
Geophysical Journal International
Geophys. J. Int. (2012) 191, 12–29 doi: 10.1111/j.1365-246X.2012.05609.x

G
JI

G
eo

dy
na

m
ic

s
an

d
te

ct
on

ic
s

High accuracy mantle convection simulation through modern
numerical methods

Martin Kronbichler,1 Timo Heister2 and Wolfgang Bangerth2

1Department of Information Technology, Uppsala University, Box 337, 751 05 Uppsala, Sweden.
2Department of Mathematics, Texas A&M University, College Station, TX 77843-3368. E-mail: bangerth@math.tamu.edu

Accepted 2012 July 11. Received 2012 July 10; in original form 2011 November 1

S U M M A R Y
Numerical simulation of the processes in the Earth’s mantle is a key piece in understanding
its dynamics, composition, history and interaction with the lithosphere and the Earth’s core.
However, doing so presents many practical difficulties related to the numerical methods that
can accurately represent these processes at relevant scales. This paper presents an overview of
the state of the art in algorithms for high-Rayleigh number flows such as those in the Earth’s
mantle, and discusses their implementation in the Open Source code ASPECT (Advanced
Solver for Problems in Earth’s ConvecTion). Specifically, we show how an interconnected
set of methods for adaptive mesh refinement (AMR), higher order spatial and temporal dis-
cretizations, advection stabilization and efficient linear solvers can provide high accuracy at a
numerical cost unachievable with traditional methods, and how these methods can be designed
in a way so that they scale to large numbers of processors on compute clusters.

ASPECT relies on the numerical software packages DEAL.II and TRILINOS, enabling us to
focus on high level code and keeping our implementation compact. We present results from
validation tests using widely used benchmarks for our code, as well as scaling results from
parallel runs.

Key words: Numerical solutions; Numerical approximations and analysis; Non-linear
differential equations; Dynamics: convection currents, and mantle plumes.

1 I N T RO D U C T I O N

Computer simulation has been an important tool in studying the
Earth’s mantle owing to its inaccessibility to direct measurements.
Consequently, deriving mathematical models and their numeri-
cal solution on computers has a long history dating back several
decades. Comparing predictions from such models with indirect
information about mantle properties (e.g. thermal fluxes, glacial re-
bound or the shape of the geoid) has provided an enormous amount
of insight into the structure and mechanisms driving convection
in the mantle. Similar computations have also been used to model
other bodies in the solar system.

However, numerical predictions can only be as good as both the
mathematical model and the numerical method used to solve it. To
this end, more numerical methods have been proposed than we could
attempt to summarize here, and a number of well-supported codes
implementing the more successful methods have been published
under licenses that have allowed their wide usage in the community.
Citcom (Moresi et al. 1996) and Conman (King et al. 1990) are two
examples of such codes, and both are now in fact at least in part
maintained by the NSF-funded community initiative Computational
Infrastructure in Geodynamics (CIG).

While highly successful, both of these codes as well as most
others that are in use throughout the community have their roots

in numerical methods that were state of the art in the 1980s and
early 1990s. For example, they use fixed meshes, low order finite
elements, and—measured by today’s standards—relatively simple
solver and stabilization methods. Acknowledging the difficulty of
retrofitting existing codes to new mathematical methods, and with
support from CIG, we are therefore implementing a new code for
mantle convection from scratch that incorporates the progress that
has been made in numerical methods and computational science
over the past 20 yr. Unlike other efforts that focus on a single part
of a simulator (e.g. the solver, the advection scheme or the mesh),
our intention in this work is to provide a code that uses current
technology in every one of its components. This code, which we
call ASPECT (short for Advanced Solver for Problems in Earth’s
ConvecTion) is intended as a modular program that can serve as the
basis for both further method development and model refinements,
as well as for easy modification to adjust for use in production
simulations by the community at large. It is available under an
Open Source license at http://www.dealii.org/aspect/.

In this paper, we summarize the current state of the art in nu-
merical methods and computational science for problems of the
kind that appear in the simulation of convection in the Earth’s man-
tle, and give an overview of the methods implemented in ASPECT.
Specifically, we address the following interconnected topics and the
strategies used in our code.

12 C© 2012 The Authors

Geophysical Journal International C© 2012 RAS

High accuracy mantle convection simulation 13

(i) Mesh adaptation. Mantle convection problems are character-
ized by widely disparate length scales (from plate boundaries on
the order of kilometres or even smaller, to the size of the en-
tire Earth). Uniform meshes can not resolve the smallest length
scale without producing an intractable number of unknowns. Fully
adaptive meshes allow resolving local features of the flow field
without the need to refine the mesh globally. Since the location of
plumes that require high resolution change and move with time,
meshes also need to be adapted every few time steps.

(ii) Accurate discretizations. The Boussinesq problem upon
which most models for the Earth’s mantle are based has a num-
ber of intricacies that make the choice of discretization non-trivial.
In particular, the finite elements chosen for velocity and pressure
need to satisfy the usual compatibility condition for saddle point
problems. This can be worked around using pressure stabilization
schemes for low-order discretizations, but high-order methods can
yield better accuracy with fewer unknowns and offer more reliabil-
ity. Equally important is the choice of a stabilization method for the
highly advection-dominated temperature equation. We will choose
a nonlinear artificial diffusion method for the latter.

(iii) Efficient linear solvers. The major obstacle in solving the
Boussinesq system is the saddle-point nature of the Stokes equa-
tions. Simple linear solvers and preconditioners can not efficiently
solve this system in the presence of strong heterogeneities or when
the size of the system becomes very large. We will present an effi-
cient solution strategy using a block triangular preconditioner based
on an algebraic multigrid that provides optimal complexity even up
to problems with hundreds of millions of unknowns.

(iv) Parallelization of all of the steps above. Global mantle con-
vection problems frequently require extremely large numbers of
unknowns for adequate resolution in 3-D simulations. The only re-
alistic way to solve such problems lies in parallelizing computations
over hundreds or thousands of processors. This is made more com-
plicated by the use of dynamically changing meshes, and it needs
to take into account that we want to retain the optimal complexity
of linear solvers and all other operations in the program.

(v) Modularity of the code. A code that implements all of these
methods from scratch will be unwieldy, unreadable and unusable as
a community resource. To avoid this, we build our implementation
on widely used and well tested libraries that can provide researchers
interested in extending it with the support of a large user commu-
nity. Specifically, we use the DEAL.II library (Bangerth et al. 2007,
2012) for meshes, finite elements and everything discretization re-
lated; the TRILINOS library (Heroux et al. 2005, 2012) for scalable
and parallel linear algebra; and P4EST (Burstedde et al. 2011) for
distributed, adaptive meshes. As a consequence, our code is freed
of the mundane tasks of defining finite element shape functions
or dealing with the data structures of linear algebra, can focus on
the high-level description of what is supposed to happen, and re-
mains relatively compact at currently only around 1400 lines for
its core functionality. The code will also automatically benefit from
improvements to the underlying libraries with their much larger
development communities. Our code is extensively documented to
enable other researchers to understand, test, use, and extend it.

It is our hope that the code finds adoption in the mantle convec-
tion community. This publication is intended as an overview of the
numerical methods considered state-of-the-art today and that are
implemented in ASPECT.

In the following sections, we will discuss the various parts of
developing a modern implementation of a mantle convection simu-
lator. Specifically, in Section 2 we outline the mathematical formu-

lation of the problem in the form of the Boussinesq approximation.
Section 3 discusses the numerical methods used for time discretiza-
tion, spatial discretization and stabilization of the temperature equa-
tion, the linear solvers and preconditioners, and parallelization is-
sues. Section 4 shows numerical results obtained with the code and
the results of benchmark problems. Section 5 draws conclusions
and gives an outlook to further questions.

2 F O R M U L AT I O N O F T H E P RO B L E M

Convection processes in the Earth’s mantle are well described by
incompressible fluid flow driven by temperature-induced small den-
sity differences. Since viscous friction forces in the fluid are large
compared to buoyancy forces, the motion is slow and inertial terms
can be neglected (Schubert et al. 2001). This yields the Boussinesq
model, given by the following set of partial differential equations

−∇ · (2ηε(u)) + ∇ p = ρ(T)g, (1)

∇ · u = 0, (2)

∂T

∂t
+ u · ∇T − ∇ · (κ∇T) = γ. (3)

In this equation, u denotes the fluid velocity, p the pressure,1 and
T the temperature. η is the viscosity of the material, and ε(u) =
1
2 (∇u + (∇u)T) is the rate-of-deformation or strain rate tensor. The
parameters κ , γ and g are the thermal conductivity, heat sources
and gravity vector, respectively. The simplest approximation for the
temperature dependent density ρ(T) is to use the relationship

ρ(T) = ρref (1 − β(T − Tref)) ,

where ρref is the reference density at reference temperature T ref , and
β is the thermal expansion coefficient. However, while ASPECT can
use this approximation as a particular density model, it internally
uses whatever form is given for this dependence. The equations
given above need to be augmented by appropriate boundary condi-
tions for the velocity (or pressure) and temperature, as well as initial
conditions for T .

This relatively simple system can be non-dimensionalized by
introducing the Rayleigh number (see e.g. Zhong et al. 2008) to
simplify the analysis of these equations. ASPECT does not automat-
ically do this. Instead, it uses the material, geometry and gravity
descriptions provided by user-defined modules which may either
be given in dimensional physical units (such as the results of Sec-
tion 4.6) or in non-dimensional units (e.g. the benchmarks given in
Sections 4.1–4.4). In any case, ASPECT does make sure that inter-
nally the numerical equations are well-balanced (see Section 3.2.4)
to avoid the problems with round-off one usually encounters when
implementing dimensional equations naively, while at the same time
ensuring that all externally visible quantities are in the same units as
those given in the model description. We recognize that it is uncom-
mon in geodynamics to work with dimensional quantities; at the

1 Note that the pressure in this formulation is the total pressure, that is,
the sum of static and dynamic pressures. Solving for the total pressure
is uncommon in most geodynamics codes in an effort to avoid round-off
problems. We avoid these problems by using other means as discussed
in the Appendix. On the other hand, ASPECT of course allows problem
descriptions in which the density on the right hand side is logically only a
density variation, that is, a deviation from a static value, as we do in the
benchmarks shown in Sections 4.1–4.4. In this case, the pressure component
of the solution is only the dynamic pressure.

C© 2012 The Authors, GJI, 191, 12–29

Geophysical Journal International C© 2012 RAS

14 M. Kronbichler, T. Heister and W. Bangerth

same time, we believe that a well-implemented code can avoid the
typical problems while at the same time making sure that all user
interaction happens in user-defined units, thus avoiding a common
source of errors, for example, in table lookup of experimentally
determined material parameters. Furthermore, working in dimen-
sional units avoids the ambiguity of how the non-dimensionalization
should happen when coefficients such as gravity, viscosity and den-
sity are no longer constant and, consequently, there is no single,
easily defined Rayleigh number that holds throughout the entire
domain.

We note that for a realistic description of the Earth, several of the
coefficients depend on the solution variables. For example, the vis-
cosity η generally decreases with rising temperature T and depends
on the strain rate; both viscosity η and density ρ depend on the cur-
rent location in the p-T phase diagram; and the heating term γ will
contain not only radiogenic heating but also adiabatic heating and
the viscous dissipation ηε(u) : ε(u). Many other factors, for exam-
ple, inhomogeneous chemical composition or phase changes, also
enter any attempt at complete descriptions. We will not take these
effects into account here, but we will discuss some of the associated
issues at the end of this paper and in a future contribution.

3 N U M E R I C A L M E T H O D S

Eqs (1)–(3) are not easy to solve numerically. To be efficient, an
algorithm has to take into account a number of interconnected issues
related to time stepping, spatial discretization and linear solvers,
none of which can be considered entirely on their own.

As mentioned in the Introduction, the purpose of this paper is to
describe a coherent set of methods for time discretization, adaptive
meshing, spatial discretization, parallelization and optimal linear
solvers and preconditioners that together yield accurate solutions at
optimal cost and that enable the numerical simulation even of pro-
cesses that were previously considered too difficult, or in a fraction
of the time for problems that are typically considered expensive.

In the following subsections, we will present the various build-
ing blocks of our approach. An open source implementation of
these ideas is available through the extensively documented step-
31 and step-32 tutorial programs (Kronbichler & Bangerth 2011;
Kronbichler et al. 2011) of the widely used finite element library
DEAL.II (Bangerth et al. 2007, 2012), and the continued develop-
ment of these programs in the form of ASPECT. The numerical
results in Section 4 were obtained with only slightly modified ver-
sions of these tutorial programs and are therefore easily replicable.
We mention here that the code supports both 2-D and 3-D com-
putations, obviating the need to develop and debug two separate
versions of the methods, and enabling the ability to test the 2-D
version before switching to production runs in 3-D.

3.1 Time discretization

The primary complications of the Boussinesq system (1)–(3) with
regard to the time discretization are (i) the nonlinear coupling of all
components; and (ii) the fact that the Stokes equations for u, p do
not contain time derivatives and consequently form the equivalent of
an algebraic (instantaneous) constraint to the temperature equation
that does have a time derivative. The result of these complications
are that simple and cheap time marching schemes are not possible.
A large number of schemes have been proposed and used over the
past decades to approximate solutions to the Boussinesq equations
(for recent discussions of methods see Ismail-Zadeh & Tackley
2010; Gerya 2010). However, while appropriate at the time, most

of them would not be considered highly accurate or highly efficient
by today’s standards.

The Stokes equation can be considered as a constraint to the tem-
perature equation that has to hold at any given time in general, and
at time steps in particular. Time dependent differential equations of
this kind are frequently solved using time stepping methods akin to
the IMPES (implicit pressure explicit saturation) schemes originally
developed for porous media flow simulations (Sheldon et al. 1959;
Stone & Garder 1961; Chen 2006). In these methods, the variables
defined by the constraint are computed from the equations without
time derivatives. Here, these are velocities and pressure, and since a
linear system needs to be inverted, the step is considered implicit. In
a second substep of the original IMPES scheme, the other variables
are then updated using an explicit time step. The IMPES approach
allows to decouple the nonlinear Boussinesq system into two sim-
pler, linear subproblems, and therefore leads to an efficient scheme
for the solution of the coupled problem.

Since one alternates between the two substeps, one can consider
them in any order. Let us here first discuss the explicit temperature
step and then the implicit Stokes solve. In the following, let tn

denote the time of the nth time step and kn = tn − tn−1 denote the
length of the nth time step. We will then write un, pn, T n to indicate
approximations of the velocity, pressure and temperature at time tn.

To provide accurate convection dynamics, we approximate the
time dependency in the temperature eq. (3) using a second-order
accurate implicit/explicit time stepping scheme based on the BDF-
2 scheme (Hairer & Wanner 1991). This scheme is a good com-
promise between high accuracy (which could be increased using
higher-order schemes), stability (which typically decreases with the
order of the scheme, requiring smaller CFL numbers and conse-
quently higher computational effort) and efficiency of implementa-
tion (higher-order schemes often become unwieldy as they require
complicated initialization during the first few time steps, and require
the storage of many solution vectors from previous time steps). The
BDF-2 scheme balances these issues well and leads to reasonable
CFL numbers and an accuracy that is balanced with that of the
spatial discretization that we will discuss in Section 3.2.

To derive the BDF-2 scheme, we use a quadratic interpolation to
find the finite difference approximation of ∂T

∂t from times tn, tn−1,
tn−2 as

∂T (tn)

∂t
≈ 1

kn

(
2kn + kn−1

kn + kn−1
T (tn) − kn + kn−1

kn−1
T (tn−1)

+ k2
n

kn−1(kn + kn−1)
T (tn−2)

)
. (4)

Using a Taylor series one can show that this approximation is correct
up to second order (Hairer & Wanner 1991). The same formulas also
hold for u(tn), of course. The usual form in which these equations
are stated in the literature is obtained by assuming that kn = kn−1,
but we want to keep our formulas more general since we need to
choose variable time step sizes to satisfy the CFL condition at each
time step.

Taking into account the time step sizes kn and kn−1, we define the
linearly extrapolated temperature T∗,n as

T ∗,n =
(

1 + kn

kn−1

)
T n−1 − kn

kn−1
T n−2, (5)

and similarly for an extrapolated velocity u∗,n .
We then arrive at a semi-implicit BDF-2 version of the temper-

ature eq. (3) by using T ∗,n, u∗,n in the advection term, treating the
diffusion term implicitly, and using approximation (4) for the time

C© 2012 The Authors, GJI, 191, 12–29

Geophysical Journal International C© 2012 RAS

High accuracy mantle convection simulation 15

derivative

2kn + kn−1

kn + kn−1
T n − kn∇ · κ∇T n = kn + kn−1

kn−1
T n−1

− k2
n

kn−1(kn + kn−1)
T n−2 − knu∗,n · ∇T ∗,n + knγ. (6)

We will discuss solving the discretized version of this equation for
Tn in Section 3.3.1. Note that we treat physical heat conduction
(diffusion) implicitly while the evaluation of convection and the
artificial diffusion terms we will discuss below are made explicit by
extrapolation. For a fixed convection this will retain unconditional
stability, see (Quarteroni & Valli 1994, p. 411). Since solving the
temperature equation does not take more than a few percent of the
overall run time of Boussinesq solvers, making diffusion implicit is
a useful compromise. Regardless of this detail, the whole scheme is
not unconditionally stable, because we extrapolate the convection
u∗,n in the temperature eq. (6).

The introduction of this explicit convection limits the time step
by a Courant-Friedrichs-Lewy (CFL) condition (Quarteroni & Valli
1994). Specifically, after spatial discretization (see Section 3.2), the
time step kn must satisfy

CFLK = kn‖u‖∞,K

hK
≤ C

on every cell K, for a constant C that depends on the particular time
stepping method as well as the method used for spatial discretization
and that is experimentally chosen as large as possible while ensuring
that the solution remains stable. Here, hK is the diameter of cell
K, and ‖u‖∞,K the maximal magnitude of the velocity on K. In
our implementation, we have experimentally chosen C = 1

5.9p in

2-D and C = 1
43.6p in 3-D, where p is the polynomial degree with

which we discretize the temperature variable, see Section 3.2.5. The
difference between 2-D and 3-D results primarily from the different
ratio between edge length and cell diameter hK as well as from
the larger distortion of cells in 3-D in the shell geometry we will
be using in mantle convection simulations. We choose time steps
kn that satisfy this stability condition, which necessitates choosing
them of variable length as in the formulas above.

We end the discussion of the time discretization with three re-
marks. First, one might believe that a fully implicit time discretiza-
tion would allow larger time steps. However, since it is difficult to
solve the temperature equation fully coupled with the Stokes equa-
tion, our use of the extrapolated velocity u∗ already limits the size of
time steps. Furthermore, while fully implicit solutions may be sta-
ble for advection problems with a CFL number larger than C, they
are typically rather inaccurate with large time steps. Secondly, the
BDF-2 scheme requires knowledge of the solution at time instances
tn−1, tn−2; consequently, it can not be used for the very first time
step and we initialize the scheme by a single, first-order accurate
implicit Euler step. Since most geodynamics applications are not
interested in the initial transient phase but the long-term behaviour,
the reduced accuracy in the initial time step does in general not
affect overall results. Finally, after solving for the temperature at
time instant tn using (6), we can compute an updated velocity un

using the Stokes system

−∇ · (2ηε(un)) + ∇ pn = ρ(T n)g,

∇ · un = 0. (7)

Since these equations do not have time derivatives, no special time
discretization is necessary here.

3.2 Spatial discretization and stabilization

In each time step, we now first have to solve (6) for the updated
temperature Tn, then (7) for the new velocity and pressure. To do
so, we need to spatially discretize these equations, for which we use
the finite element method.

As with time stepping, spatial discretization raises a number of
interconnected issues: (i) What kind of mesh should we choose? (ii)
What kind and order of finite elements should we use for the tem-
perature, velocity and pressure variables? (iii) How can we stabilize
the solution of the discrete temperature equation to avoid unphysical
oscillations in regions where the temperature has strong gradients?
We will discuss these issues in turn in the following.

3.2.1 Choice of meshes and local adaptation

With few and mostly recent exceptions (see, e.g. Albers 2000;
Davies et al. 2007a,b; Burstedde et al. 2008, 2009; Stadler et al.
2010; Leng & Zhong 2011), mantle convection applications have
used meshes that are either obtained by uniform refinement of a
coarse mesh, or are obtained from a mesh generator. In either case,
the mesh is fixed. In contrast, we will here use a mesh that can be
dynamically adapted by local adaptive refinement and coarsening of
an initial mesh with a small number of cells. This gives us flexibility
to improve mesh resolution close to specific features of the solution,
for example, strong temperature gradients, and thereby increase the
accuracy of the solution. A different view of this adaptive mesh
refinement (AMR) technique is that the mesh is a selectively coars-
ened version of a uniformly refined one where coarsening happens
in parts of the volume where the solution is smooth. This notion
supports the view that adaptively refined meshes provide about the
same overall accuracy as a uniformly refined mesh with the same
minimal mesh size, but at a fraction of the numerical cost. Evi-
dence from the more mathematically oriented literature (see, e.g.
Bangerth & Rannacher 2003; Ainsworth & Oden 2000; Babuška &
Strouboulis 2001) shows consistently that AMR can achieve levels
of accuracy typically required in engineering applications with a
factor of around 100 (in 2-D) or 1000 (in 3-D) less computational
effort than uniformly refined meshes, and we will confirm this ob-
servation in Section 4.2. Convection problems are certainly a prime
candidate for savings of this order of magnitude given that the tem-
perature and accompanying flow features frequently vary on length
scales of only a few kilometres, much smaller than the size of Earth
as a whole. Using adaptively refined meshes is, therefore, a crucially
important factor in making highly accurate simulations of complex
problems possible at all.

There are a number of practical aspects to using AMR. First,
the underlying software is unsurprisingly much more complex than
when one wants to use a fixed mesh. Our work is based on a large
finite element library, DEAL.II, that already provides this function-
ality at little additional effort to the implementer of a code, for
quadrilaterals in 2-D and hexahedra in 3-D. Secondly, one has to
deal with the fact that if neighbouring cells differ in refinement
level, some of the nodes of the mesh lie on the midpoints of edges
or faces of neighbouring cells. We deal with this through constraints
that ensure that the solution remains continuous at these hanging
nodes, see (Babuška & Rheinboldt 1978; Carey 1997; Bangerth
et al. 2007; Bangerth & Kayser-Herold 2009). Finally, we dynami-
cally adapt the mesh every few time steps and we need a criterion
to decide which cells to refine or coarsen. Since the variable that
is most indicative of abruptly changing features of the solution is
the temperature, we apply a criterion to the temperature that is

C© 2012 The Authors, GJI, 191, 12–29

Geophysical Journal International C© 2012 RAS

16 M. Kronbichler, T. Heister and W. Bangerth

Figure 1. Example of a locally refined mesh. One half of the mesh for
the spherical shell geometry in 3-D is shown. The mesh has approximately
890 000 cells; the finest cells are six times refined from the coarse mesh.

commonly referred to as the ‘Kelly error indicator’ (Gago et al.
1983) and that computes for each cell an approximation of the size
of the second derivatives times the diameter of the cell. This crite-
rion has been found to be a simple, yet universally useful tool in
adaptively refining meshes, and is implemented in DEAL.II. While
this works well in 2-D, in 3-D it refines primarily into the boundary
layers at the inner and outer margins of the mantle; we avoid this
by also taking derivatives of the velocity into account when refin-
ing. Ultimately, however, finding a good and universal refinement
criterion turns out to be non-trivial; we will return to this issue in a
future paper.

Even though we adapt the mesh every few time steps, we limit the
number of times a single coarse mesh cell can be refined: otherwise,
close to steep gradients, the cells would be made smaller and smaller
in each refinement step, requiring smaller and smaller global time
steps due to the CFL condition.

While implementing the data structures and algorithms outlined
above from scratch would require several tens of thousands of lines
of codes, they are all readily available in DEAL.II. In fact, using
adaptive meshes and related algorithms requires little more than
maybe a dozen lines of code in our program. An example of the
kind of meshes we use here is shown in Fig. 1 in 3-D; 2-D meshes
are shown in Figs 3 and 7 below.

3.2.2 Approximation of geometry

Our program uses Cartesian coordinates. The advantage of this
choice is that the shell geometry of the Earth’s mantle is not a hard-
coded special case, but no different than any other geometry (it is
simply produced by using a mesh consisting of an unstructured col-
lection of coarse cells which are then hierarchically refined) and the
code can readily be adapted to use a box geometry (as used in some

of the examples in Section 4), an octant of the shell, or a domain
that takes into account the geoid shape or actual topography—none
of these is any more difficult than any other, and we need not mod-
ify the assembly of matrices or vectors when changing between
coordinate systems.

To deal with curved boundaries, one has to map the finite ele-
ment shape functions discussed below from the reference cell on
which they are defined to the location of cells in the unstructured
mesh. Traditionally, this is done using polynomial mappings, often
chosen to be isoparametric, that is, of the same polynomial degree
as the shape functions (Brenner & Scott 2002; Carey 1997), though
DEAL.II allows these to be chosen independently. Because the over-
head of using a higher-order mapping is negligible compared to the
many other operations in a program (the higher-order mapping only
leads to higher numerical cost in cells at the surface of the domain),
we use a mapping of degree four.

3.2.3 Spatial approximation of the flow variables

On the meshes as described earlier, we discretize all variables using
the finite element method, that is, we seek to find approximations
for un, pn, T n of the form

un
h(x) =

Nu∑
j=1

U n
j ϕ

u
j (x),

pn
h (x) =

Np∑
j=1

Pn
j ϕ

p
j (x),

T n
h (x) =

NT∑
j=1

T n
j ϕT

j s(x). (8)

There are a number of choices for the finite element basis functions
ϕu

j , ϕ
p
j , ϕ

T
j . Since we will want to match the polynomial degree of

the functions for the temperature to those of the velocity, let us here
first discuss the choice for the flow variables.

For the Stokes system (7), it is well known that the polynomial
degrees of shape functions for the velocity and the pressure can not
be chosen arbitrarily (see, e.g. Brenner & Scott 2002; Braess 1997).
Rather, one either has to stabilize the Stokes equations, for example,
by adding an artificial compressibility term, or by choosing a pair
of finite element spaces that satisfy the Babuška-Brezzi (or LBB or
inf-sup) condition.

Many homegrown codes use artificial compressibility (or some
other) stabilization because it avoids the need to implement shape
functions of different polynomial degrees. However, it is known
that the resulting solutions are not very accurate; furthermore, these
schemes can not easily guarantee mass conservation. Alternatively,
codes may choose to use lowest-order elements with piecewise
constant pressures; these are locally conservative but have a very low
order of accuracy. For these reasons, we choose to use finite element
spaces that are known to be LBB-stable (Girault & Raviart 1986)
and have at least a piecewise linear pressure space. Specifically, we
consider the following two options that are already implemented in
DEAL.II:

(i) Qd
q+1 × Qq , (q ≥ 1): This choice uses continuous shape func-

tions of polynomial degree q + 1 for each of the d velocity com-
ponents, and continuous shape functions of polynomial degree q

C© 2012 The Authors, GJI, 191, 12–29

Geophysical Journal International C© 2012 RAS

High accuracy mantle convection simulation 17

for the pressure.2 This combination is known as Taylor-Hood el-
ements. The fact that we use a lower polynomial degree for the
pressure is not usually a concern since one is not typically inter-
ested in highly accurate pressure fields anyway. Furthermore, the
pressure is a globally smooth function and almost entirely dom-
inated by the hydrostatic pressure that essentially determines the
lookup of pressure-dependent material properties.

(ii) Qd
q+1 × P−q , (q ≥ 0): This choice differs from the one above

in that it uses discontinuous elements of polynomial degree q for the
pressure and that it omits the tensor product shape functions from
the polynomial space. A particular case is the Qd

1 × P0 element with
piecewise constant pressures that is, for example, used in Citcom
(Moresi et al. 1996).

In either case, one will typically choose q = 1, that is, linear ele-
ments for the pressure and quadratic ones for the velocity, which
results in 27 × 3 = 81 velocity nodes per cell in 3-D, and eight
or three pressure nodes for the Q1 and P−1 elements, respectively.3

This gives formal third-order accuracy for the velocity variable and
second order for the pressure. Choosing larger values for q, as is
possible through ASPECT’s input file, would yield higher orders of
convergence, but non-smooth regions in the solution often limit the
global accuracy so that the additional work does not pay off. We
will investigate these various choices quantitatively in Section 4.1.

Which of the two options above for the pressure space is prefer-
able is not immediately obvious. It is easy to show that the second
implies local mass conservation on each cell, that is,

∫
∂K n · un

h = 0
for every cell K of the mesh. On the other hand, this does not
necessarily yield a smaller overall error and, in fact, simple exper-
iments show that the pointwise values of the divergence of un

h are
in fact larger for the second choice than for the first. A different
consideration is that the second choice has approximately d times
more pressure variables than the first although as we will see in
Section 3.3.2, this does not result in a significantly higher computa-
tional effort. To facilitate experiments, our implementation allows
to choose either element based on a run-time parameter.

3.2.4 Weak form and fully discrete Stokes system

The coefficients Uj, Pj of the expansion (8) are determined by in-
serting un

h, pn
h into the Stokes system (7), multiplying the equations

with test functions ϕu
i (x), ϕ p

l (x), respectively, and integrating over
the domain. Integrating these terms by parts and using the appro-
priate boundary conditions on ϕu

i and un
h then yields the weak form

of the discrete equations:(
ε(ϕu

i), 2ηε(un
h)

)

− (∇ · ϕu
i , pn

h)
 = (ϕu
i , ρ(T n

h)g)
,(
ϕ

p
l , ∇ · un

h

)

= 0.

2 Here and in the following, the finite element space Qq is generated by
mapping complete tensor polynomial spaces from the reference cell to each
cell. For example, in 2-D the space Q1 consists of the bilinear functions 1,
ξ , η, ξη, where ξ , η are the coordinates on the reference cell. In contrast,
the space Pq consists only of polynomials of maximum degree q. In 2-D,
P1 consists of the functions 1, ξ , η. Using a negative index, P−q, indicates
that functions do not need to be continuous across cell interfaces. See also
(Elman et al. 2005, section 5.3) for a discussion of element spaces suitable
for the Stokes problem.
3 Note, however, that the eight pressure nodes per cell in 3-D for the Q1

element are shared between all cells adjacent to each vertex, whereas the
three pressure nodes per cell for the P−1 element are uniquely associated
with each cell. Consequently, the P−1 pressure element has asymptotically
d times as many unknowns.

Our goal is to find functions un
h and pn

h —that is, to find coeffi-
cients U n

j , Pn
j —such that these equations hold for i = 1 . . . Nu, l =

1 . . . Np. As presented here, these equations are unbalanced in their
physical units since we have not non-dimensionalized them, and
will have vastly different numerical values when using coefficients
and length scales as common for Earth. While not a mathematical
problem, it leads to severe inaccuracies for both linear and itera-
tive solvers. We avoid these by multiplying the second of the two
equations by a factor sp = η0

L where L is a typical lengthscale of
the problem and η0 is a reference viscosity. We have found that it is
best to choose L not as the diameter of the domain but as the size
of typical features such as plumes in the Earth to approximate the
effect of the missing second derivative in the second equation com-
pared to the first. For example, for global convection problems, we
choose L = 104 m. For problems with constant viscosity, η0 = η. On
the other hand, when solving a problem with variable viscosity, η0

should be a value that adequately represents the order of magnitude
of the viscosities that appear, such as an average value or the value
one would use to compute a Rayleigh number.

After multiplying the second equation by sp, the system is no
longer symmetric. We can restore symmetry by replacing the pres-
sure by pn

h = sp p̄n
h and solving for the new variable p̄n

h with expan-
sion coefficients P̄ instead. Note that p̄ does not have the physical
units of a pressure, but it has the intuitive meaning of a pressure.
We obtain the original pressure immediately after solving by multi-
plying the second component of the solution vector by sp. With all
this, the fully discrete version of the Stokes equations at time step
n now reads(
ε(ϕu

i), 2ηε(un
h)

)

− sp(∇ · ϕu
i , p̄n

h)
 = (ϕu
i , ρ(T n

h)g)
,

sp

(
ϕ

p
l ,∇ · un

h

)

= 0, (9)

and we can rewrite these equations in matrix notation as(
A BT

B 0

) (
U n

P̄n

)
=

(
Fn

0

)
, (10)

where

Ai j = (
ε(ϕu

i), 2ηε(ϕu
j)
)

, (11)

Bi j = −sp

(
ϕ

q
i ,∇ · ϕu

j

)

, (12)

Fn
i = (

ϕu
i , ρ(T n)g

)

. (13)

We will discuss solving this linear system in Section 3.3.2.

3.2.5 Spatial approximation of the temperature variable

Since the temperature structure of the Earth is one of the vari-
ables of primary interest in mantle convection computations, we
are interested in an accurate representation. Consequently, choos-
ing a higher-order approximation would seem promising. On the
other hand, we can not expect the evolution of the temperature field
to be more accurate than the velocity field along which it is pri-
marily advected. Thus, we choose to approximate the temperature
using the same polynomial degree q + 1 as the velocity, that is,
T n

h ∈ Qq+1. Our experience is that Qq elements yield considerably
worse approximations in usual temperature fields, despite the fact
that high-order methods are more prone to over- and undershoots
in regions of high gradients (LeVeque 2002). We suppress these
oscillations through an appropriate stabilization as discussed in the
next section.

C© 2012 The Authors, GJI, 191, 12–29

Geophysical Journal International C© 2012 RAS

18 M. Kronbichler, T. Heister and W. Bangerth

3.2.6 Stabilization of the temperature equation

Eq. (6) for the temperature at time step n is of advection-diffusion
type. In mantle convection simulations, the diffusivity κ is very
small compared to the velocity. Even for very fine meshes, the local
Péclet number on cell K, PeK = hK |u|K

κ
is usually in the range of

102 to 104. For such high Péclet number problems, standard finite
element discretizations introduce spurious oscillations around steep
gradients (Donea & Huerta 2003). Therefore, stabilization must be
added to the discrete formulation to obtain correct solutions.

One commonly used stabilization is to add artificial diffusion,
either uniformly or, in the SUPG method, only along streamlines
(Brooks & Hughes 1982). Such methods are used, for example, in
the widely used Conman (King et al. 1990) and Citcom (Moresi et al.
1996) codes. While popular, these methods have the disadvantage
that they add diffusion to any cell on which the local Péclet number
is large, even in regions where the temperature is smooth and there is
no danger of oscillations. We therefore adopt a more recent method,
the so-called entropy viscosity method (Guermond et al. 2011), that
only adds artificial diffusion where the local Péclet number is large
and the solution is non-smooth. This method solves the modified
temperature equation

∂T

∂t
+ u · ∇T − ∇ · (κ + νh(T))∇T = γ, (14)

subject to the time discretization discussed in Section 3.1, with an
artificial dissipation νh(T) added to the equation. Conceptually, in
regions where the temperature field T is smooth νh should be small,
and in regions with significant variability νh should be of similar
size as the diffusive flux in a first-order upwind scheme (LeVeque
2002). This nonlinear definition of the artificial viscosity makes sure
that the dissipation is as small as possible, while still large enough
to prevent oscillations in the temperature field. In particular, the
global approximation property of the scheme will not be affected,
as would be the case with a simple linear dissipation with a constant
νh.

Following (Guermond et al. 2011), on cell K we choose νh|K as

νh |K = min(νmax
h |K , νE

h |K). (15)

The maximum dissipation νmax
h is defined as

νmax
h |K = αmaxhK ‖u‖∞,K ,

where the constant αmax = 0.026d depends only on the spatial
dimension d, and where hK denotes the characteristic size of cell K.
On the other hand, the entropy viscosity is defined as

νE
h |K = αE

h2
K ‖rE(T)‖∞,K

‖E(T) − Eavg‖∞,

,

where we choose the constant αE = 1, see also the discussion in
Guermond et al. (2011). The entropy viscosity is scaled globally
by ‖E(T) − Eavg‖∞,
, based on the maximum deviation of the
temperature entropy E(T) = 1

2 (T − Tm)2, Tm = 1
2 (Tmin + Tmax)

from the space-average Eavg = 1
|
|

∫

E(T). The residual rE(T) is
associated with the entropy of the temperature equation,

rE(T) = ∂ E(T)

∂t
+ (T − Tm)

(
u · ∇T − κ∇2T − γ

)
.

This residual is zero if applied to the exact solution of the temper-
ature equation, leading to no artificial diffusion, but it is non-zero
when applied to the numerical approximation we compute and will
be large in areas where the numerical approximation is poor, such as
close to strong gradients. We note that this definition of an artificial
dissipation is similar to the YZβ discontinuity capturing proposed

in Bazilevs et al. (2007), where the residual is based on the equation
itself instead of the entropy, though.

In practice, we need to evaluate the formula above for the discrete
solution. Since we do not want the artificial viscosity to introduce
a non-linear dependence on the current temperature Tn, we make it
explicit by approximating the time derivative from the two previous
time levels in the BDF-2 time stepping, ∂E(Th)/∂t ≈ (E(Tn−1) −
E(Tn−2))/kn−1, and evaluating all other occurrences of the tempera-
ture at the midpoint as (Tn−1 + Tn−2)/2, including the average tem-
perature. We will treat the artificial viscosity term −∇ · νh(Tn−1,
Tn−2)∇T∗,n as a whole explicitly, based on the extrapolated tem-
perature defined in (5). Since the maximum artificial viscosity is
proportional to the mesh size and the velocity, the CFL number is
not changed substantially, which we have also verified numerically.

3.2.7 Fully discrete temperature system

In the same way as for the Stokes equations, we obtain the fully
discrete linear system corresponding to the time-discretized tem-
perature eq. (6)(

2kn + kn−1

kn + kn−1
M + kn K

)
T n = Gn, (16)

where Mi j = (
ϕT

i , ϕT
j

)

is the mass matrix, and Ki j =(
κ∇ϕT

i , ∇ϕT
j

)

the stiffness matrix. The right hand side term Gn

contains all terms from previous time levels,

Gn
i =

(
ϕT

i ,
kn + kn−1

kn−1
T n−1 − k2

n

kn−1(kn + kn−1)
T n−2

)

+ (
ϕT

i , −knu∗,n · ∇T ∗,n + knγ)
)

− (∇ϕT
i , knνh∇T ∗,n

)

,

where the artificial viscosity νh is defined by (15) and constant
within a cell K, and the extrapolated values for temperature and
velocity are according to (5).

3.3 Linear solvers

Applying temporal and spatial discretization to the Boussinesq sys-
tem leads to the two linear equation systems (16) and (10) that need
to be solved in each time step. To accurately represent problems
in geodynamics, this leads to large systems with up to hundreds of
millions or billions of unknowns for which the only realistic choice
are iterative solvers (Saad 2003). We discuss our choices in the
following sections.

3.3.1 Temperature system

Solving the temperature system (16) is relatively straightforward.
The system is symmetric, positive definite and dominated by the
mass matrix part since the remainder is proportional to knκ = h2

Pe
with typical local Péclet numbers on the order of 100 or more.
Consequently, the eigenvalues of the matrix are well clustered, in-
dependent of the mesh size and the CG method converges in a
number of steps independent of the mesh size (Saad 2003). We
use an incomplete LU decomposition as a preconditioner. Typical
iteration counts are between 10 and 30.

3.3.2 Stokes system

The Stokes system (10) is more challenging because of the saddle
point structure with zero diagonal block. Solving linear equations

C© 2012 The Authors, GJI, 191, 12–29

Geophysical Journal International C© 2012 RAS

High accuracy mantle convection simulation 19

with such a structure is discussed in great detail in Elman et al.
(2005). An extensive overview of methods for the Stokes system in
the context of mantle convection is given in Geenen et al. (2009),
and we basically follow their approach.

Of the available iterative solvers for indefinite symmetric prob-
lems such as GMRES, SymmLQ or MinRes (Saad 2003), only
GMRES can deal with the non-symmetric preconditioners we will
discuss below and that have been shown to be the most efficient
for this problem. Standard GMRES determines whether to stop the
iteration by estimating the norm of the residual based on precon-
ditioned iterates. Since the preconditioner we consider below uses
inexact solves, it is not a linear operation, and consequently the
residual estimate is inaccurate and not a reliable stopping crite-
rion. Therefore, we use the flexible GMRES (FGMRES) variant of
GMRES that uses one explicit residual computation per iteration to
determine whether the stopping criterion has been met.

Any iterative solver for large problems requires preconditioners
to lower the condition number of linear systems, preferably to a
value that is independent of the mesh size. This could in principle
be done by looking at the matrix as a whole [see, e.g. Saad (2003),
or the multigrid approach in Kameyama (2005)], but is uncommon
for block systems such as the one considered here. Rather, most
efficient preconditioners found so far for the Stokes system are based
on variants of the ones described in Silvester & Wathen (1994) and
are defined by the non-symmetric block triangular matrix

Y =
(

A BT

0 −S

)
, with Y −1 =

(
A−1 A−1 BTS−1

0 −S−1

)
,

where S = B A−1 BT is the Schur complement of the Stokes operator.
Applying Y−1 as a right preconditioner yields(

A BT

B 0

)
Y −1 =

(
I 0

B A−1 I

)
,

for which it can be shown that GMRES converges in at most two
iterations (Silvester & Wathen 1994).

This preconditioner is not practically useful because it involves
exact inverses A−1 and S−1. In our computations, we therefore use
the following preconditioner instead

Y −1 =
(

Ã−1 − Ã−1 BTS̃−1

0 S̃−1

)
, (17)

where Ã−1, S̃−1 approximate the exact inverses. We will discuss our
choices for these matrices next. In their construction, it is important
to remember that iterative solvers do not need element-by-element
representations of matrices like Ã−1 but only the results of products
like Ã−1r for a given vector r, using whatever convenient way this
can be computed.

Choice of Ã−1. Since A is symmetric, we compute the product
x = Ã−1r by solving the linear system Ax = r for x using a CG
solver with a loose tolerance of 10−2 (relative residual). This is a
sufficient approximation, and the outer GMRES solver will take care
that the solution to the whole system will converge to the desired
tolerance.

This approximate CG solve needs to be preconditioned. Candi-
date preconditioners that yield mesh-independent convergence are
multigrid methods, see e.g. (Hackbusch 1985; Trottenberg et al.
2001). We use the algebraic multigrid (AMG) implementation pro-
vided as part of the ML package (Tuminaro & Tong 2000; Gee et al.
2006) of the TRILINOS library (Heroux et al. 2005, 2012) for this
purpose due to its robustness with respect to variable viscosities and
scalability even on very large parallel machines.

The performance of the ML-AMG preconditioner depends on the
sparsity structure of the matrix. High-order methods and systems
where the different vector components of shape functions couple
like in the A matrix in (11) tend to deteriorate the quality of the
preconditioner, see also (Geenen et al. 2009). Therefore, when pre-
conditioning the inexact solution of A, we do not apply the AMG to
the A matrix but instead to a matrix Â with

Âi j =
dim∑
d=1

(
ε([ϕu

i]d ed), 2ηε([ϕu
j]d ed)

)

= (∇ϕu
i , 2η∇ϕu

j

)

,

where ed is the unit vector in coordinate direction d. In other words,
the bilinear form that defines Â does not couple shape functions that
correspond to different velocity components, and Â consequently
has only one-third of the number of entries as A in three space
dimensions. On the other hand, we note that when building this
preconditioner matrix, we have to ensure that it respects the correct
set of boundary conditions on the velocity which may introduce
coupling between vector components after all if the boundary con-
ditions require tangential flow; forgetting this coupling turns out to
have a devastating effect on the quality of the preconditioner.

Choice of S̃−1. The inverse of the Schur complement matrix
S = B A−1 BT can be accurately approximated by the inverse of
a (weighted) mass matrix in pressure space with entries M p

i j =
(η−1ϕi , ϕ j). This can be explained by the fact that B approximates
a gradient operator, BT a divergence operator, whereas A−1 is the
inverse of a matrix that is spectrally close to a Laplace matrix, see
also (Silvester & Wathen 1994).

Consequently, we choose S̃−1 = (M p)−1 in the preconditioner,
and computing the action S̃−1r on a vector r only requires an ap-
proximate CG solve with Mp, which we precondition using an ILU
of Mp. This solver converges in 1–5 iterations. This is again inde-
pendent of the mesh size since the condition number of the mass
matrix is independent of the refinement level.

Compared to the application of Ã−1, this step is cheap. Conse-
quently, choosing the larger but locally conservative pressure space
P−q over the smaller space Qq (see Section 3.2.3) has only a minor
effect on overall run times; furthermore, the matrix Mp is block
diagonal when using the discontinuous space P−q, making the in-
version of this matrix particularly cheap.

Summary of preconditioner. In summary, applying the precon-
ditioner (17) to a vector, that is, computing(

xU

xP

)
= Y −1

(
rU

rP

)
,

requires the following steps

(i) form xP = −S̃−1rP by performing an inexact CG solve with
ILU preconditioner of the system MpxP = −rP;

(ii) compute y = rU − BTxP

(iii) form xU = Ã−1 y by performing an inexact CG solve of
the system AxU = y with ML-AMG preconditioner based on the
matrix Â.

Overall performance of solver. The components of the linear
solvers outlined above are chosen in such a way that they provide a
performance that is mostly mesh size independent and can therefore
scale from small to very large problems. In particular, in accordance
with theoretical considerations, we observe that the number of outer
FGMRES iterations is independent of the mesh size, whereas the
number of iterations in the inner solves with the velocity block

C© 2012 The Authors, GJI, 191, 12–29

Geophysical Journal International C© 2012 RAS

20 M. Kronbichler, T. Heister and W. Bangerth

using the AMG preconditioner increases only weakly (e.g. from 10
to 15 iterations when increasing the number of unknowns from 106

to 2.4 × 108). Inversion of the pressure mass matrix also requires
a number of iterations that is independent of the mesh size. The
total number of operations for solving the linear Stokes system is
therefore almost linear in the number of unknowns, and thus of
almost optimal complexity. We verify this through weak scaling
experiments in Section 4.5.

It is possible that the solver performance can be further improved
by noting that there is a trade-off between the accuracy in inverting
A and the number of outer FGMRES iterations. For example, one
could choose Ã−1 to be only a single, cheap V-cycle with Â at
the expense of more outer iterations (see also Geenen et al. 2009).
On the other hand, while overall faster for isoviscous problems, we
observe that this occasionally leads to a breakdown of the iteration
and is therefore not robust. Consequently, we are experimenting with
first trying a preconditioner that only employs a single V-cycle and,
if FGMRES has not converged in a certain number iterations with
this preconditioner, switching to the more accurate preconditioner
that actually uses the approximate inverse of A. We will report on
results for this scheme elsewhere.

We end this section by noting that the number of FGMRES
iterations can be reduced by more than a factor of 5 (from an
average of around 40 to an average around 7) by not starting the
iteration with a zero vector, but rather with the extrapolation of the
solution vector from the previous time steps using a formula like
(5), providing a very significant speedup of the overall runtime.
This choice of starting guess is also important to avoid round-off
problems, see the Appendix.

3.4 Parallelization

The simulation of 3-D mantle convection requires highly resolved
computations, with sometimes hundreds of millions or billions of
unknowns, to yield reliable results. With today’s computer hard-
ware, these requirements cannot be met on single machines, but
instead need parallelization, see also (Burstedde et al. 2008). Our
implementation of the algorithms outlined above provides for par-
allelization both via MPI between a possibly large number of dis-
tributed memory machines as well as via threads on shared memory
machines or within individual nodes of a cluster of computers. Both
kinds of parallelization are mostly transparent to the application
code and are primarily handled in library code in DEAL.II (for the
mesh and finite element specific parts) or TRILINOS (for the linear
algebra).

To be efficient, parallelization requires that all parts of a pro-
gram be parallelized to the same degree. In adaptive finite element
codes, this implies that the mesh creation, assembly of linear sys-
tems, linear solvers and preconditioners, postprocessing steps such
as the evaluation of the solution, generation of output files for vi-
sualization, or the evaluation of error indicators and the adaptation
of the mesh are all parallelized. Our code provides for all of these
components. In particular, all mesh operations in DEAL.II build on
the P4EST library for parallel mesh management (Burstedde et al.
2011) that has been shown to scale to more than 200 000 processors,
and the linear algebra components in TRILINOS’s Epetra and ML
packages have also been demonstrated to scale to machines of this
size. We have previously verified the scalability of a large number
of DEAL.II components up to at least 16 384 processor cores in
Bangerth et al. (2011) where we also report on scalability of a 2-D
version of the code discussed here. We show additional data below
in Section 4.5.

4 R E S U LT S

To verify the correctness, accuracy and efficiency of our code, we
have run a number of benchmarks. We report results on five of these
below, namely the SolCx and SolKz benchmarks for the solution of
the Stokes equation from Duretz et al. (2011) in Section 4.1, the pure
shear inclusion benchmark from the same paper in Section 4.2, one
of the 2-D convection benchmarks from Blankenbach et al. (1989)
in Section 4.3 and one of the 3-D convection benchmarks from
Busse et al. (1993) in Section 4.4, both of which are widely used in
other papers as well. We show parallel scalability in Section 4.5 and
some results of global mantle convection simulations in Section 4.6.

Additional parallel scalability analyses are provided in Bangerth
et al. (2011) and we will report on results for the semi-analytic
benchmark of Tan & Gurnis (2007) in Geenen et al. (2012, in
preparation).

4.1 2-D variable viscosity Stokes benchmarks

To verify the correctness of our Stokes solver, we use the SolCx
benchmark that was previously used in Duretz et al. (2011, section
4.1.1) and whose analytic solution is given in Zhong (1996). We
use the implementation of this analytic solution that is available
as part of the Underworld package (see Moresi et al. 2007, and
http://www.underworldproject.org/), correcting for the mismatch in
sign between the implementation and the description in Duretz et al.
(2011).

The SolCx benchmark computes the Stokes flow field of a fluid
driven by spatial density variations, subject to a spatially variable
viscosity. Specifically, the domain is
 = [0, 1]2, gravity is g =
(0,−1)T and the density is given by ρ(x) = sin(πx1) cos(πx2); this
can be considered a density perturbation to a constant background
density. The viscosity is

η(x) =
{

1 for x1 ≤ 0.5,

106 for x1 > 0.5.

This strongly discontinuous viscosity field yields an almost stagnant
flow in the right half of the domain and consequently a singularity in
the pressure along the interface. Boundary conditions are free slip
on all of ∂
. The temperature plays no role in this benchmark. The
prescribed density field and the resulting velocity field are shown
in Fig. 2.

To assess the accuracy of the solution, we compute the error
between the computed velocity field and the analytic one. If the
viscosity is chosen constant throughout the domain, we have con-
firmed that the velocity solution is accurate on uniform meshes to
orderO(h3), and the pressure solution accurate to orderO(h2) when
measuring the error in the L2 norm, where h is the cell size of the
mesh. This is the expected rate when using Qd

2 × Q1 elements as
discussed in Section 3.2.3; we also obtain the correct higher con-
vergence orders when increasing the polynomial degree of finite
element shape functions.

The more interesting case is of course if η(x) is chosen discon-
tinuous as discussed earlier. For that case, we show the errors in
velocity and pressure measured in the L2 norm in Table 1. Even
though this is not a common error measure in finite element com-
putations, the figure also shows the errors measured in the L1 norm
to allow comparison with the results in Duretz et al. (2011). The
velocity here converges as O(h3) in both the L1 and L2 norms, again
as expected. For the error in the pressure, we observe O(h) in the
L1 norm and O(h1/2) in the L2 norm. This behaviour is consistent
with an internal layer of width δ � h along the discontinuity in the

C© 2012 The Authors, GJI, 191, 12–29

Geophysical Journal International C© 2012 RAS

High accuracy mantle convection simulation 21

Figure 2. SolCx Stokes benchmark. Top panel: Given (relative) density and
velocity field. Bottom panel: Error in the velocity and pressure fields with
respect to mesh size.

viscosity on which the pressure error does not decay. We expect to
recover the maximal theoretical order once the mesh is fine enough
to resolve the internal layer in the exact solution, that is, when
h ≈ δ. However, this may not be within the computationally feasible
range for a jump in η as large as that used here.

The errors shown here are far below the range where we should
care about their size, even for modestly fine meshes. However, to
verify the efficiency of our implementation, we have also recorded

the errors when using the Qd
3 × Q2 element in Table 1. The results

confirm the higher-order accuracy of the velocity field, and the
limiting effect of the discontinuous viscosity on the pressure error
convergence order, albeit at a smaller magnitude.

A more interesting comparison, namely with the Qd
2 × P−1

element (see Section 3.2.3) is also shown in Table 1. This ele-
ment is locally conservative because it has a discontinuous pressure
element. In all our experiments we have found that whether we use
Qq or P−q elements has virtually no influence on the error in the ve-
locity. Furthermore, for problems with smooth solutions the price
to pay for the local conservation property is that the error in the
pressure is about twice as large. However, for the current case with
an almost singular pressure along the viscosity jump, the discontin-
uous shape functions allow to resolve the pressure so well that we
in fact recover the full convergence order in the pressure.

While this might suggest that the Qd
q+1 × P−q element is a good

choice for problems with discontinuous or strongly varying viscos-
ity fields, the last two column of the table show that the improved
accuracy can only be obtained if the discontinuity in the viscosity is
aligned with cell boundaries. If the discontinuity cuts through cells,
convergence orders revert to O(h) for the velocity and O(h1/2) for
the pressure, in accordance with observations elsewhere in the liter-
ature (see, e.g. Deubelbeiss & Kaus 2008; Duretz et al. 2011). For
such non-aligned meshes, the errors obtained with the Qd

2 × Q1 are
of same convergence order and about the same magnitude as those
shown in the table for the Qd

2 × P−1 element.
In addition to the SolCx benchmark, we have also run the SolKz

benchmark that has a similar setup but a smoothly varying viscosity
field (see Duretz et al. 2011, Section 4.1.2, and references therein).
Given the lack of an internal layer, one expects full convergence
ordersO(h3) andO(h2) for ‖eu‖L2 , ‖ep‖L2 when using the Qd

2 × Q1

element. These are indeed observed.

4.2 2-D circular inclusion benchmark

To further explore the question of what happens when a jump in
the viscosity is not aligned with cell boundaries, we have also im-
plemented the ‘pure shear/inclusion’ benchmark [see Duretz et al.
(2011), Section 4.1.3 and for the analytic solution see Schmid &
Podladchikov (2003)]. In this benchmark, a rather rigid disk with
viscosity of 103 is embedded in material with viscosity 1, and the
medium is compressed in vertical and stretched in horizontal di-
rection by appropriate boundary conditions. This setup ensures that
cell boundaries can never be aligned with the circular interface
between the regions with different viscosities, and the only hope
of improving on the reduced convergence orders is to resolve the
interface better using adaptive meshes. As this benchmark again

Table 1. SolCx Stokes benchmark. Velocity and pressure errors eu, ep and convergence rates for different choices of the Stokes finite element
spaces as discussed in Section 3.2.3, using globally refined meshes. For ‘odd’ meshes, the numbers shown are the average errors from nearby
meshes (e.g. for h = 1/64, the average of the errors on 63 × 63 and 65 × 65 meshes).

Qd
2 × Q1 Qd

3 × Q2 Qd
2 × P−1, even mesh Qd

2 × P−1, odd mesh

h ‖eu‖L2 ‖ep‖L2 ‖eu‖L2 ‖ep‖L2 ‖eu‖L2 ‖ep‖L2 ‖eu‖L2 ‖ep‖L2

1/8 1.3 × 10−5 1.4 × 10−2 6.3 × 10−7 8.8 × 10−3 1.3 × 10−5 1.5 × 10−3 6.5 × 10−4 1.1 × 10−2

1/16 1.7 × 10−6 9.8 × 10−3 4.0 × 10−8 6.2 × 10−3 1.7 × 10−6 3.7 × 10−4 3.6 × 10−4 6.8 × 10−3

1/32 2.1 × 10−7 6.9 × 10−3 2.6 × 10−9 4.4 × 10−3 2.2 × 10−7 9.2 × 10−5 1.9 × 10−4 4.5 × 10−3

1/64 2.6 × 10−8 4.9 × 10−3 1.7 × 10−10 3.1 × 10−3 2.6 × 10−8 2.3 × 10−5 9.8 × 10−5 3.3 × 10−3

1/128 3.3 × 10−9 3.4 × 10−3 2.0 × 10−11 2.2 × 10−3 3.2 × 10−9 5.7 × 10−6 5.0 × 10−5 2.1 × 10−3

1/256 4.1 × 10−10 2.4 × 10−3 1.7 × 10−11 1.5 × 10−3 4.1 × 10−10 1.4 × 10−6 2.5 × 10−5 1.5 × 10−3

O(h3) O(h1/2) O(h4) O(h1/2) O(h3) O(h2) O(h) O(h1/2)

C© 2012 The Authors, GJI, 191, 12–29

Geophysical Journal International C© 2012 RAS

22 M. Kronbichler, T. Heister and W. Bangerth

Figure 3. Inclusion benchmark. Top panel: Pressure and adaptive mesh.
Bottom panel: Errors in velocity and pressure fields for uniformly and
adaptively refined meshes as a function of the number of degrees of freedom.

only requires the solution of the Stokes system, we apply the error
estimator to the velocity instead of the temperature (as it is described
in Section 3.2.1).

As in the SolCx benchmark, the significant jump in viscosity and
consequent jump in pressure leads to pressure oscillations along the
interface. This can be seen inside the disk in Fig. 3 along with an
adaptive mesh. Convergence results for uniformly and adaptively
refined meshes are shown in the bottom panel of this figure and
show that for uniformly refined meshes, we obtain convergence
orders O(h) for the velocity and O(h1/2) for the pressure (also seen
in Section 4.1 when the discontinuities are not aligned with the
mesh). For these meshes, this then translates to orders O(N−1/2)
and O(N−1/4) where N is the total number of degrees of freedom.
On the other hand, by using adaptive meshes as those shown in
the top panel of the figure, we can reach the same error level with
a much smaller number of unknowns: for the last computed data
points using adaptive meshes, the same error level was obtained with
approximately 100 times fewer cells, and corresponding savings in
compute time. Furthermore, as indicated in the figure, we recover
convergence ordersO(N−1) andO(N−1/2) for velocity and pressure
errors.

We note that the results shown in Fig. 3 were obtained using the
Qd

2 × Q1 element. As before, given the non-aligned interfaces, the
Qd

2 × P−1 element achieves the same convergence order but with

a constant that makes the errors in velocity and pressure about 2–3
times larger compared to the continuous pressure element.

4.3 2-D convection benchmark

While the previous benchmarks only tested the accuracy of the
Stokes solver, in this and the following section, we will also include
the effects of the advected temperature. Specifically, we compare
our implementation to the well-known 2-D dynamic benchmark
problem described in Blankenbach et al. (1989). The benchmark is
solved in non-dimensional units in the form of eqs (1)–(3), using
the parameters given in Table 2. The computational domain is the
rectangle [0, l] × [0, h]. The strength of buoyancy is described by
the Rayleigh number Ra = βgγ h5/κ2ρcpη = 216 000. The body
is heated homogeneously from within with a non-dimensional heat
rate γ = 1.

On the side boundaries, reflective symmetry conditions are as-
sumed, that is, no-normal-flux for velocity, u · n = 0 (free slip)
and n · ∇T = 0. On the top and bottom, no-slip conditions u = 0
are applied. On the bottom face, the heat flux is zero, n · ∇T = 0,
and we set T = 0 on the top face. The simulation is started with
a perturbation from the purely conductive state and is run until we
reach the periodic cycle after around non-dimensional time t = 2.
A snapshot of the solution is shown in Fig. 4 (top panel).

We compare results using two measures: (i) the Nusselt number,
defined as the ratio between the mean surface temperature gradient
and the mean bottom temperature,

Nu = −

∫
∂
t

∇T · n ds∫
∂
b

T ds
, (18)

where ∂
t is the top face at z = h and ∂
b the bottom face at z =
0. And (ii) the (non-dimensional) root mean square velocity

vrms =
√

1

hl

∫

|u|2 dx . (19)

The bottom panel of Fig. 4 shows a phase diagram with the Nusselt
number over the rms velocity, illustrating the periodic nature of the
flow after the initial transient has decayed.

We compare the values we obtain for the two measures above to
the benchmark data in Blankenbach et al. (1989). The results for
different mesh sizes with global (non-adaptive) mesh refinement are
given in Table 3, and results with AMR are given in Table 4. These

Table 2. Parameters for the benchmark discussed in Section 4.3 based on
Blankenbach et al. (1989).

Explanation Nondimentional Dimentional value
value (SI-units)

h Cell height 1 106

l Cell length 1.5 1.5 × 106

ρ Fluid density 1 4 × 103

η Kinematic viscosity 1 1.157 × 1018

κ Thermal diffusion 1 10−6

g Gravity acceleration 1 10
β Thermal expansion coefficient 1 2.5 × 10−5

γ Rate of internal heating 1 5 × 10−9

cp Heat capacity 1 1.25 × 103

Ra Rayleigh number 2.16 × 105 —

C© 2012 The Authors, GJI, 191, 12–29

Geophysical Journal International C© 2012 RAS

High accuracy mantle convection simulation 23

Figure 4. 2-D benchmark. Top panel: Temperature field (with values be-
tween 0 and 0.1793) and velocity field (with velocities up to 89.4) for one
time step. Bottom panel: Nusselt number over rms velocity. The curve shows
the time evolution after the initial transient has decayed and illustrates the
periodic nature of the flow.

results show that we correctly reproduce the benchmark results
and the substantial savings that can be obtained through adaptive
meshes. Not surprisingly, given the advances in numerical methods
and computer hardware since (Blankenbach et al. 1989), we believe
that our results are substantially more accurate than the ones given
in the original reference.

4.4 3-D convection benchmark

As a 3-D benchmark, we choose benchmark problem 1a from Busse
et al. (1993). The problem is posed in a box of dimensions a × b ×
1 with a = 1.0079 and b = 0.6283, and for Rayleigh number Ra =
30 000. The flow develops to a stationary bimodal flow. A snapshot
is shown in Fig. 5.

To find the steady state, we simulate the problem up to non-
dimensional time t = 5 and record values for the Nusselt number
(18) and root mean square velocity (19). Moreover, we also compare
the average temperature Tm over the plane z = 0.75, point values for
the vertical velocity u3 and temperature at (0, 0, 0.5), and the heat
flux Q(x1, x2) = ∂T

∂x3
|x3=1 at the top surface. Results for mesh sizes

24 × 14 × 24, 32 × 20 × 32 and 48 × 30 × 48 (with approximately
220 k, 540 k and 1.8 M unknowns for the velocity/pressure system
and 70 k, 170 k and 570 k temperature unknowns) are recorded in
Table 5. The results are in good accordance with the reference val-
ues, which shows correctness of our implementation also in three
spatial dimensions. Note that quantities derived from the FE func-
tion values (vrms, T , u3) are considerably more accurate for coarser
meshes than those derived from gradients (Nu, Q). On current hard-
ware and running without parallelization, each time step takes on
average approximately 2.5 s, 6 s, 15 s for the three different meshes,
respectively.

Table 3. Results for the 2-D benchmark problem with uniform mesh refinement. # DoFs indicates the number of degrees of freedom.
Reference results from Blankenbach et al. (1989).

Mesh size 1
16

1
32

1
64

1
128

1
256 Reference

DoFs 5 276 20 532 80 996 3.2 × 105 1.3 × 106 —

Period 0.048231 0.048051 0.048031 0.048030 0.048029 0.04803 ± 0.00003
Numax 7.4065 7.3822 7.3789 7.3788 7.3788 7.379 ± 0.005
Numin 6.5062 6.4717 6.4691 6.4691 6.4692 6.468 ± 0.005
Numax 7.2637 7.2047 7.1969 7.1960 7.1960 7.196 ± 0.005
Numin 6.7878 6.7949 6.7961 6.7965 6.7966 6.796 ± 0.005
vmax

rms 60.726 60.398 60.361 60.359 60.360 60.367 ± 0.015
vmin

rms 31.829 31.965 31.981 31.981 31.982 31.981 ± 0.02
vmax

rms 58.225 57.517 57.442 57.437 57.436 57.43 ± 0.05
vmin

rms 30.392 30.330 30.324 30.323 30.322 30.32 ± 0.03

Table 4. Results for the 2-D benchmark problem with adaptive mesh refinement. The number of degrees of freedom (# DoFs) for
each finest mesh size h varies between time steps; the indicated numbers provide a typical range. Reference results from Blankenbach
et al. (1989).

Finest mesh size 1
64

1
128

1
256 Reference

DoFs 4.5 . . . 6.0 × 104 1.6 . . . 2.2 × 105 5.6 . . . 8.0 × 105 —

Period 0.048029 0.048030 0.048030 0.04803 ± 0.00003
Numax 7.3809 7.3792 7.3788 7.379 ± 0.005
Numin 6.4718 6.4695 6.4691 6.468 ± 0.005
Numax 7.1996 7.1967 7.1960 7.196 ± 0.005
Numin 6.7986 6.7969 6.7965 6.796 ± 0.005
vmax

rms 60.366 60.361 60.360 60.367 ± 0.015
vmin

rms 31.980 31.981 31.981 31.981 ± 0.02
vmax

rms 57.449 57.434 57.435 57.43 ± 0.05
vmin

rms 30.322 30.322 30.322 30.32 ± 0.03

C© 2012 The Authors, GJI, 191, 12–29

Geophysical Journal International C© 2012 RAS

24 M. Kronbichler, T. Heister and W. Bangerth

Figure 5. 3-D benchmark. Velocity field and isosurfaces of the temperature.

Table 5. Selected results for the 3-D benchmark problem with uniform
mesh refinement. Reference results from Busse et al. (1993).

Mesh size 1
24

1
32

1
48 Reference

DoFs 2.9 × 105 7.2 × 105 2.4 × 106 —

Nu 3.5539 3.5447 3.5397 3.5374 ± 0.0005
vrms 40.997 40.999 40.999 40.999 ± 0.004
Tm(0.75) 0.52148 0.52148 0.52148 0.52148 ± 0.00003
u3(0, 0, 0.5) 116.605 116.618 116.623 116.625 ± 0.03
T(0, 0, 0.5) 0.80126 0.80128 0.80129 0.80130 ± 0.00005
Q(0, 0) 6.7679 6.7357 6.7189 6.7127 ± 0.05
Q(a, b) 0.7237 0.7205 0.7174 0.7140 ± 0.05

4.5 Scalability of the solution scheme

Having verified the correctness of the solver, let us now consider
its scalability and efficiency. To this end, we start with a spherical
shell consisting of 96 coarse mesh cells which we refine either
adaptively or globally a number of times until we reach a desired
number of unknowns. On this mesh, we then perform one complete
time step of our scheme and measure the wall time for the major
building blocks of our code for a fixed number of MPI processes
each tied to one CPU core (weak scaling). Alternatively, we select
a fixed mesh size and measure times for a variable number of MPI
processes (strong scaling). Specifically, we measure the run time of
the following components

(i) Setup DoFs: This includes giving all degrees of freedom glob-
ally unique numbers, computing constraints for hanging nodes, eval-
uating boundary values, and setting up matrices and vectors.

(ii) Assemble Stokes: Computing and assembling the entries of
the Stokes matrix and right-hand side.

(iii) Build preconditioner: Computing and assembling the entries
for the Stokes preconditioner matrices as well as initializing the
AMG preconditioner for Â.

(iv) Solve Stokes: Solving the Stokes system.
(v) Assemble T RHS: Computing and assembling the entries of

the right-hand side vector for the temperature system.
(vi) Solve T: Solving the temperature equation.

Figure 6. Weak and strong scaling experiments for one time step of a
3-D mantle convection simulation. In each of the graphs, the vertical line
indicates 105 degrees of freedom per processor core; cores have more than
than this threshold to the right of the line in the top two panels, and to the
left of the line in the strong scaling results.

(vii) Refine mesh: Computing error indicators for the solution,
refining and coarsening the mesh, re-partitioning it between proces-
sors, and transferring the solution vectors from the previous to the
new mesh.

Fig. 6 shows results for these operations, for both weak and
strong scaling experiments. From the figures it is apparent that all
operations in our program scale well with increasing problem size
(weak scaling) once the problem size per MPI process becomes large
enough. Similarly, run times can be reduced inversely proportional
to the number of processors (strong scaling) as long as the local size
or the problem is sufficiently large. The threshold for this scalability

C© 2012 The Authors, GJI, 191, 12–29

Geophysical Journal International C© 2012 RAS

High accuracy mantle convection simulation 25

is approximately a minimal local problem size of 100 000 degrees of
freedom per MPI process, indicated by the vertical lines in Fig. 6.
This is also consistent with our observations in Bangerth et al.
(2011). Note that this threshold depends on the computer hardware
in use, in particular on the latency of the network which is critical
for fast global synchronization in the multigrid preconditioner and
in inner products.

We note that in all cases, the time to build the preconditioner and
solve the Stokes system dominates all other operations by about an
order of magnitude. This is partly due to the fact that, for lack of an
alternative, we here start the solver with a zero vector. In contrast,
when doing time dependent simulations, we start with the previous
solution vector (see the discussion at the end of Section 3.3.2),
thereby reducing the fraction of wall time devoted to the Stokes
solution from more than 90 per cent to around 70 per cent of the
overall run time. With this reduction, we can solve problems at a rate
of approximately one time step per minute for large 3-D simulations
on current cluster hardware when using 100 000 DoFs per processor
core, more or less independently of the overall problem size.

4.6 Modelling the Earth’s mantle

To illustrate the ability of ASPECT to solve problems that are rele-
vant to modelling the Earth’s mantle, Figs 7 and 8 show snapshots
in time of 2-D and 3-D simulations. These simulations use a no-
slip velocity boundary condition at the inner rim, a slip boundary
condition at the outer rim and keep the temperature constant at ei-
ther boundary. Neither computation includes adiabatic heating, but
compared to the simple model (1)–(3), the 2-D case does include a
temperature and pressure (but not strain-rate) dependent viscosity
and includes compressibility in the Stokes equation. In both com-
putations, mesh refinement was driven by the second derivative of
the temperature which in 3-D primarily resolves the inner bound-
ary layer rather than the plumes (however, see also the solution in
Section 3.2.1).

These simulations show the excellent spatial resolution adaptive
meshes can provide. We will provide results for computations of
more direct geodynamic interest in Geenen et al. (2012, in prepara-
tion) and elsewhere.

5 C O N C LU S I O N S A N D O U T L O O K

The simulation of convection in the Earth’s mantle is complicated
by a host of problems related to the mathematical structure of the
equations as well as of the disparity of the lengthscales implied
by the sizes of physical coefficients in the Earth. Consequently,
geodynamics has a long history of the development of methods
that can make at least some problems tractable. Nevertheless, fully
resolved, 3-D simulations have largely remained beyond the ability
of current codes and computers.

On the other hand, modern numerical methods can close a signifi-
cant part of this gap and make many previously intractable problems
possible. In this paper, we have presented a collection of state-of-
the-art algorithms for mantle convection and their implementation
in the ASPECT code. Specifically, we have shown how the inter-
connected choice of adaptive meshes, discretization, stabilization,
solvers and preconditioners leads to a method that not only pro-
vides excellent accuracy at very modest numerical cost, but also
allows scaling to very large problems with hundreds of millions
of unknowns on hundreds or thousands of processor cores with al-
most perfect complexity. The implementation of these methods is

Figure 7. Solution of a 2-D convection problem on a quarter shell domain.
The solution has around 700 000 degrees of freedom and was obtained on 16
processors; each time step took less than one second on average. Top panel:
Temperature field. Bottom panel: Adaptive mesh of the same solution.

available under an Open Source license in the form of the ASPECT

code.
Despite all this, the methods described here are not sufficient to

solve entirely realistic models. Specifically, there are at least three
obvious places where the simple Boussinesq model described in
eqs (1)–(3) is not an adequate description of the real processes that
act in the Earth’s interior. First, the various coefficients, such as
η, ρ, κ or γ , are in reality all non-linear functions of the solution
variables u, p, T . This dependence can either be direct, such as the
dependence of the viscosity on the strain rate, or more indirect by
considering which rock phases are thermodynamically stable for the
current pressure and temperature value, and then using coefficient
values appropriate for this phase. A simple approach to deal with
this nonlinearity is to evaluate coefficients at the solution values of
the previous time step (or at a value extrapolated from the previous
time steps), rendering the system linear again. However, this may
lead to an inaccurate account of the transition zones that provide
the most direct signal that can be compared with data from seismic
inversion. Consequently, an iteration is necessary that resolves the
nonlinearity. A common solution is to use a Picard-type iteration
(see, e.g. Burstedde et al. 2008). A more efficient algorithm may be

C© 2012 The Authors, GJI, 191, 12–29

Geophysical Journal International C© 2012 RAS

26 M. Kronbichler, T. Heister and W. Bangerth

Figure 8. Solution of a 3-D convection problem in a spherical shell. Top
panel: Isocontours of the temperature field. Bottom panel: Partitioning of the
domain onto 512 processors. The subdomains and corresponding meshes of
the first half of all processors are shown. The mesh has 1 424 176 cells, and
the solution has approximately 54 million unknowns (39 million velocities,
1.7 million pressures, and 13 million temperatures).

Newton’s method, but it has to be integrated with the linear solvers
and preconditioners to be efficient, and it has to be globalized to
guarantee convergence even from poor starting guesses (Nocedal &
Wright 1999; Worthen 2012). Furthermore, a realistic description
of the coefficients often leads to highly heterogeneous coefficients
that make the construction of efficient solvers and preconditioners
a challenge (Gerya 2010; Ismail-Zadeh & Tackley 2010).

A second challenge is to deal with compressibility effects. While
velocities in the Earth’s mantle are orders of magnitude too slow
to compress material based on inertial effects, the large hydrostatic
pressure significantly increases the density with depth; temperature
and the thermodynamically stable rock phase also affect the density.
Consequently, a realistic description needs to modify the continuity
equation (2) to read ∇ · (ρu) = 0 instead, where ρ = ρ(p, T). A
simple linearization of this equation in the original set of variables
u, p unfortunately leads to a non-symmetric variant of the Stokes
system for which the choice of preconditioner is entirely unclear;
furthermore, it leads to difficult to solve problems with the compat-
ibility condition this equation implies for the right hand side of the
divergence equation. We note that some of the associated questions

have already been addressed in Leng & Zhong (2008), King et al.
(2010).

A final topic is that Earth’s mantle is not a homogeneous mix-
ture of materials. Rather, material entrained from plates or the
core–mantle boundary may have a significantly different chemical
composition. It has also been suggested that different layers have dif-
ferent composition (Schubert et al. 2001). Simulating heterogeneity
entails additional advected fields that describe mass fractions of ma-
terials. They can be treated in the same way as the temperature field,
with a non-linear viscosity stabilization of sharp interfaces. Alter-
natively, a number of approaches such as the particle in cell (PIC)
method, marker chains or phase fields have been proposed to avoid
smearing of interfaces (for a small sample of methods, see (van
Keken & Zhong 1999; Tackley & King 2003; Lin & van Keken
2006; Leng & Zhong 2011); see also (Gerya 2010; Ismail-Zadeh &
Tackley 2010) for general overviews).

We are working on extending ASPECT in each of the directions
outlined above for future releases and will report on our algorithms
in a future paper.

A C K N OW L E D G M E N T S

WB would like to thank Scott King for insightful discussions on
mantle convection and its simulation. The authors are also grateful
for discussions with Magali Billen, Thomas Geenen, Eric Heien,
Louise Kellogg, Shijie Zhong and others in the community.
The first author was supported by the Graduate School in Mathe-
matics and Computing (FMB) at Uppsala University, Sweden. The
second and third authors are supported in part through the Com-
putational Infrastructure in Geodynamics initiative (CIG), through
the National Science Foundation under Award No. EAR-0949446
and The University of California—Davis. This publication is based
in part on work supported by Award No. KUS-C1-016-04, made by
King Abdullah University of Science and Technology (KAUST).
The third author is also supported in part by an Alfred P. Sloan
Research Fellowship.
Some computations for this paper were performed on the ‘Ranger’
and ‘Lonestar’ clusters at the Texas Advanced Computing Cen-
ter (TACC), and the ‘Brazos’ and ‘Hurr’ clusters at the Institute
for Applied Mathematics and Computational Science (IAMCS) at
Texas A&M University. Ranger was funded by NSF award OCI-
0622780, and we used an allocation obtained under NSF award
TG-MCA04N026. The authors acknowledge the Texas A&M Su-
percomputing Facility for providing computing resources on ‘Lon-
estar’ useful in conducting the research reported in this paper. Part
of Brazos was supported by NSF award DMS-0922866. Hurr is
supported by Award No. KUS-C1-016-04 made by King Abdullah
University of Science and Technology (KAUST). Some computa-
tions were performed on resources provided by SNIC through Upp-
sala Multidisciplinary Center for Advanced Computational Science
(UPPMAX) under project p2010002.

R E F E R E N C E S

Ainsworth, M. & Oden, J.T., 2000. A Posteriori Error Estimation in Finite
Element Analysis, John Wiley and Sons, New York, NY.

Albers, M., 2000. A local mesh refinement multigrid method for 3-D con-
vection problems with strongly variable viscosity, J. Comp. Phys., 160,
126–150.

Babuška, I. & Rheinboldt, W.C., 1978. Error estimates for adaptive finite
element computations, SIAM J. Numer. Anal., 15, 736–754.

Babuška, I. & Strouboulis, T., 2001. The Finite Element Method and its
Reliability, Clarendon Press, New York, NY.

C© 2012 The Authors, GJI, 191, 12–29

Geophysical Journal International C© 2012 RAS

High accuracy mantle convection simulation 27

Bangerth, W. & Rannacher, R., 2003. Adaptive Finite Element Methods for
Differential Equations, Birkhäuser Verlag, Basel.

Bangerth, W. & Kayser-Herold, O., 2009. Data structures and requirements
for hp finite element software, ACM Trans. Math. Softw., 36(1), 4/1–4/31.

Bangerth, W., Hartmann, R. & Kanschat, G., 2007. deal.II—a general pur-
pose object oriented finite element library, ACM Trans. Math. Softw.,
33(4), 24:1–24:27, doi:10.1145/1268776.1268779.

Bangerth, W., Burstedde, C., Heister, T. & Kronbichler, M., 2011. Al-
gorithms and data structures for massively parallel generic adaptive
finite element codes, ACM Trans. Math. Softw., 38(2), 14:1–14:28,
doi:10.1145/2049673.2049678.

Bangerth, W., Heister, T. & Kanschat, G., 2012. deal.II Differen-
tial Equations Analysis Library, Technical Reference, available at:
http://www.dealii.org/ (last accessed 2012 August 2).

Bazilevs, Y., Calo, V.M., Tezduyar, T.E. & Hughes, T.J.R., 2007. YZβ

discontinuity capturing for advection-dominated processes with appli-
cation to arterial drug delivery, Int. J. Numer. Meth. Fluids, 54, 593–
608.

Blankenbach, B. et al., 1989. A benchmark comparison for mantle convec-
tion codes, Geophys. J. Int., 98, 23–38.

Braess, D., 1997. Finite Elements, Cambridge University Press, Cambridge.
Brenner, S.C. & Scott, R.L., 2002. The Mathematical Theory of Finite

Elements, 2nd edn, Springer, Berlin.
Brooks, A. & Hughes, T., 1982. Streamline upwind/Petrov-Galerkin for-

mulation for convection dominated flows with particular emphasis on
the incompressible Navier-Stokes equations, Comp. Meth. Appl. Mech.
Engrg., 32, 199–259.

Burstedde, C., Ghattas, O., Gurnis, M., Tan, E., Tu, T., Stadler, G., Wilcox,
L.C. & Zhong, S., 2008. Scalable adaptive mantle convection simulation
on petascale supercomputers, in SC ’08: Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and
Analysis, Austin, TX, ACM/IEEE.

Burstedde, C., Burtscher, M., Ghattas, O., Stadler, G., Tu, T. & Wilcox, L.C.,
2009. ALPS: A framework for parallel adaptive PDE solution, J. Physics:
Conf. Series, 180, 012009, doi:10.1088/1742-6596/180/1/012009.

Burstedde, C., Wilcox, L.C. & Ghattas, O., 2011.p4est: Scalable algorithms
for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci.
Comput., 33(3), 1103–1133.

Busse, F. et al., 1993. 3D convection at infinite Prandtl numbers in carte-
sian geometry—a benchmark comparison, Geophys. astr. Fluid Dyn., 75,
39–59.

Carey, G.F., 1997. Computational Grids: Generation, Adaptation and
Solution Strategies, Taylor & Francis, Washington, D.C.

Chen, Z., 2006. Computational Methods for Multi-phase Flows in Porous
Media, SIAM, Philadelphia, PA.

Davies, D.R., Davies, J.H., Hassan, O., Morgan, K. & Nithiarasu, P.,
2007a. Investigations into the applicability of adaptive finite element
methods to two-dimensional infinite Prandtl number thermal and ther-
mochemical convection, Geochem. Geophys. Geosyst., 8, Q05010,
doi:10.1029/2006GC001470.

Davies, D.R., Davies, J.H., Hassan, O., Morgan, K. & Nithiarasu, P., 2007b.
Adaptive finite element methods in geodynamics: convection dominated
mid-ocean ridge and subduction zone simulations, Int. J. Numer. Meth.
Heat Fluid Flow, 18, 1015–1035.

Deubelbeiss, Y. & Kaus, B.J., 2008. Comparison of Eulerian and Lagrangian
numerical techniques for the Stokes equations in the presence of strongly
varying viscosity, Phys. Earth planet. Inter., 171, 92–111.

Donea, J. & Huerta, A., 2003. Finite Element Methods for Flow Problems,
J. Wiley & Sons, Chichester.

Duretz, T., May, D.A., Garya, T.V. & Tackley, P.J., 2011. Discretization
errors and free surface stabilization in the finite difference and marker-
in-cell method for applied geodynamics: A numerical study, Geochem.
Geophys. Geosyst., 12, Q07004, doi:10.1029/2011GC003567.

Elman, H., Silvester, D. & Wathen, A., 2005. Finite Elements and Fast
Iterative Solvers with Applications in Incompressible Fluid Dynamics,
Oxford Science Publications, Oxford.

Gago, J. P. d. S.R., Kelly, D.W., Zienkiewicz, O.C. & Babuška, I., 1983.
A posteriori error analysis and adaptive processes in the finite element

method: Part II—Adaptive mesh refinement, Int. J. Num. Meth. Eng., 19,
1621–1656.

Gee, M.W., Siefert, C.M., Hu, J.J., Tuminaro, R.S. & Sala, M.G., 2006. ML
5.0 Smoothed Aggregation User’s Guide, Tech. Rep. 2006-2649, Sandia
National Laboratories.

Geenen, T., ur Rehman, M., MacLachlan, S.P., Segal, G., Vuik, C., van
den Berg, A.P. & Spakman, W., 2009. Scalable robust solvers for unstruc-
tured FE geodynamic modeling applications: Solving the Stokes equation
for models with large localized viscosity contrasts, Geochem. Geophys.
Geosyst., 10(9), Q09002, doi:10.1029/2009GC002526.

Gerya, T., 2010. Introduction to Numerical Geodynamic Modelling, Cam-
bridge University Press, Cambridge.

Girault, V. & Raviart, P.-A., 1986. Finite Element Methods for the
Navier–Stokes Equations, Springer-Verlag, New York, NY.

Guermond, J.-L., Pasquetti, R. & Popov, B., 2011. Entropy viscosity
method for nonlinear conservation laws, J. Comput. Phys., 230, 4248–
4267.

Hackbusch, W., 1985. Multi-Grid Methods and Applications, Springer,
Berlin.

Hairer, E. & Wanner, G., 1991. Solving Ordinary Differential Equations II.
Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin.

Heroux, M.A. et al., 2005. An overview of the Trilinos project, ACM Trans.
Math. Softw., 31, 397–423.

Heroux, M.A. et al., 2012. Trilinos web page, http://trilinos.sandia.gov.
Ismail-Zadeh, A. & Tackley, P., 2010. Computational Methods for Geody-

namics, Cambridge University Press, Cambridge.
Kameyama, M., 2005. ACuTEMan: a multigrid-based mantle convection

simulation code and its optimization to the Earth simulator, J. Earth
Simulator, 4, 2–10.

van Keken, P. & Zhong, S., 1999. Mixing in a 3D spherical model of present-
day mantle convection, Earth planet. Sci. Lett., 171, 533–547.

King, S.D., Raefsky, A. & Hager, B.H., 1990. Conman: vectorizing a fi-
nite element code for incompressible two-dimensional convection in the
earth’s mantle, Phys. Earth planet. Inter., 59, 195–207.

King, S.D., Lee, C., van Keken, P.E., Leng, W., Zhong, S., Tan, E., Tosi, N.
& Kameyama, M.C., 2010. A community benchmark for 2-D Cartesian
compressible convection in the Earth’s mantle, Geophys. J. Int., 180,
73–87.

Kronbichler, M. & Bangerth, W., 2011. deal.II Tutorial Program Step-31,
http://www.dealii.org/developer/doxygen/deal.II/step_31.html (last ac-
cessed 2012 August 2).

Kronbichler, M., Heister, T. & Bangerth, W., 2011. deal.II Tutorial Program
Step-32, http://www.dealii.org/developer/doxygen/deal.II/step_32.html
(last accessed 2012 August 2).

Leng, W. & Zhong, S., 2008. Viscous heating, adiabatic heating and energetic
consistency in compressible mantle convection, Geophys. J. Int., 173,
693–702.

Leng, W. & Zhong, S., 2011. Implementation and application of adap-
tive mesh refinement for thermochemical mantle convection studies,
Geochem. Geophys. Geosyst., 12, Q04006, doi:10.1029/2010GC003425.

LeVeque, R.J., 2002. Finite Volume Methods for Hyberbolic Problems,
Cambridge Texts in Applied Mathematics, Cambridge University Press,
Cambridge.

Lin, S.-C. & van Keken, P.E., 2006. Deformation, stirring and material
transport in thermochemical plumes, Geophys. Res. Lett., 33, L20306,
doi:10.1029/2006GL027037.

Moresi, L., Zhong, S.J. & Gurnis, M., 1996. The accuracy of finite element
solutions of Stokes’ flow with strongly varying viscosity, Phys. Earth
planet. Inter., 97, 83–94.

Moresi, L., Quenette, S., Lemiale, V., Meriaux, C., Appelbe, B. & Mühlhaus,
H.B., 2007. Computational approaches to studying non-linear dynamics
of the crust and mantle, Phys. Earth planet. Inter., 163, 69–82.

Nocedal, J. & Wright, S.J., 1999. Numerical Optimization, Springer Series
in Operations Research, Springer, New York, NY.

Quarteroni, A. & Valli, A., 1994. Numerical Approximation of Partial
Differential Equations, Springer, Heidelberg.

Saad, Y., 2003. Iterative Methods for Sparse Linear Systems, 2nd edn, SIAM,
Philadelphia, PA.

C© 2012 The Authors, GJI, 191, 12–29

Geophysical Journal International C© 2012 RAS

28 M. Kronbichler, T. Heister and W. Bangerth

Schmid, D. & Podladchikov, Y., 2003. Analytical solutions for deformable
elliptical inclusions in general shear, Geophys. J. Int., 155(1), 269–288.

Schubert, G., Turcotte, D.L. & Olson, P., 2001. Mantle Convection in the
Earth and Planets, Part 1, Cambridge University Press, Cambridge.

Sheldon, J.W., Zondek, B. & Cardwell, W.T., 1959. One-dimensional, in-
compressible, non-capillary, two-phase fluid flow in a porous medium,
Trans. SPE AIME, 216, 290–296.

Silvester, D. & Wathen, A., 1994. Fast iterative solution of stabilised Stokes
systems. Part II: using general block preconditioners, SIAM J. Numer.
Anal., 31, 1352–1367.

Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L.C., Alisic, L. & Ghattas,
O., 2010. The dynamics of plate tectonics and mantle flow: From local to
global scales, Science, 329, 1033–1038.

Stone, H.L. & Garder, A.O., 1961. Analysis of gas-cap or dissolved-gas
reservoirs, Trans. SPE AIME, 222, 92–104.

Tackley, P.J. & King, S.D., 2003. Testing the tracer ratio method for modeling
active compositional fields in mantle convection simulations, Geochem.
Geophys. Geosyst., 4, 8302, doi:10.1029/2001GC000214.

Tan, E. & Gurnis, M., 2007. Compressible thermochemical convection
and application to lower mantle structures, J. geophys. Res., 112,
doi:10.1029/2006JB004505.

Trottenberg, U., Oosterlee, C. & Schüller, A., 2001. Multigrid, Elsevier
Academic Press, London.

Tuminaro, R. & Tong, C., 2000. Parallel smoothed aggregation multigrid:
aggregation strategies on massively parallel machines, in Super Comput-
ing 2000 Proceedings, Dallas, TX.

Worthen, J., 2012. Inverse problems in mantle convection: models, algo-
rithms, and applications (in preparation), PhD thesis, University of Texas
at Austin, TX.

Zhong, S., 1996. Analytic solution for Stokes’ flow with lateral variations
in viscosity, Geophys. J. Int., 124, 18–28.

Zhong, S., McNamara, A., Tan, E., Moresi, L. & Gurnis, M., 2008. A bench-
mark study on mantle convection in a 3-D spherical shell using CitcomS,
Geochem. Geophys. Geosyst., 9, Q10017, doi:10.1029/2008GC002048.

A P P E N D I X : A C C U R AT E P R E S S U R E
S O LV E S A N D L A RG E - S M A L L S P L I T S

ASPECT solves the Stokes system in the Boussinesq equations in
the form (1)–(2). In this formulation, the pressure one computes is
the total pressure of which the overwhelming component (by sev-
eral orders of magnitude at the bottom of the Earth’s mantle) is the
static pressure from the overlying rock while the dynamic pressure
is much smaller. Thus, if one were to naively solve the discrete
system (10) to, say, two or three digits of accuracy, one only gets
this accuracy in the static part of the pressure. Subtracting the static
from the total pressure would then leave us with no accuracy what-
soever in the dynamic part. This is an important consideration since
for many applications only the dynamic part is important; further-
more, it is only the dynamic part that drives the flow. Consequently,
geodynamics codes have traditionally not solved this form of the
equations.

In the following section, we will explain that the solution method
used in ASPECT is equivalent to a scheme where one solves for the
change in the dynamic pressure instead of the full pressure. This
is very similar to a traditional splitting of the pressure into a static
and dynamic component and allows us to compute the dynamic
pressure with high accuracy (as shown numerically at the end of
this section).

A1 Large-small splits to avoid round-off problems

One can circumvent the problem by splitting the pressure P =
P̂ + P ′ into a large and known component P̂ and a small but

unknown component P′ and then solving(
A BT

B 0

) (
U

P ′

)
=

(
F − BTP̂

0

)
(A1)

instead of (10). Here, if P̂ is known to high accuracy and if we solve
the linear system for P′ with two or three digits of accuracy, then
P = P̂ + P ′ will be known to high accuracy as well and we can
obtain the dynamic pressure from it with high accuracy.

Traditionally, this split P = P̂ + P ′ has been done by setting
P̂ = Ps , that is, the static pressure, where Ps satisfies the equa-
tion ∇ Ps = ρ(Ps, Ts)g in a radially symmetric coordinate system
and with an adiabatic temperature Ts matching Ps (or simply a
prescribed temperature profile). Using this choice for P̂ , we then
have that P′ = Pd , that is, the dynamic pressure, and the problem is
equivalent to solving the modified Stokes equations

−∇ · (2ηε(u)) + ∇ pd = (ρ(p, T) − ρ(ps, Ts))g, (A2)

∇ · u = 0 (A3)

instead of (1)–(2). This form makes clear that the flow is in fact
driven by density variations (buoyancy) and not the density itself.

That said, it is not necessary to choose the particular split of
variables P = Ps + Pd—any other split into a large and known
component P̂ and a small but unknown component P′ would work
as well. In particular, we could choose P̂ = Pn−1, that is, the
(discrete) pressure from the previous time step and P′ = �Pn =
Pn − Pn−1, the difference between the pressure of the current and
previous time steps. We will see below, that this is equivalent to
the method used in ASPECT. Similar to the split into static and
dynamic pressure, P′ is typically many orders of magnitude smaller
than P: first, because it is a quantity that must go to zero as the
time step size goes to zero; second, because P ′ = Pn − Pn−1 =
(Pn − Ps) − (Pn−1 − Ps) = Pn

d − Pn−1
d , that is, it is in reality only

the change in dynamic pressures between time steps, both of which
are already small. In other words, using this splitting, and solving(

A BT

B 0

) (
U

�Pn

)
=

(
F − BTPn−1

0

)
(A4)

we can again get a high accuracy solution P = Pn−1 + �Pn if
we assume that we have computed the previous time step’s solution
with high accuracy and solve for �P with moderate accuracy. Doing
this recursively means that we have to solve for the first time step’s
pressure accurately—but there, ASPECT uses the static pressure
which is known to high accuracy. In other words, the approach
taken in ASPECT in the first time step boils down to the conventional
technique of solving for the dynamic pressure in the iterative solver,
whereas it uses a different scheme at later time steps.

We prefer using Pn−1 for the splitting instead of the static pres-
sure Ps for several reasons. First, Pn−1 is readily available, whereas
computing Ps is an additional computational effort—and a non-
trivial effort in particular if one were to use a horizontally averaged
temperature rather than a prescribed temperature profile. Secondly,
Pn−1 is more accurate because it is defined on the correct interpo-
lation points, so no averaging or interpolation needs to be done.
Thirdly, it is not obvious how to generalize the static pressure when
surface geometry is included. Note that we do compute a horizon-
tally averaged pressure when needed in ASPECT, but it is currently
only used for graphical output.

The conclusion so far is that to compute the total pressure to high
accuracy (yielding an accurate dynamic component of the total

C© 2012 The Authors, GJI, 191, 12–29

Geophysical Journal International C© 2012 RAS

High accuracy mantle convection simulation 29

pressure) only requires a large-small split and that one can do that
using the previous time step’s pressure, among other choices.

A2 Equivalence of the split and unsplit schemes

Let us assume that we indeed use the scheme where we split the
pressure as discussed above into P = Pn−1 + �Pn and then proceed
to solve (A4) using the GMRES Krylov space solver discussed in
the Section 3.3.2.4 For simplicity, let us abbreviate the linear system
as

H Xsplit = Zsplit, (A5)

where

H =
(

A BT

B 0

)
, Xsplit =

(
U

�Pn

)
, Zsplit =

(
F − BTPn−1

0

)
.

Since there is no good starting value for the pressure update �Pn

in the split scheme, we start the GMRES iteration with the vector
X (0)

split = [U n−1, 0]T. GMRES then proceeds to find its solution in
the kth iteration by constructing the minimal residual vector from
the Krylov subspace

V (k)
split = {Rsplit, H Rsplit, H 2 Rsplit, . . . , H k−1 Rsplit},

see, for example, (Saad 2003). Here, Rsplit = Zsplit − H X (0)
split =

[F − BTPn−1 − AU n−1, −BTU n−1]T is the initial residual of the
iteration.

On the other hand, consider what would happen if we were to
solve the problem in the original, unsplit formulation (10), which
we can write as

H Xunsplit = Zunsplit, (A6)

where

H =
(

A BT

B 0

)
, Xunsplit =

(
U

P

)
, Zunsplit =

(
F

0

)
.

In contrast to above, we have a good initial guess for P, namely
Pn−1 for n ≥ 1 and the static pressure for the initial time step.
Thus, we start the GMRES iteration using the starting vec-
tor X (0)

unsplit = [U n−1, Pn−1]T. Consequently, in its kth iteration,
GMRES computes the current iterate from the space

V (k)
unsplit = {Runsplit, H Runsplit, H 2 Runsplit, . . . , H k−1 Runsplit}.

Again, Runsplit = Zunsplit − H X (0)
unsplit = [F − AU n−1 −

BTPn−1, −BTU n−1]T is the initial residual of the iteration.
Now, notice that in fact Runsplit = Rsplit. Consequently, we have

that V (k)
unsplit = V (k)

split. What this means is that GMRES computes,
in every iteration, the exact same approximation X (k) whether we

4 In the following, we will ignore the fact that we are using a precondi-
tioner in our code—all results below are equally valid with or without a
preconditioner.

start the iteration with a zero pressure update and bring the previous
time step’s pressure to the right hand side, or whether we solve for
the total pressure and simply start with the previous pressure! This
realization validates the approach we take in ASPECT, namely to
solve the unsplit scheme (10) without bringing the large part of the
pressure from the previous time step to the right hand side as in
(A4), but with a good starting guess for GMRES. Hence, ASPECT

should produce an accurate total pressure from which the dynamic
pressure can be obtained even if it is orders of magnitude smaller.

A3 Interpretation and numerical validation

The realization above that one can compute the dynamic compo-
nent of the pressure accurately while only solving for the total pres-
sure is so surprising—and so much against common experience in
geodynamics—that it is worth to reflect on it. Indeed, it is true that
one can only show the equivalence of the two schemes because
the method we use—GMRES—is a Krylov subspace method. It is
quite clear that one would not be able to obtain an accurate dynamic
pressure component from the unsplit scheme using other kinds of
linear solvers for the Stokes system, such as preconditioned fixed
point iterations or the Uzawa method.

Secondly, while we have shown that the computations GMRES
makes are exactly the same in both cases, one may ask whether
there are other potential sources of round-off errors that could lead
to problems. To this end, we have considered a variation of the
SolCx benchmark discussed in Section 4.1. There, we use a density
ρ(x) = sin(πx1) cos(πx2) that has mean value zero and, conse-
quently, yields a pressure that varies between −0.255 and +0.255
and has no static component. For this case, on a mesh with cell size
h = 1/16, we then obtain an error between the computed solution uh,
ph and the exact one u, p of ‖u−uh‖L2 = 1.67×10−6, ‖p− ph‖L2 =
9.78 × 10−3, see also Fig. 2. These values were computed using the
minimal number of GMRES iterations so that the iteration error
does not dominate the discretization error; in other words, we do
not use an excessive number of linear iterations.

On the other hand, let us consider a case where the density is given
by ρ(x) = 106 + sin(πx1) cos(πx2). Here, the total pressure is the
sum of a static pressure ps = 106(1

2 − z) that we have normalized
in such a way that it has mean zero, and the same dynamic pressure
as above. Indeed, given the large mean density, the static pressure
is about 106 times larger than the dynamic one, and conventionally
one would expect that the error in the numerical solution may be
small relative to the total pressure, but not small relative to the
dynamic component. Yet, computing again the difference between
the solution ASPECT has found when using the same number of
GMRES iterations as in the case above, and the exact solution, yields
errors ‖u−uh‖L2 = 1.67×10−6, ‖p− ph‖L2 = 9.78×10−3. These
are, indeed, exactly the same as in the previous case, thus validating
numerically that the approach taken in ASPECT is sound. Note in
particular that since the error was small relative to the dynamic
pressure in the first case, and since it is exactly the same here, that
the error in the current case is also small relative to the dynamic
pressure, and not only relative to the total pressure.

C© 2012 The Authors, GJI, 191, 12–29

Geophysical Journal International C© 2012 RAS

