algorithm which exploits the
availability of multiprocessor computers and Beowulf clusters to rapidly
solve the scanning excitation source tomography problem. Finally, we
demonstrated the application of the developed algorithms and methods
to the important clinical problem of locating lymph nodes marked with
fluorescent contrast agents with realistic geometries and with experimen-
tal measurements. Multiple fluorescent targets can be identified with only
reflectance mode measurements through the judicious use of scanning ex-
citation source patterns. In this manuscript we focused only on the recov-
ery of fluorescent target locations by recoveringµaxf (r) maps. However,
in case the lifetimeτ(r) of the fluorophore is also spatially varying and
unknown, then a sequential update strategy which alternates the update
of µaxf (r) with the update inτ(r) or βxm(r) is needed.

Although we are able to efficiently solve inverse fluorescence tomog-
raphy problem with practically sufficient resolution, we believe that fur-
ther progress is necessary in a number of areas to improve the numerical
performance. The linear solvers spend 75% of the compute time on fine
meshes. It is therefore important to think about viable ways to precon-
dition the solution of state/adjoint and parameter updates. One approach
would be to use BFGS or LM-BFGS approximations [28] of the Schur
complement of the KKT system arising from the discretization of the
equation (2.7) as used in [8]. However, BFGS methods would have to be
integrated with adaptivity since current quasi-Newton implementations
expect the parameter space to remain fixed. Another approach is to use
multilevel algorithms for the Schur complement or the whole KKT sys-
tem. Methods in this direction have already been explored in [1,3,9,22].
Numerical methods do not only have to work in simple situations like
the ones shown in Section 3, but also in the presence of significant back-
ground heterogeneity, unknown or large noise levels, systematic mea-
surement bias, and other practical constraints. Systematic testing of re-
constructions for statistically sampled scenarios with Objective Assess-
ment of Image Quality (OAIQ) methods [36] will be necessary to achieve
clinical recognition for fluorescence optical tomography.

Acknowledgments

Part of this work was supported by NIH grant R01 CA 67176. The au-
thors acknowledge the assistance of Dr. John Rasmussen in the Division



14 AMIT JOSHI AND WOLFGANG BANGERTH

of Molecular Imaging at the Baylor College of Medicine, where the ex-
perimental measurements used in the numerical examples were obtained.
Dr. Wei Wang, also from the Division of Molecular Imaging provided
the lymph targeting fluorescent contrast agent, and Dr. Shi Ke performed
the dye injections.

References

1. S. S. Adavani and G. Biros,Multigrid algorithms for inverse problems with linear
parabolic PDE constraints, submitted (2007).

2. S. R. Arridge,Image reconstruction in optical tomography, Philosophical Transac-
tions: Biological Sciences352 (1997), no. 1354, 717–726.

3. U. M. Ascher and E. Haber,A multigrid method for distributed parameter estimation
problems, ETNA 15 (2003), 1–12.

4. W. Bangerth,Adaptive finite element methods for the identification of distributed
parameters in partial differential equations, Ph.D. thesis, University of Heidelberg,
2002.

5. , A framework for the adaptive finite element solution of large inverse prob-
lems, SIAM J. Sc. Comput. (2007), accepted.

6. W. Bangerth, R. Hartmann, and G. Kanschat,deal.II – a General Purpose Object
Oriented Finite Element Library, ACM Trans. Math. Softw.33 (2007), 24/1–24/27.
See alsohttp://www.dealii.org/.

7. W. Bangerth and A. Joshi,Adaptive finite element methods for the solution of inverse
problems in optical tomography, Inverse Problems (2007), submitted.

8. G. Biros and O. Ghattas,Parallel Lagrange-Newton-Krylov-Schur methods for PDE-
constrained optimizaion. Part I: The Krylov-Schur solver, SIAM J. Sci. Comput.27
(2005), 687–713.

9. A. Borz̀ı, K. Kunisch, and D. Y. Kwak,Accuracy and convergence properties of the
finite difference multigrid solution of an optimal control problem, SIAM J. Control
Optim.41 (2003), 1477–1497.

10. V. Chernomordik, D. Hattery, I. Gannot, and A. H. Gandjbakhche, Inverse method 3-
D reconstruction of localized in vivo fluorescence-application to Sjøgren syndrome,
IEEE J. Sel. Top. Quantum Electron.54 (1999), 930–935.

11. M. J. Eppstein, D. E. Dougherty, T. L. Troy, and E. M. Sevick-Muraca,Biomedical
optical tomography using dynamic parametrization and Bayesian conditioning on
photon migration measurements, Appl. Opt.38 (1998), no. 10, 2138–2150.

12. M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca,Three
dimensional near infrared fluorescence tomography with Bayesian methodologies
for image reconstruction from sparse and noisy data sets, Proc. Nat. Acad. Sci.99
(2002), 9619–9624.

13. A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel,
and E. M. Sevick-Muraca,Fluorescence-enhanced optical imaging in large tissue
volumes using a gain-modulated ICCD camera, Phys. Med. Biol.48 (2003), 1701–
1720.

14. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos,A submillimeter resolu-
tion fluorescence molecular imaging system for small animal imaging, Med. Phys.
30 (2003), 901–911.



ADAPTIVE NON-CONTACT FLUORESCENCE OPTICAL TOMOGRAPHY 15

15. M. Gurfinek, A. B. Thompson, J. Reynolds, E. M. Sevick-Muraca, et al.,Pharma-
cokinetics of ICG and HPPH-car for the detection of normal and tumor tissue using
fluorescence, near-infrared reflectance imaging: a case study, Photochem. Photo-
biol. (2000).

16. E. L. Hull, M. G. Nichols, and T. H. Foster,Localization of luminescent inhomo-
geneities in turbid media with spatially resolved measurements of CW diffuse lumi-
nescence emittance, Appl. Opt.37 (1998), 2755–2765.

17. H. Jiang,Frequency-domain fluorescent diffusion tomography: A finite element
based algorithm and simulations, Appl. Opt.37 (1998), no. 22, 5337–5343.

18. L. Josephson, U. Mahmood, P. Wunderbaldinger, Y. Tang, andR. Weissleder,Pan
and sentinel lymph node visualization using a near-infrared fluorescentprobe, Mol.
Imaging (2003).

19. A. Joshi, W. Bangerth, K. Hwang, J. Rasmussen, and E. M. Sevick-Muraca,Fully
adaptive FEM based fluorescence optical tomography from time-dependent mea-
surements with area illumination and detection, Med. Phys.33 (2006), no. 5, 1299–
1310.

20. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca,Adaptive finite element modeling
of optical fluorescence-enhanced tomography, Optics Express12 (2004), no. 22,
5402–5417.

21. , Non-contact fluorescence optical tomography with scanning area illumi-
nation, Proceedings of the IEEE International Symposium on Biomedical Imaging,
Arlington, VA, 2006, IEEE, 2006, pp. 582–585.

22. B. Kaltenbacher,On the regularization properties of a full multigrid method for ill-
posed problems, Inverse Problems17 (2001), 767–788.

23. S. Kim, Y. T. Lim, E. G. Soltesz, J. Lee A. M. De Grand, A. Nakayama, J. A. Parker,
T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, and J. V.
Frangioni,Near-infrared fluorescent type II quantum dots for sentinel lymph node
mapping, Nature Biotechnology22 (2004), 93–97.

24. V. A. Markel, V. Mital, and J. C. Schotland,Inverse problem in optical diffusion
tomography. III. Inversion formulas and singular-value decomposition, Journal of
the Optical Society of America A20 (2003), no. 5, 890–902.

25. V. A. Markel, J. A. O’Sullivan, and J. C. Schotland,Inverse problem in optical dif-
fusion tomography. IV. Nonlinear inversion formulas, Journal of the Optical Society
of America A20 (2003), no. 5, 903–912.

26. V. A. Markel and J. C. Schotland,Inverse problem in optical diffusion tomography.
I. Fourier-Laplace inversion formulas, Journal of the Optical Society of America A
18 (2001), no. 6, 1336–1347.

27. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. Boas, and R. P.
Milane, Fluorescence optical diffusion tomography, Appl. Opt. 42 (2003), no. 16,
3061–3094.

28. J. Nocedal and S. J. Wright,Numerical optimization, Springer Series in Operations
Research, Springer, New York, 1999.

29. V. Ntziachristos and R. Weissleder,Experimental three-dimensional fluorescence re-
construction of diffuse media by use of a normalized Born approximation, Opt. Lett.
26 (2001), no. 12, 893–895.

30. M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh,Reradiation and imaging of
diffuse photon density waves using fluorescent inhomogeneities, J. Luminescence60
(1994), 281–286.



16 AMIT JOSHI AND WOLFGANG BANGERTH

31. , Fluorescence lifetime imaging in turbid media, Opt. Lett.20 (1996), 426–
428.

32. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-
Muraca, Imaging of fluorescent yield and lifetime from multiply scattered light
reemitted from random media, Appl. Opt.36 (1997), no. 10, 2260–2272.

33. H. Quan and Z. Guo,Fast 3-D optical imaging with transient fluorescence signals,
Opt. Express12 (2004), no. 3, 449–457.

34. J. S. Reynolds, T. L. Troy, and E. M. Sevick-Muraca,Multi-pixel techniques for
frequency-domain photon migration imaging, Biotechnolgy Progress13 (1997),
669–680.

35. R. Roy and E. M. Sevick-Muraca,Truncated Newton’s optimization schemes for
absorption and fluorescence optical tomography: Part(1) theory andformulation,
Opt. Express4 (1999), no. 10, 353–371.

36. A. Sahu, A. Joshi, M. Kupinsky, and E. M. Sevick-Muraca,Assessment of a fluores-
cence enhanced optical imaging system using the Hotelling observer, Optics Express
14 (2006), no. 17, 7642–7660.

37. J. C. Schotland,Continuous wave diffusion imaging, J. Opt. Soc. Am. A14 (1997),
275–279.

38. D. W.Kelly, S. R.J. P. Gago, O. C Zienkiewicz, and I. Babuska,A posteriori error
analysis in finite element method: Part ii–adaptive mesh refinement, Int. J. Numer.
Math. Eng19 (1983), 1621–1656.

39. J. Wu, Y. Wang, L. Perleman, I. Itzkan, R. R. Desai, and M. S. Feld, Time resolved
multichannel imaging of fluorescent objects embedded in turbid media, Opt. Lett.20
(1995), 489–491.

DEPARTMENT OF RADIOLOGY, BAYLOR COLLEGE OF MEDICINE, HOUSTON,
TX 77030, USA

E-mail address: amitj@bcm.edu

DEPARTMENT OF MATHEMATICS, TEXAS A&M U NIVERSITY, COLLEGE STA-
TION, TX 77843, USA

E-mail address: bangerth@math.tamu.edu


