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ABSTRACT
Nonlinear inverse problems are usually formulated as opti-
mization problems on function spaces constrained by partial
differential equations. As a consequence, in realistic, three-
dimensional cases, they become extraordinarily expensive to
solve numerically, and advanced methods like adaptive mesh
refinement become indispensible. In this contribution, we
outline such an adaptive algorithm and demonstrate results
using a realistic example from optical tomography.

Categories and Subject Descriptors
G.1.8 [Partial Differential Equations]: Inverse prob-
lems; G.4 [Mathematical Software]: Efficiency

Keywords
Adaptive finite element methods, biomedical imaging

1. INTRODUCTION
A frequent task in engineering and sciences is the deter-

mination of material parameters that are not directly acces-
sible to measurement but for which indirect measurements
of related quantities are possible. If the relationship be-
tween parameters and measurements is described by partial
differential equations, such parameter estimation problems
are usually referred to as inverse problems. Such problems
have vast applications in biomedical imaging, geophysics,
materials testing, and many other areas, and their numeri-
cal solution is therefore of significant importance.

Unfortunately, inverse problems are frequently ill-posed,
nonlinear, and involve large-scale numerical computations
in three-dimensional geometries. The development of effi-
cient and accurate numerical solution schemes is therefore a
matter that determines whether some inverse problems can
be solved in realistic settings.

In this contribution, we will therefore describe algorithms
that efficiently and accurately discretize and solve inverse
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problems associated with partial differential equations. This
class of problems includes a host of applications in biomedi-
cal imaging such as electrical impedance tomography (EIT),
microwave imaging, and diffuse optical tomography, in geo-
physics the use of magnetoresistivity to characterize the sub-
surface, or in nondestructive testing eddy current imaging.

In particular, we will show results for an application in flu-
orescence enhanced optical tomography, a recent addition to
the set of biomedical imaging methods that is currently in-
tensely researched. It attempts to reconstruct interior tissue
optical properties using light in the red and infrared range as
opposed to the more frequently used of X-rays in X-ray to-
mography. Its main current use is for soft biological tissues
since these are highly scattering but not strongly absorbing
in the near infrared range (700-900nm) window.

Optical tomography improves on a number of shortcom-
ings of established cancer imaging techniques. In particu-
lar, most currently available techniques only image tissue
structure variation created by tumors such as calcification
of blood vessels (X-rays), density and stiffness differences
(ultrasound) or water content (MRI) of tissues. In biomed-
ical imaging, such effects are often associated with tumors.
However, since they are not specific to the presence of actual
tumor cells, imaging these secondary effects frequently leads
to both false positive and false negative assessments. In ad-
dition, X-ray imaging uses ionizing radiation and is there-
fore harmful and potentially cancer-inducing. In contrast,
optical tomography is a functional imaging method that (i)
does not use harmful radiation, and (ii) can be made spe-
cific to the presence of certain cell types on the molecular
level, distinguishing proteins and other molecules that are
only expressed in certain tissues we are interested in (for
example tumor cells, or lymph nodes if the goal is to track
the spread of a tumor). Similar specificity may be possible
in applications to inanimate matter as well.

The challenge in optical tomography, as compared to more
traditional imaging methods such as X-ray tomography or
MRI is that the imaging process, i.e. the mapping from the
three-dimensional parameter function that we would like
to identify to the two-dimensional images in the infrared
range that we can record at the tissue surface is not linear.
This means that we can not hope for the existence of an in-
version formula, such as the inverse Radon transform, that
would recover the parameter from surface images explicitly
or through solving a single linear integral equation. Rather,
we will have to develop iterative numerical methods that
approximate the solution of this problem.

This numerical procedure is challenging because in biomed-
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ical imaging, resolutions of at least 1mm are required in tar-
get volumes of at least 1 liter. Accounting for the fact that
in our application (i) we have to solve the partial differential
equation on a mesh at least once finer than the parameter
we want to recover, (ii) the partial differential equation is a
coupled set of two complex-valued nonlinear equations, (iii)
we take 10–20 measurements with different source terms,
we quickly end up with a discretized nonlinear system of
equations that may have several times 107 unknowns if a
uniformly refined mesh is used. It is clear that problems
of this size can not be solved on today’s hardware within a
timeframe of 5–10 minutes as is required in clinical settings.

Herein, we will review the numerical techniques to solve
such inverse problems on adaptively refined meshes, using a
realistic optical tomography testcase. The general approach
to solving the problem is similar as used in work by other
researchers [1, 6, 7]. However, we will present adaptivity as
a central component to our strategy. Our exposition will
follow the framework laid out in [2,4] and applied in [8,11].

2. INVERSE PROBLEM FORMULATION
FOR OPTICAL TOMOGRAPHY

Nonlinear inverse problems such as fluorescence optical to-
mography are typically stated in a model-based framework,
wherein a PDE is used to predict measurements. The dis-
tributed parameter function we seek to identify is then iter-
atively updated until predicted measurements match the ex-
perimentally observed ones. This iterative process is driven
by a Newton-type method that attempts to minimize the
difference between prediction and actual measurements.

Herein, we will consider fluorescence enhanced optical to-
mography as an application on which to explain our algo-
rithms, namely . In this method, a fluorescent dye is injected
into the body. The dye molecules are designed to be specific
to certain cell types; after waiting a few moments to let the
dye be distributed in the body, the presence or absence of
dye molecules is therefore indicative of the presence or ab-
sence of the targeted cell type, for example tumor cells. In
order to determine the three-dimensional dye concentration,
we then illuminate the body with red light at the excitation
wavelength of the dye; this light diffuses in the body, and
whereever dye is present, fluorescent light in the infrared is
emitted that can then be detected again at the body sur-
face using a camera and appropriate infrared filters. From
these surface images, we would like to reconstruct the three-
dimensional distribution q(r) of the dye.

We model this process by a set of partial differential equa-
tions: For time-periodic sources modulated at a frequency
ω, the following set of coupled diffusion equations accurately
describes the complex-valued photon fluences u = u(r) at
the excitation wavelength and v = v(r) at the fluorescent
wavelength (u, v describe amplitude and phase-shift relative
to the source of the photon waves at all points r):

−∇ · [Dx(r)∇u(r)] + kxu(r) = 0, (1)

−∇ · [Dm(r)∇v(r)] + kmv(r) = βxmu(r), (2)

where

Dx,m =
1

3(µax,mi + µax,mf + µ′sx,m)
,

kx,m =
iω

c
+ µax,mi(r) + µax,mf (r), βxm =

φµaxf
1− iωτ(r)

.

Subscripts x and m denote material properties at excitation
and emission wavelengths, respectively: Dx,m are the pho-
ton diffusion coefficients; µax,mi the absorption coefficients
due to endogenous chromophores; µax,mf the absorption co-
efficients due to exogenous fluorophore; µ′sx,m the reduced
scattering coefficients; φ the quantum efficiency of the fluo-
rophore; and finally, τ is the fluorophore lifetime associated
with first order fluorescence decay kinetics. These equa-
tions are solved with Robin-type boundary conditions on
the boundary ∂Ω of the domain Ω:

2Dx
∂u

∂n
+ γu+ S(r) = 0, 2Dm

∂v

∂n
+ γv = 0, (3)

where n denotes the outward normal to the surface and γ is a
constant depending on the optical reflective index mismatch
at the boundary. The complex-valued function S(r) is the
excitation boundary source.

The goal of fluorescence tomography is to reconstruct the
spatially variable coefficient µaxf (r) from measurements of
the emission fluence v on the boundary. For notational
brevity, we set µaxf = q in the following paragraphs. The re-
maining optical properties are assumed known, with values
corresponding to a 2% Liposyn solution [8] in the example
below.

The model laid out above is able to predict measurements
v(r) at the measurements part Γ of the boundary whenever
the source term S(r) is specified. In our experiments, we use
a shaped laser beam that scans across M positions on the
tissue surface, representing sources Si(r), i = 1, 2, . . . ,M .
We can then predict vi(r) given these sources. In the ex-
periment, we take fluorescence measurements zi at the mea-
surement surface Γ for each source position i.

A mathematical description of the imaging problem is
then: find that coefficient q(r) for which the predicted values
vi|Γ are closest in some sense to zi|Γ. This problem can be
posed as a constrained optimization problem wherein an L2

norm-based error functional of the distance between bound-
ary fluorescence measurements z = {zi, i = 1, 2, . . . ,M} and
predictions v = {vi, i = 1, 2, . . . ,M} is minimized by varia-
tion of the parameter q. The diffusion model above connect-
ing q and vi is used as an explicit constraint. In a function
space setting this minimization problem reads as:

min
q,u,v

J(q,v)

subject to Ai(q; [ui, vi])([ζi, ξi]) = 0, i = 1, . . . ,M.
(4)

Here, the error functional J(q,v) incorporates a least square
error term over Γ and a Tikhonov regularization term:

J(q,v) =

MX
i=1

1

2

‚‚‚vi − σzi‚‚‚2

Γ
+ βr(q). (5)

σ is a factor that describes the relationship between actual
fluorescent fluence at the tissue surface and the CCD camera
signal. The constraint Ai(q; [ui, vi])([ζi, ξi]) = 0 is the weak
form of the partial differential equation for the ith excitation
source, and with test functions [ζ, ξ] ∈ H1(Ω):

Ai(q; [ui, vi])([ζi, ξi]) =

(Dx∇ui,∇ζi)Ω + (kxu
i, ζi)Ω +

γ

2
(ui, ζi)∂Ω +

1

2
(Si, ζi)∂Ω

+(Dm∇vi,∇ξi)Ω+(kmv
i, ξi)Ω+

γ

2
(vi, ξi)∂Ω−(βxmu

i, ξi)Ω.
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To solve this problem, we use that the solution of the
constrained minimization problem (4) is a stationary point
of the Lagrangian [10]

L(x) = J(q,v) +

MX
i=1

Ai(q; [ui, vi])([λexi , λ
em
i ]). (6)

Here, λexi , λ
em
i are the Lagrange multipliers corresponding

to the excitation and emission diffusion equation constraints
for the ith source, respectively, and we use the abbreviation
x = {u,v,λex,λem, q} for brevity. The stationary point
is found using the Gauss-Newton method which computes
an update direction δxk = {δuk, δvk, δλexk , δλemk , δqk} by
solving the linear system

Lxx(xk)(δxk, y) = −Lx(xk)(y) ∀y, (7)

where Lxx(xk) is the Gauss-Newton approximation to the
Hessian matrix of second derivatives of L at point xk, and
y are test functions.

3. NUMERICAL ALGORITHM
Equations (7) are partial differential equations of their

own, defining the update δxk(r) whenever the previous it-
erates xk(r) are given. While linear, these are a compli-
cated set of coupled equations with non-constant coefficients
(through the dependence on xk) for which we can not expect
to find analytical solutions.

To make a practical scheme out of this, we will therefore
have to discretize the equations. In our work, we use the fi-
nite element method. State and adjoint variables ui, vi, λexi ,
and λemi for each excitation source are discretized and solved
for on individual meshes with continuous finite elements,
while the unknown parameter map q is discretized on a sep-
arate mesh with discontinuous finite elements. Hence for M
sources, M + 1 finite element meshes are employed. After
this discretization step, we obtain a large but sparse linear
system of equations of the following structure:0@ M AT 0

A 0 C
0 CT βR

1A0@ δuk,h
δλk,h
δqk,h

1A =

0@ F u
F λ
F q

1A , (8)

where δuk,h, δλk,h, δqk,h are the vectors of nodal values of
updates for [u, v], [λex, λem], q, respectively. The size of this
linear system equals the number of all M solution vectors
and Lagrange multipliers plus the number of unknowns in
the parameter. It is therefore very large already on modestly
refined three-dimensional meshes and can be on the order
of several ten millions. To make things worse, the linear
system is indefinite and usually very badly conditions, with
condition numbers often exceeding 1012. The solution of this
linear system is therefore not possible with direct solvers,
and not straightforward with the usual set of iterative linear
solvers such as Conjugate Gradients or GMRES [5,13].

In order to compute the Newton updates defined by (8)
we therefore re-formulate this set of linear equations using
block elimination. We then arrive at the following sequence

of equations whose solution is equivalent to the one above:

S δqk,h = Fq −
NX
i=1

CiTAi−T (Fiu −MiAi−1
Fiλ), (9)

Ai δuik,h = Fiλ −Ciδqk,h, (10)

AiT δλik,h = Fiu −Miδqk,h, (11)

where S denotes the Schur complement

S = βR + CTA−TMA−1C. (12)

This sequence of linear systems is much simpler to solve
(i) since the first equation that defines the update δqk,h re-
quires only the inversion of a symmetric and positive matrix
S that is furthermore relatively small, involving only the
number of unknowns in the parameter qk,h; (ii) because the
rest of the matrices to be inverted are either Ai or (Ai)T ,
i.e. matrices that stem from the discretization of the ith
forward model that computes the fluxes ui, vi from a source
term, or from the adjoint operator. While these matrices can
still be large (with sizes in the 100,000s to a few millions),
devising forward and adjoint solvers for partial differential
equations is a well-understood process for which good solvers
and preconditioners are readily available. The overall solu-
tion process has therefore been reduced to the use of CG for
S and to traditional solvers for the forward and adjoint op-
erators. While the resulting process is not trivial, it is also
not too complicated to implement on a parallel machine and
a Newton iteration can be performed in a few minutes even
on relatively fine meshes with many unknowns.

4. DISCRETIZATION DETAILS
The heart of the algorithm is of course the choice of the

M + 1 meshes used for the discretization of the forward and
adjoint variables in the M experiments and the common pa-
rameter q(r): A uniform mesh will, as explained above, not
be able to provide the necessary resolution for many appli-
cations without leading to excessive resource requirements.

Our implementation therefore works as follows: Starting
with uniformly refined, relatively coarse meshes for each of
the M + 1 grids, we discretize and solve several iterations of
the Gauss-Newton system (7). In each iteration, we mon-
itor the size of the nonlinear residual ‖Lx(xk)‖; at the so-
lution, this residual must be zero, and in areas of the so-
lution space where the model is accurately described by a
quadratic approximation the Newton method will drive it
down rapidly [12]. If we therefore see that the residual has
been reduced by a certain factor, say 103, from the first iter-
ation on the current set of meshes, we evaluate the solution
of a refinement indicator, refine all meshes accordingly, and
repeat the process on this new set of meshes. Similarly, if
we see that the residual has not been reduced by any signif-
icant amount during the last few iterations or that the step
lengths chosen in our safeguarded version of Newton’s algo-
rithm, we conclude that we are stuck in an area where the
quadratic Newton approximation is inadequate; we then also
trigger mesh refinement, a decision motivated by the obser-
vation that adding search directions by refining the meshes
frequently recovers rapid convergence by allowing Newton
steps to escape from such regions through directions not
previously available.

A practical implementation of this scheme relies on the use
of an appropriate mesh refinement indicator. Ideally, such
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an indicator would be based on an error estimate; this, how-
ever, only appears practical for relatively simple problems in
which the number of terms is not too large [2]. For the exper-
iments shown below, we therefore simply use a smoothness
indicator based on the jump in the gradient between neigh-
boring cells for the M meshes used to discretize the state
and adjoint equations. For the mesh used to discretize the
parameter q(r), we refine where a numerical approximation
of the gradient exceeds a certain threshold.

The implementation of this overall strategy brings along
several important advantages: First, it leads to a situation
where the first few Newton iterations are essentially for free
since they happen on coarse and therefore cheap meshes.
The fact that on these meshes no accurate representation of
the solution of the full inverse problem is possible is of no
importance since at this point we are still far away from the
solution of the nonlinear problem anyway. Consequently, we
also do not try to iterate the nonlinear problem to conver-
gence on each individual mesh: We are happy with a modest
reduction of 103 in the reduction on each mesh. Significant
effort is therefore only spent on the finest set of meshes, but
we only use them when we are already close to the solution.

The second advantage is that our M + 1 meshes are each
individually adapted to the quantities that are discretized
on them. In many cases, for example in the testcase consid-
ered in the next section, the solutions to the partial differ-
ential equations that describe the response of a system to
the different forcings applied in the M experiments, depend
sensitively on the force terms, and will exhibit roughness in
different areas. No mesh will therefore be able to efficiently
and accurately discretize all solutions ui, vi, λexi , λ

em
i at the

same time unless is it more or less globally refined. By con-
sidering the meshes shown in Fig.s 1 and 2, it is clear that
the use of M + 1 different meshes leads to significant over-
all savings in compute time and memory use over the use
of a single but very fine mesh. An advantage of this that
may not be immediately apparent is also that the choice of
a mesh that is coarse wherever resolution is not needed also
acts as a form of regularization, making the ill-posed inverse
problem at least better posed.

5. A NUMERICAL EXAMPLE
We illustrate our inversion scheme with a synthetic exam-

ple involving the tomography application introduced above.
Examples using experimental data can be found in [9]. The
computations shown here were implemented using the Open
Source finite element library deal.II [3]. More details on the
numerical methods can be found in References [2, 4].

The example we show uses a realistic geometry obtained
stereographically using a pair of cameras trained to the groin
region of a pig (the experiment was performed to image the
lymph nodes in this area). Fig. 1 shows a simulated laser
source at two out of a total of M = 8 positions while scan-
ning over the surface of this region. At each of position
we take measurements zi of the fluorescent light intensity
and phase. For the purpose of illustration, measurements
zi are computed numerically (rather than obtained experi-
mentally) using a separate computer program that employs
a different numerical method to avoid an inverse crime.

Using these measurements, we then employ our inversion
algorithm. For the first source position, Fig. 2 shows the
meshes after zero, two, and four adaptive refinements. It is
easy to see that the mesh becomes gradually finer around

Figure 1: Solutions for measurements i = 1, 4 for a laser
line scanning over the top of the tissue sample.

Figure 2: Meshes for experiment i = 1 after zero, two,
and four refinement cycles. Note that the mesh density is
localized around where it is necessary to resolve the structure
of the solution.

those locations where a high mesh resolution is necessary
to resolve features of the solution, whereas it remains coarse
elsewhere, keeping the overall number of degrees of freedom,
and consequently the numerical effort, as small as possible.
In cases like the ones shown here, the use of adaptivity re-
duces the size of the involved problems by factors of 10–100,
and is consequently indispensible to make the solution of
such inverse problems feasible.

Similarly, the unknown parameter q(r) is discretized on a
sequence of meshes that are also adapted successively. Fig. 3
shows these meshes at the same iterations. Again, the mesh
is refined towards an object at the center of the domain
to provide high resolution there. Fig. 4 illustrates that the
reason for this refinement pattern is that the reconstructed
parameter q(r) has a high dye concentration at the center
of the domain, indicative of a lymph node or tumor. The
refinement pattern is clearly appropriate for this purpose.

6. CONCLUSIONS AND OUTLOOK
In this paper, we have given a brief overview of the various

techniques necessary and available for the solution of nonlin-
ear inverse problems, illustrated using a recent biomedical
imaging technique. For this and similar cases, uniformly re-
fined meshes can not deliver the necessary resolution within
compute times that are clinically acceptable because they
lead to nonlinear optimization problems that are orders of
magnitude too large for today’s hardware. Our approach to
this problem is to introduce adaptively refined meshes for
solving the forward/adjoint problems and the unknown pa-
rameter updates. They are able to focus numerical effort to
regions in the domain where high resolution is actually nec-
essary. Other advantages of such schemes are that they also
regularize the inverse problem and in particular make the
initial Gauss-Newton iterations extremely cheap since we
can compute on coarse meshes while we are still far away
from the solution.

Although the results shown here and elsewhere [2, 4, 9]
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Figure 3: Meshes on which the parameter q is discretized
after zero, two, and four refinement cycles.

Figure 4: Identified parameter q(r) after 25 Newton itera-
tions. The cells shown are those where the reconstructed dye
concentration is more than 50% of the maximum identified
value.

demonstrate that we are able to efficiently solve inverse flu-
orescence tomography problems with practically sufficient
resolution, further progress is necessary in several areas to
improve the numerical performance. This includes improv-
ing linear and nonlinear solvers, regularization, and stabi-
lization by imposing additional constraints on the solution.
For practical applicability, numerical methods also have to
work in the presence of significant background heterogeneity,
unknown or large noise levels, systematic measurement bias,
and other practical constraints. Systematic testing of recon-
structions for statistically sampled scenarios with Objective
Assessment of Image Quality (OAIQ) methods is therefore
necessary to achieve clinical recognition for fluorescence op-
tical tomography.

Looking beyond the application use in this paper, adap-
tive finite elements and many of the other techniques demon-
strated here can also be used for a wide variety of other
nonlinear inverse problems. This includes, among many
others, electrical impedance tomography (EIT), eddy cur-
rent imaging, diffuse optical tomography, and magnetore-
sistivity, all of which are used in areas outside biomedical
imaging for the characterization of materials, nondestruc-
tive testing, or in geophysical applications. In each of these
cases, the model is a partial differential equation in which
the predicted oberservable quantity depends nonlinearly on
the parameter that we would like to identify. In all these
cases, an iterative nonlinear algorithm and a discretized ver-

sion of the partial differential equation is necessary, and the
methods shown herein are immediately applicable.
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