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Reconstructions in ultrasound modulated
optical tomography

Moritz Allmaras and Wolfgang Bangerth

Abstract. We introduce a mathematical model for ultrasound modulated optical tomogra-
phy and present a simple reconstruction scheme for recovering the spatially varying optical
absorption coefficient from scanning measurements with narrowly focused ultrasound sig-
nals. Computational results for this model show that the reconstruction of sharp features
of the absorption coefficient is possible. A formal linearization of the model leads to an
equation with a Fredholm operator, which explains the stability observed in our numerical
experiments.
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1 Introduction

During the last two decades, optical tomography (OT) has received significant at-
tention as a biomedical imaging modality [2]. This can be attributed, in particular,
to the fact that light at optical frequencies is harmless to the human organism and
that optical properties of tissues reveal important biological information such as
angiogenesis and hypermetabolism, both of which are well-known indicators of
cancer [25]. Unfortunately, reconstruction in OT is also known to be severely
ill-posed, and consequently sharp imaging of optical properties is all but impos-
sible. Various attempts to address this problem have been made. In this paper
we are interested in a hybrid imaging method called ultrasound modulated opti-
cal tomography (UOT, [25]) that combines the OT procedure with simultaneous
modulation by a narrowly focused ultrasound beam in order to alleviate the insta-
bility of OT reconstructions. The idea is to combine the good tumor specificity of
OT with the high spatial resolution of ultrasound imaging. This approach utilizes
the experimentally observed interaction between ultrasound and light propagation
in tissue [16, 25]. In UOT, a coherent light source irradiates the tissue sample
and causes interference patterns to form on the surface of the object, so-called
speckles. A narrowly focused ultrasound wave is simultaneously induced in the
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tissue, influencing its optical properties and thus modulating the speckle pattern
with ultrasound frequency. By measuring properties of this modulation, informa-
tion about the incident light intensity at the focus location of the ultrasound beam
can be obtained. Hence, by scanning the focus of the ultrasound wave throughout
the sample, a quantity related to the light intensity in the object’s interior can be
determined. This type of internal information is usually not available from OT
measurements due to multiple scattering of photons in optically dense media, al-
though there are other variants of optical tomography that also strive to recover this
information (e.g., [22]). It can be expected that this additional knowledge can help
in stabilizing the inversion process and render it substantially less ill-posed than
the original OT problem. For the UOT model we present in this paper, numerical
experiments and an initial analysis suggest that this intuition is justified.

The literature contains a number of models that address the UOT technique, see
for example [13,16,19,23–25]. Most of them describe the coupling between ultra-
sound and light in terms of stochastic quantities, which permits particle-based sim-
ulations of the light intensity modulation effect caused by the ultrasound wave. On
the other hand, for optical imaging in turbid media at a depth of several centime-
ters, photon intensities can be accurately modeled by the diffusion limit. Under
certain assumptions, this allows us to formulate a model for the UOT procedure
based on a parameter identification problem for a set of coupled diffusion-type
partial differential equations. This model, along with a description of the mea-
surements is presented in Section 2. In Section 3, we outline a simple algorithm
that can be used to reconstruct the spatially varying absorption coefficient from
UOT measurements with focused ultrasound signals. Examples of the resulting
reconstructions for numerical phantoms are provided in Section 4. In Section 5,
we formally linearize our model and obtain an equation that relates perturbations
in the absorption coefficient to those in the measurements by a Fredholm operator
acting between appropriate Sobolev spaces. This provides a partial explanation to
the stable reconstruction observed in our numerical experiments. The last section
contains final remarks and conclusions.

2 Mathematical model

A detailed description of the physical underpinnings of the UOT procedure can be
found, for instance, in [25, Chapter 13]. We give a brief description of the set-up
here.

Let the object of interest occupy the domain � � R3. The internal optical
properties in the diffusion limit are described by the reduced scattering coefficient
�0s and the absorption coefficient �a. For imaging soft tissues, it is common to
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assume �0s roughly equal to a known constant throughout �, while the spatially
varying absorption �a.x/, x 2 �; represents the target of reconstruction as where
healthy and diseased tissue differ in their absorption properties. It is also assumed
that the tissue of interest is turbid (highly scattering), so that �a.x/ � �0s . It
is known that in such media, the light intensity u.x/ inside � can be accurately
described by the diffusion approximation (e.g., [6, 22]).

In this paper we focus on the modulation of coherent light by ultrasound-in-
duced changes in the optical properties of the body under interrogation. It has
been shown experimentally that coherent light can be modulated by an ultrasound
field inside the turbid medium [16]. While the exact mechanism for this effect
appear not entirely clear, various explanations have been put forward [23] and all
lead to essentially the same mathematical model.

The experimental setup in UOT involves dealing with the time dependent light
intensity of individual speckles. The model presented below is derived under two
assumptions, which are satisfied in standard UOT applications [25]:

� Weak scattering assumption: The optical wavelength is much shorter than
the mean free path.

� Weak ultrasound modulation assumption: The ultrasound-induced change in
the optical path length is much less than the optical wavelength.

The measured signal is the autocorrelation function [16] at a detector location
� 2 @�,

G1.�; �/ D
˝
E.�; t C �/E�.�; t/

˛
t
;

where angle brackets denote averaging over time, and the electric field E is re-
lated to the light intensity I as I.�; t/ D jE.�; t/j2. It has been shown experi-
mentally [16] that over time scales � � 1�s coherence of the exiting light is lost,
i.e. G1.�; �/! 0 as � !1, due to the Brownian motion of scatterers. However,
on short time scales – for example on the order of typical periods of the ultrasound
fields, i.e. the regime we are interested in –, G1.�; �/ D const in the absence of
other effects. We will therefore neglect contributions from the Brownian motion of
scatterers in our model below. Furthermore, if an ultrasound field is present in the
body under interrogation,G1.�; �/ has been observed to oscillate at the ultrasound
frequency. It is the amplitude of this oscillation at the ultrasound frequency that is
the signal in UOT.

In the following, we will derive expressions for G1 and, in particular, its modu-
lation depth, i.e. the magnitude of the oscillation ofG1 at the ultrasound frequency.
We will then relate these quantities to solutions of partial differential equations that
we will use for our reconstruction scheme.
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A path integral model. For a point source of unit strength at a location � , and a
detector measuring photons exiting the domain at � 2 @�, we can write

G1.�; �; �/ D P
@ NG.�; �; �/;

NG.�; �; �/ D
X

sDs.�;�/

Ps
˝
Es.t C �/E

�
s .t/

˛
t
;

where the sum extends over all paths s that connect source � and boundary loca-
tion �. Ps is the fraction of the incident intensity that scatters along s multiplied
by the probability of a photon not getting absorbed along this path. P @ is the prob-
ability that a photon that makes it to a point � on the boundary is able to cross the
boundary from tissue into the detector. Es then denotes the phase of the electric
field at � of photons following path s. Consequently, hEs.t/E�s .t/it D 1.

Consider now the situation in which an ultrasound field induces phase shifts
d�.x; t/ on all paths along an infinitesimal path element ds.x/. As shown in [23],
such phase shifts can be induced both by the periodic motion of scatterers in the
ultrasound field as well as by the modulation of the index of refraction by the
pressure field. We then have�

Es.t/E
�
s .t C �/

�
t

D

�
exp

�
�i

Z
s

d�.x; t/

ds
ds

��
t

� exp
�
�
1

2

��Z
s

d�.x; t/

ds
ds

�2�
t

�
;

where integrals are assumed to be along a path s from � to �. By computing how
the index of refraction and the phase shifts induced by scatterer movement depend
on an ultrasound pressure field with frequency !a and amplitude jp.x/j, we can
use the results in [23] to write above expression as˝

Es.t/E
�
s .t C �/

˛
t
D

1

jsj

Z
s

exp
�
�˛jp.x/j2.1 � cos!a�/

�
ds;

where ˛ is a proportionality constant and jsj is the length of path s. (Note in par-
ticular that the proportionality to the square of the pressure has also been observed
experimentally, see [16].) Consequently,

G1.�; �; �/ D P
@

X
sDs.�;�/

Ps
1

jsj

Z
s

exp
�
�˛jp.x/j2.1 � cos!a�/

�
ds:

As has been shown experimentally [16], the exponent is relatively small, i.e. the
effect of the ultrasound modulation on the measured autocorrelation is weak. We
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can therefore approximate

G1.�; �; �/ D P
@

X
sDs.�;�/

Ps

�
1 �

˛

jsj

Z
s

jp.x/j2.1 � cos!a�/ ds
�
:

It follows that we can write the autocorrelation function as the sum of two terms:

G1.�; �; �/ D G1.�; �; 0/ � ˛P
@

X
sDs.�;�/

Ps
1

jsj

Z
s

jp.x/j2.1 � cos!a�/ ds:

The first of these is the time average light intensity, whereas the second is the
variation of the autocorrelation function due to the ultrasound field. To first order
in the small parameter ˛, i.e. assuming that the ultrasound field affects each photon
only once, we can express the sum over all paths by an integral of the form

G1.�; �; �/ D G1.�; �; 0/�˛P
@

Z
�

NG.�; x; 0/jp.x/j2 NG.x; �; 0/ dx .1�cos!a�/:

Finally, if light is incident with an intensity S.�/ at source positions � 2 @�,
the overall autocorrelation function at detector location � can be written as

G1.�; �/ D

Z
@�

S.�/G1.�; �; �/ d�:

Using the previous equation, and defining the time averaged light intensity
u.x/ D

R
@� S.�/

NG.�; x; 0/ d� for all x 2 � [ @�, we can then write

G1.�; �/ D P
@u.�/ � ˛P @

Z
�

u.x/jp.x/j2 NG.x; �; 0/ dx .1 � cos!a�/ (2.1)

D P @
�
u.�/ � v.�/.1 � cos!a�/

�
; (2.2)

where the amplitude of the modulation of the autocorrelation function at the fre-
quency of the ultrasound field is given by

v.�/ D ˛

Z
�

u.x/jp.x/j2 NG.x; �; 0/ dx: (2.3)

This representation of the correlation G1 as a sum of a time averaged photon flux
plus a temporally variable term has given rise to the name tagged photons to denote
v.x/. Equation (2.3) makes it clear that tagged photons originate at the site x of
interaction of the steady-state light field u.x/ and ultrasound field p.x/. However,
since G1.�; �/ is not a photon flux but a correlation function, we will not use this
term any further.
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806 M. Allmaras and W. Bangerth

In our reconstruction algorithm below, we will assume that the amplitude v.�/
of the temporal variation of G1.�; �/ – i.e. the modulation depth – is the measured
signal. While the time average u.�/ can also be measured, using it for inversion
leads to the diffuse optical tomography problem that is known to be severely ill-
posed.

A partial differential equation model. For our reconstruction algorithms, we
would like to relate our signal v.�/ to the solution of a partial differential equation.
To this end, note that

NG.x; y; 0/ D
X

sDs.x;y/

Ps

is the time average probability that a photon starting at x is found at y. For the
turbid medium that we consider in this contribution, light propagation can be ac-
curately described by the diffusion approximation in which photons perform a
random walk. The time averaged light intensity u.�/ D

R
@� S.�/

NG.�; �; 0/ d�

then satisfies the following equation:

�r �Dru.x/C �a.x/u.x/ D 0 in �; (2.4)

where
D D D.x/ D

1

3.�a.x/C �0s.x//
(2.5)

is the diffusion coefficient. Due to the assumptions stated at the beginning of this
section, D � 1

3�0s
� const. To simplify the notation, we set � WD �a in the rest

of the text. Equation (2.4) needs to be completed by boundary conditions. For
tissue in contact with a surrounding medium, Robin-type boundary conditions are
typically chosen [11]:

2D
@u.x/

@n
C u.x/ D S.x/ on @�: (2.6)

Here n denotes the outward normal to the surface @� and  > 0 is a constant
describing the optical refractive index mismatch at the boundary, and is related to
P @. In particular, the assumptions underlying the diffusion approximation imply
that P @ � 1

2
and 0 �  � 1, and  D 1 if P @ D 1

2
.

On the other hand, to represent v.�/ as the solution of a partial differential
equation, we have to consider the equation that NG satisfies. NG.x; y; 0/ is the prob-
ability that a photon originating at x reaches y, absent an ultrasound field. For
random walk models, it is known that NG.x; y; 0/ satisfies a diffusion equation
[9, 21], which in our case is

�r �Dr NG.x; y; 0/C �.x/ NG.x; y; 0/ D ı.x � y/ in �:
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Reconstructions in ultrasound modulated optical tomography 807

The question of boundary conditions is less clear. It is well known that if every
particle that reaches the boundary leaves the domain (i.e. P @ D 1), then the correct
boundary condition to choose is NGj@� D 0. On the other hand, if all photons
are reflected and none can leave (i.e. P @ D 0), then n � Dr NGj@� D 0 is the
correct boundary condition. In either of these two cases, n �Dr NGj@� is the flux
of particles across the boundary. However, we have been unable to find literature
on the case 0 < P @ < 1

2
(see, however, [7] for the case where each particle that

reaches the boundary is replaced by more than one new particle, a situation that
formally corresponds to the situation where the fraction of particles that can leave
the domain satisfies P @ < 0). Since intuitively, NG denotes a photon flux, we
conjecture by way of analogy that NG also satisfies Robin boundary conditions

2D
@ NG.x; y; 0/

@n
C  NG.x; y; 0/ D 0 on @�:

Under this assumption, we have that the amplitude v.�/ (up to the constant
factor P @) of the time variation of the autocorrelation function G1.�; �/ satisfies
the following boundary value problem:8<:�r �Drv.x/C �.x/v.x/ D ˛jp.x/j

2u.x/ in �;

2D
@v.x/

@n
C v.x/ D 0 on @�:

(2.7)

Note that if we were to view v as a fluence of virtual or tagged photons, then our
conjecture implies that the equation for this virtual fluence has the same boundary
conditions as that for the incident fluence u.

Measurements. In principle, the interferometric detectors for the modulation
P @v.�/ visible beyond the boundary could be placed along the entire boundary. In
practice, however, we will only be able to measure at a small number of locations.
To simplify the discussion, we will assume in the following that only a single
detector is used. More elaborate experimental setups could use multiple detectors
to suppress the effects of noise on the reconstruction.

The inverse problem. We can now formulate the inverse problem addressed in
this work:

Assuming that for a given point � 2 @� and a number of ultrasound fields p�.x/
indexed by �, the values

h.�/ WD v�.�/ (2.8)
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are known in the coupled system of equations8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�r �Dru.x/C �.x/u.x/ D 0 in �;

2D
@u.x/

@n
C u.x/ D S.x/ on @�;

�r �Drv�.x/C �.x/v�.x/ D ˛jp�.x/j2u.x/ in �;

2D
@v�.x/

@n
C v�.x/ D 0 on @�:

(2.9)

Then recover the absorption coefficient � inside a region of interest U � � with
NU � �.

We remark that in the applications of ultrasound modulated optical tomography
available in the literature, the ultrasound pressure field p.x/ is always a beam fo-
cused on a single point. In particular, the algorithm we show below is based on
the assumption of perfectly focused beams jp�.x/j2 D ı.x � �/, although we will
test in Section 6 how the algorithm performs on data for which this assumption
is not satisfied. The formulation above is more general in that it allows arbitrary
fields p.x/. An application of this includes ultrasound pressure fields that are fo-
cused not on points but on spherical surfaces for synthetic focusing, as mentioned
in Section 6.

3 Reconstruction algorithm

In this section, we introduce a simple algorithm that can be used to compute
numerical reconstructions for the above inverse problem. In the following, we
will make the assumption that the pressure field is perfectly focused on a loca-
tion � 2 �, i.e. jp�.x/j2 D ı.x � �/, and that we can scan this focus point �
throughout our area of interest U . As discussed in Section 6, this is of course not
practically feasible, so our assumption is understood to mean that the real pressure
field approximates a perfectly focused one.

Let G.x; y/ be Green’s function for the diffusion model (2.4), i.e. the solution
of 8<:�rx �DrxG.x; y/C �.x/G.x; y/ D ı.x � y/ x 2 �;

2D
@G.x; y/

@n
C G.x; y/ D 0 x 2 @�:

(3.1)

Then, (2.9) implies
v�.x/ D ˛G.x; �/u.�/;
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and thus,

h.�/ D ˛G.�; �/u.�/; u.�/ D
h.�/

˛G.�; �/
:

Substituting this expression for u into the first equation of (2.9), we obtain an
equation for recovering �:

�.�/ D
Œr� �Dr� � .h.�/=G.�; �//

h.�/=G.�; �/
: (3.2)

The apparent difficulty in using this formula for reconstruction is that it is implicit
in � since bothD and Green’s functionG depend on the absorption. However, we
can construct the following natural iterative scheme for (3.2):

� Initial step: Using an initial guess �0 for the absorption coefficient (e.g.,
�0 D const), compute the corresponding Green’s function numerically, and
apply formula (3.2) to find a new approximation �1 for the absorption.

� Iterative step: Using the current approximation �k , re-compute Green’s
function and D, and apply formula (3.2) to find an updated absorption co-
efficient �kC1.

We do not consider the convergence properties of this scheme here, but note that
in our numerical tests presented below the iterates converged reliably, albeit not
always very rapidly.

4 Numerical implementation

Implementation of the algorithm outlined above requires the following steps:

� simulation of the forward model to generate synthetic measurements,

� repeated computation of Green’s function G.x; y/ from equation (3.1),

� repeated evaluation of the iteration formula (3.2).

These steps are discussed in the following subsections. In this work, we only con-
sider measurements obtained by forward calculations from mathematical phan-
toms, rather than actual experimental data. All computations were done in 2D,
although they can be readily carried over to 3D. For the finite element calcula-
tions involved in the reconstruction scheme, the Open Source finite element library
deal.II [3, 4] was used.
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4.1 Forward simulations

In order to generate the measurements h.�/ (see (2.8)), we need to compute the
solution u.x/; v�.x/ of the forward problem (2.9) for a set of given data D;�; S
(diffusion coefficient, absorption coefficient, incoming light flux) and an ultra-
sound signal focused at the point � 2 U . Then, evaluating v� at the detector
location �, we obtain the measurement value h.�/.

Computational setting. We take � to be the square .0 cm; 5 cm/2, which ap-
proximately corresponds to the relevant dimensions in practical applications. For
the boundary light source S in (2.6), @� is split into @�1 D ¹x 2 @� W x1 D 0º

and @�2 D @� n @�1. Constant illumination is assumed on @�1 and no photons
are injected on @�2:

S.x/ D

´
1 for x 2 @�1;
0 for x 2 @�2:

The modulation depth is measured at a single detector location � D .5 cm; 2:5 cm/.
This layout is depicted in Figure 1.

Ω

∂Ω1

S

U

η

Figure 1. Setting of numerical experiments: Domain �, area of interest U , incident
light source S.x/ on the left, and detector point � on the right.

Incident light field. Since in our model the incident light intensity u is indepen-
dent of the shape and location of the ultrasound waves in the tissue, u only needs
to be computed once. For this computation, a finite element approximation to u
is constructed on a regular rectangular grid using Q1 finite elements [5], solving
equations (2.4)–(2.6). The left panel of Figure 2 shows u for the case of a constant
absorption coefficient �.
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Ultrasound field. In our numerical examples, we use Gaussian-shaped synthetic
ultrasound signals:

p.x/ D C exp
�
�

dX
jD1

jxj j
2

�2j

�
; (4.1)

where C is a normalization constant. By choosing different variances �2j we can
model varying focusing properties of such pressure fields.

To simulate scanning of the ultrasound focus, focusing points � i (i D 1; : : : ; N )
are placed at the vertices of a square grid covering the area of interest, here chosen
as the square U D Œ0:5 cm; 4:5 cm�2 � �. For each i we then construct a signal
p�

i

.x/ focused at � i by setting

p�
i

.x/ WD p.x � � i /:

To simplify notation we set vi WD v�
i

and pi WD p�
i

.

Modulated light field and measurements. Given u and jpi j2, we compute the
intensity of the modulated light vi .x/, using equations (2.9). The equations are
again solved using Q1 finite elements. Two examples for vi are shown in Fig-
ure 2 for two different focus positions. The modulated light intensities vi are then
evaluated at the sensor location � to yield the measurements h.� i / D vi .�/.

Figure 2. Left: Incident light intensity u for constant absorption coefficient. Center
and right: Modulated light intensity v� for two different focus points �. Note that v
depends on the focus position as well as the intensity of u at the focus.

4.2 Green’s function and reconstruction

The reconstruction algorithm requires knowledge of Green’s function G, which,
given the absorption coefficient � and resulting diffusion coefficient D, solves
(3.1). Hence, we compute G by solving another diffusion problem with homoge-
neous Robin boundary conditions and a suitable approximation to the delta func-
tion on the right-hand side. As before, this is done using a finite element scheme,
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812 M. Allmaras and W. Bangerth

where we choose a different, coarser mesh than in forward problem calculations
to avoid committing inverse crimes.

An obvious problem in the reconstruction formula (3.2) is that it involves
derivatives of the measurement data h.�/, which causes instabilities in the pres-
ence of noise. Possible regularizations for this problem are well-studied (e.g.,
[19]), and the stability analysis in Section 5 suggests that this is the only source of
instability in the reconstruction process. Hence, we opt not to add extra regular-
ization and compute the derivatives by a simple central finite differencing scheme.
Without adding noise to the measurements, it turned out that in all of our com-
putational experiments, the regularization stemming from discretization on a fixed
grid was sufficient for convergence of the iterative scheme based on (3.2).

4.3 Numerical phantoms

To test our algorithms, we use three test cases in which the true absorption coeffi-
cients have the following form:

� A disk-shaped inclusion K � � with midpoint .2:5 cm; 2:5 cm/ and radius
0:5 cm. The absorption coefficient is assumed to be equal to N� outside the
inclusion and slightly higher inside:

��.x/ D

´
N� for x 2 � nK;
1:2 N� for x 2 K:

� For the same inclusion K, a much higher absorption coefficient contrast

��.x/ D

´
N� for x 2 � nK;
10 N� for x 2 K:

� A more complicated coefficient with multiple inclusions of different magni-
tude between 1:2 N� and 2:0 N�. Their exact shape is shown in Figure 3. This
case tests the ability of our algorithms to resolve several nearby objects.

For actual numerical values, we used N� D 0:023cm�1, �0s D 10:74cm�1 and
 D 0:431cm�1 in our computations. These values represent typical optical prop-
erties of soft tissue [18].

4.4 Reconstruction results

For the results shown in this section, measurements were produced using the ultra-
sound signal arising from setting variances �1 D �2 D 0:1 cm in the Gaussian
(4.1), resulting in sharp focusing in each direction (see the center panel of Fig-
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Reconstructions in ultrasound modulated optical tomography 813

Figure 3. Test cases for absorption coefficient ��.

Figure 4. Reconstruction results for the three coefficient cases: after the first step of
the algorithm (top) and after N D 40; 70 and 40 iterations, respectively (bottom).

ure 5). Figure 4 shows reconstructions of the three different absorption coefficients
for scanning the ultrasound focus � i on a 100�100 mesh of points inside the area
of interest U .

The principal observation from these results is that under the main assumptions
of the model, i.e. turbid medium (and thus � � �0s), virtual light source, and
strong focusing, our reconstruction scheme has four desirable properties:

� It converges, even for the second case where (i) we start far away from the
exact coefficient and (ii) the exact coefficient has a large dynamic range.

� It is stable, i.e. the errors introduced through discretization of the equations,
finite differencing of data, and using different meshes for reconstruction and
generation of synthetic data do not lead to inaccurate reconstructions.

AUTHOR’S COPY | AUTORENEXEMPLAR 

AUTHOR’S COPY | AUTORENEXEMPLAR 



814 M. Allmaras and W. Bangerth

� It can recover sharp interfaces without excessive blurring.

� It can recover quantitatively correct values of absorption.

These are significant advantages compared to many other optical tomographic
methodologies.

5 Stability of the linearized problem

The quality of reconstructions shown above, especially the recovery of sharp sin-
gularities, is at first surprising, given that the standard OT problem is strongly ill-
posed. In this section, we will make a first step towards understanding the stability
of the UOT procedure.

Note that even though equations (2.9) defining u and v are linear, the relation
between the absorption coefficient � and the measurements h is nonlinear. In this
section, we consider a (formal) linearization of the system (2.9) that will allow us
to gain some insight into the local properties of the inverse problem.

Let � � Rd with d D 2 or d D 3 be an open bounded domain with C 2-
boundary. We use a formal linearization, assuming that � is a small perturbation
of a known absorption �0 > 0;�0 2 C 0;1.�/, and then applying the formal
asymptotic expansions

�.x/ D �0.x/C "�1.x/;

u.x/ D u0.x/C "u1.x/C o."/;

v�.x/ D v
�
0.x/C "v

�
1.x/C o."/;

where " ! 0. Our goal is to relate the first order perturbations of the absorp-
tion coefficient �1 and the measurements h1.�/ WD v

�
1.�/, where � 2 @� is the

location of the detector.
Let us again assume perfectly focused ultrasound, i.e. jp�.x/j2 D ı.x � �/. By

inserting the above expansions into equations (2.9) and sorting terms according to
powers of ", we then get the zeroth order perturbation system

�r �Dru0.x/C �0.x/u0.x/ D 0; (5.1)

�r �Drv
�
0.x/C �0.x/v

�
0.x/ D ˛ı.x � �/u0.x/; (5.2)

and the first order perturbation system

�r �Dru1.x/C �0.x/u1.x/ D ��1.x/u0.x/; (5.3)

�r �Drv
�
1.x/C �0.x/v

�
1.x/ D ˛ı.x � �/u1.x/ � �1.x/v

�
0.x/ (5.4)
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for all x 2 �, complemented by inhomogeneous Robin boundary conditions as in
(2.6) for u0 and homogeneous Robin boundary conditions for v�0, u1 and v�1. Here
we neglected the (weak) dependence of D on � and instead set D � const > 0

for the rest of this section.
Equations (5.1) and (5.2) imply that u0 and v�0 are solutions to the forward

model for absorption coefficient �0. The standard elliptic regularity theorems
(e.g., [10]) imply u0 2 H 3.�/, and by the Sobolev embedding theorem one has
u0 2 C

1.�/ (see [8]).
Let us assume that the absorption coefficient is known near the boundary, so

that it suffices to consider perturbations �1 supported in an open set U with C 2-
boundary such that U � �. We assume the data h1.�/ to be given for all � 2 U .
In what follows, we derive an explicit formula for the dependence of �1 on h1 and
then study properties of the corresponding linear operator.

Let us denote by G0.x; y/ Green’s function as defined in (3.1) corresponding
to the background absorption coefficient �0. Equation (5.2) implies that for all
x 2 � and � 2 U ,

v
�
0.x/ D

Z
�

˛G0.x; z/ı.z � �/u0.z/ dz D ˛G0.x; �/u0.�/:

From (5.4) we can now deduce that

v
�
1.x/ D

Z
�

G0.x; z/
�
˛ı.z � �/u1.z/ � �1.z/v

�
0.z/

�
dz

D ˛G0.x; �/u1.�/ � ˛u0.�/

Z
�

G0.x; z/G0.z; �/�1.z/ dz:

Evaluating at x D � and solving for u1 yields

u1.�/ D
h1.�/

˛G0.�; �/
C

u0.�/

G0.�; �/

Z
�

G0.�; z/G0.z; �/�1.z/ dz:

We now use this expression to eliminate u1 from (5.3). Noting that the differential
operators now act on � and that�

�r� �Dr� C �0.�/
�
G0.x; �/ D ı.x � �/;

we get

0 D u0.�/�1.�/C
�
�r� �Dr� C �0.�/

� � h1.�/

˛G0.�; �/

�
C
�
�r� �Dr� C �0.�/

� � u0.�/

G0.�; �/

Z
�

G0.�; z/G0.z; �/�1.z/ dz

�
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D u0.�/�1.�/C
�
�r� �Dr� C �0.�/

� � h1.�/

˛G0.�; �/

�
C

��
�r� �Dr�

� � u0.�/

G0.�; �/

��Z
�

G0.�; z/G0.z; �/�1.z/ dz

� 2D

�
r�

�
u0.�/

G0.�; �/

��
�

�
r�

Z
�

G0.�; z/G0.z; �/�1.z/ dz

�
C

u0.�/

G0.�; �/
G0.�; �/�1.�/:

We will frequently view G0.�; y/ as a function of y in the following and hence
introduce the notation

G
�
0 .y/ WD G0.�; y/ for y 2 U :

Note that since � 2 @�, G�0 has no singularities on U and hence is a regular
solution to (5.1) there. The elliptic regularity and Sobolev embeddings imply that
G
�
0 2 C

1.U /.
Let us define the following operators acting on functions g defined on U :

K1g.�/ WD �
1

2u0.�/

��
�r� �Dr�

� � u0.�/
G
�
0 .�/

��Z
U

G
�
0 .z/G0.z; �/g.z/ dz;

(5.5)

K2g.�/ WD
D

u0.�/

�
r�

�
u0.�/

G
�
0 .�/

��
�

�
r�

Z
U

G
�
0 .z/G0.z; �/g.z/ dz

�
; (5.6)

and
F WD 1 �K1 �K2:

In terms of these operators, our considerations above imply that �1 is a solution to
the following linear equation:

F�1.�/ D �
1

2u0.�/

�
�r� �Dr� C �0.�/

� � h1.�/

˛G
�
0 .�/

�
: (5.7)

In order for the above expressions to be well-defined, we have to make sure
that u0 and G�0 are bounded away from zero on U . The following lemma follows
immediately from the Hopf Lemma (e.g., [20]):

Lemma 5.1. There is a constant c > 0 such that u0 � c and G�0 � c on U .

Next we consider the properties of the integral term involved in K1 and K2.
The important observation here is the following:
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Lemma 5.2. The mapping

g 7!

Z
U

G0.z; �/G
�
0 .z/g.z/ dz (5.8)

is a bounded linear operator from L2.U / to H 2.U /.

Proof. Let us assume that g 2 L2.U /. Since G�0 2 C.U /, multiplication by G�0
is a bounded linear operator on L2.U /. The following integration against G0.z; �/
results in the solution to the diffusion equation with homogeneous Robin boundary
condition and right-hand side G�0g 2 L

2.U /. Elliptic regularity theory (e.g., [8,
10]) implies that this is a continuous operator from L2.U / into H 2.U /.

Because of the compact embedding of H 2.U / in L2.U /, the operator defined
by (5.8), viewed as a mapping from L2.U / to L2.U /, is compact. In (5.5), this
operator is multiplied by the factor

�
1

2u0.�/

��
�r� �Dr�

� � u0.�/
G
�
0 .�/

��
: (5.9)

The functions u0;ru0; G
�
0 and rG�0 are all bounded on U because u0; G

�
0 2

C 1.U /. Since u0 and G�0 satisfy (5.1), the terms r � Dru0 and r � DrG�0 are
bounded on U as well, and u�10 and .G�0 /

�1 are bounded due to Lemma 5.1.
Consequently, multiplication by (5.9) represents a bounded linear operation on
L2.U /, and so K1 is a compact operator in L2.U /. Similarly, K2 is a compact
operator in L2.U /. This leads us to the main result of this section:

Theorem 5.3. F W L2.U /! L2.U / is a Fredholm operator of index zero.

Thus, the kernel N .F / of F has finite dimension and the range R.F / is closed
and of finite codimension, equal to the dimension of the kernel. This immediately
implies the following result:

Corollary 5.4. F as an operator from the quotient space L2.U /=N .F / to R.F /

has bounded inverse, and the following norm equivalence holds:

c1kFf kL2.U / � kf kL2.U /=N .F / � c2kFf kL2.U /: (5.10)

The L2-norm of the right-hand side expression in (5.7) can be estimated in
terms of the H 2-norm of the measured perturbation h1, so that we obtain the
following stability result:
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Theorem 5.5. Under the stated assumptions, there is a constant C > 0 such that
the following relation holds:

k�1kL2.U /=N .F / � Ckh1kH2.U /: (5.11)

We conjecture that the kernel N .F / is in fact trivial, and thus the operator F
is invertible. This would imply that �1 is uniquely determined by the measured
perturbation h1, and allow us to replace the quotient space norms in (5.10) and
(5.11) with the regular L2 norms. However, we have not been able to prove this
result yet.

Smoother norm coercive estimates for the absorption can be obtained if more
is assumed about the unperturbed absorption �0 and the domain. For instance, if
�0 2 C

1.�/, S 2 C1.@�/, and � has smooth boundary, the operators K1 and
K2 defined in (5.5) and (5.6), are of order �2 and �1, respectively, in the Sobolev
scale:

K1 W H
s.U /! H sC2.U /;

K2 W H
s.U /! H sC1.U /:

This and the Sobolev embedding theorem [1] imply that for any s � 0, F is
Fredholm as an operator

F W H s.U /! H s.U /:

This, in turn, leads to the estimate

kf kH s.U / � c
�
kf kL2.U / C kFf kH s.U /

�
for all f 2 H s.U /. Thus, we have the following result:

Theorem 5.6. Under the stated assumptions, for any s > 0 there is a constant C
such that

k�1kH s.U / � C
�
k�1kL2.U / C kh1kH sC2.U /

�
:

Clearly, if only a specific value of s is of interest, the smoothness assumptions
on �0; S and @� can be relaxed appropriately.

6 Conclusion and outlook

In this paper, we have introduced a partial differential equation model of ultra-
sound modulated optical tomography to derive a simple reconstruction scheme
for recovering the spatially varying absorption coefficient from boundary mea-
surements. While we could demonstrate stable, sharp and quantitatively accurate
reconstructions, some of the assumptions made here need to or can be improved
upon for practical applications. In particular, these are:
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Detector locations. In the discussion of stability above, as well as in our nu-
merical reconstructions, we have chosen a single detector point �. However, using
detectors distributed over a part � of the boundary @� should help to suppress the
effect of noise in the measured data.

Ultrasound signal with elongated focus. In practice, perfect focusing of ultra-
sound waves is not a realistic assumption [12]. How well an ultrasound signal can
be focused depends, in particular, on the geometry and bandwidth of the trans-
ducer. For example, it is known from experimental measurements (e.g., [17]) that
focused ultrasound signals have an intensity profile similar to the one shown in
Figure 5 (left).1 This signal has significantly sharper focus in the direction trans-
verse to the transducer lens, while the well-focused Gaussian signal used in our
results does not reflect this behavior.

Figure 5. Left: Simulated ultrasound pressure field jpj2 with transducer at the bot-
tom. Middle: Gaussian ultrasound signal jpj2 with �1 D �2 D 0:1. Right: Gaussian
signal with �1 D 0:1, �2 D 0:3.

To illustrate the effect of relaxing the assumption of perfect focus, we computed
reconstructions for the case where the ultrasound intensity is a Gaussian signal
with sharp focus in x-direction and elongated focus in y-direction (Figure 5, right).
As in the previous section, the ultrasound focus � i is scanned on a 100 � 100
mesh to produce synthetic measurements. At the same time, the reconstruction
algorithm is left unchanged, i.e. still assumes perfect focus.

Reconstruction results are shown in Figure 6. The deterioration of the recon-
struction – in particular in the direction of the ultrasound beam – is obvious. The
results also contain artifacts at the vertical boundaries and close to the detector
location. A more sophisticated reconstruction scheme might be needed to treat the
non-perfect focusing in these calculations.

1 This profile was generated using the step-29 tutorial program of the Open Source library deal.II
[3, 4].
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Figure 6. Reconstruction results for ultrasound signal with elongated focus: after
the first step of the algorithm (top) and after N iterations (bottom).

Synthetic focusing. Instead of attempting to perfectly focus the ultrasound
waves in space, synthetic focusing allows the use of non-localized ultrasound fields
and reconstructs the signal by superposition. This approach was suggested in [15]:
It combines various basis sets of non-focused ultrasound waves (e.g., spherical
or monochromatic planar ones), with a post-processing step that synthesizes the
would-be response to a focused illumination. In particular, in the case of spherical
waves, the post-processing (synthetic focusing procedure) is essentially equiva-
lent to thermoacoustic tomography inversion (see [14]). We plan to investigate the
applicability of this approach to UOT in the future.

Uniqueness of reconstruction. Proving uniqueness of reconstruction, both in
the non-linear and linearized versions, still remains a challenge. In particular,
we conjecture that the operator F in (5.7) is in fact invertible, and thus there is
uniqueness of solution of the linearized problem, which would replace the quotient
space norms in (5.10) and (5.11) with the regular L2 norms. At the same time, a
complete characterization of the kernel of the operator F is non-trivial and left for
future work.

Summary. In this paper, a diffusion based model is provided for the ultrasound
modulated optical tomography procedure using well focused ultrasound waves.
An iterative algorithm is suggested to recover absorption from measurements of
the amplitude of ultrasound modulation. The provided numerical results show
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feasibility of the algorithm and possibility of good reconstructions, both with re-
gard to locating sharp interfaces, as well as recovering correct numerical values of
the absorption coefficient. Such stability and resolution are impossible to achieve
in standard optical tomography. The stability of reconstructions is explained by
the stability estimates derived in Theorems 5.5 and 5.6 for a linearized model.
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