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Abstract. Since problems involving the estimation of distributed coefficients in partial differ-
ential equations are numerically very challenging, efficient methods are indispensable. In this paper,
we will introduce a framework for the efficient solution of such problems. This comprises the use
of adaptive finite element schemes, solvers for the large linear systems arising from discretization,
and methods to treat additional information in the form of inequality constraints on the parameter
to be recovered. The methods to be developed will be based on an all-at-once approach, in which
the inverse problem is solved through a Lagrangian formulation. The main feature of the paper is
the use of a continuous (function space) setting to formulate algorithms, in order to allow for dis-
cretizations that are adaptively refined as nonlinear iterations proceed. This entails that steps such
as the description of a Newton step or a line search are first formulated on continuous functions and
only then evaluated for discrete functions. On the other hand, this approach avoids the dependence
of finite dimensional norms on the mesh size, making individual steps of the algorithm comparable
even if they used differently refined meshes. Numerical examples will demonstrate the applicabil-
ity and efficiency of the method for problems with several million unknowns and more than 10,000
parameters.
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1. Introduction. Parameter estimation methods are important tools in cases
where quantities we would like to know, such as material parameters, cannot be
measured directly, but where only measurements of related quantities are available.
In such cases one attempts to find a set of parameters for which the predictions of
a mathematical model, the equation of state, best match what has actually been
observed. Parameter estimation is therefore a problem that can be described as
an optimization problem: minimize, by variation of the unknown parameter, the
misfit between prediction and actual observation, subject to the constraint that the
prediction satisfies the state equation.

If the state equation is a differential equation, such parameter estimation problems
are commonly referred to as inverse problems. These problems have a vast number of
applications—for example, identification of the underground structure (e.g., the elas-
tic properties, density, electric or magnetic permeabilities of the earth) from measure-
ments at the surface, or of the groundwater permeability of a soil from measurements
of the hydraulic head fall in this class. Likewise, many biomedical imaging modalities,
such as computer tomography, electrical impedance tomography, or several optical to-
mography modalities, can be cast as inverse problems.

The case we are interested in here is recovering a distributed, i.e., spatially variable,
coefficient. Oftentimes, such problems are found when trying to identify inhomoge-
nous material properties as in the examples mentioned above. In particular, we will
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2966 WOLFGANG BANGERTH

consider cases where we make many experiments to identify the parameters. Here,
by an experiment we mean subjecting the physical system to a certain forcing and
measuring its response. For example, in computer tomography, a single experiment
would be characterized by irradiating a body from a given angle and measuring the
transmitted part of the radiation; the multiple experiment situation is characterized
by using data from various incidence angles and trying to find a set of parameters
that matches all the measurements at the same time (joint inversion). Likewise, in
geophysics, a single experiment would be placing a seismic source somewhere and
measuring reflection data at various receiver positions; the multiple experiment case
is taking into account data from more than one source position. We may also include
entirely different kinds of data, e.g., use both magneto-telluric and gravimetry data
for a joint, multiphysics inversion scenario.

This paper is devoted to the development of efficient techniques for the solution of
such inverse problems where the state equation is a partial differential equation (PDE)
and the parameters to be determined are one or several distributed functions. It is
well known that the numerical solution of PDE constrained inverse or optimization
problems is significantly more challenging than that of a PDE alone (see, e.g., [15]),
since the optimization procedure is usually iterative and in each iteration may need
the numerical solution of a large number of partial differential equations. In some
applications, several tens or hundreds of thousand solutions of linearized PDEs are
required to solve the inverse problem, and each PDE may be discretized by up to
several hundred thousand unknowns.

Although it is obvious that efficiency of solution is a major concern for this class
of problems, efficient methods such as adaptive finite element techniques have not yet
found widespread application to inverse problems and are only slowly adopted in the
solution of PDE constrained optimization [10, 11, 13, 21, 22, 30, 31, 32, 35, 39, 46,
50, 51]. Rather, in most cases, the continuous inverse problem is first discretized on
a predetermined mesh, and the resulting nonlinear problem is then solved using well-
understood finite dimensional methods such as Newton’s method or a variant of it.
On the other hand, discretizations cannot be changed by adapting the mesh between
nonlinear iterations, and the potential to significantly reduce the numerical cost by
taking into account the spatial structure of solutions is lost. This is because a change
in the discretization changes the size of finite dimensional problems, rendering finite
dimensional convergence criteria such as norms meaningless.

The goal for this paper is therefore to devise a framework for adaptive finite
element techniques. By using such adapted meshes, we can not only significantly
reduce the numerical effort needed to solve inverse parameter estimation problems,
but the ability to choose a discretization mesh coarse where we lack information or
where a fine mesh is not required also makes the inverse problem better posed. To
achieve this goal, the main novel ingredients will be the following:

• formulation of all algorithms in function spaces, i.e., before rather than after
discretization, since this gives us more flexibility in discretizing as iterations
proceed and resolves all scaling issues related to differing mesh sizes;

• the use of adaptive finite element techniques with mesh refinement based on
a posteriori error estimates;

• the use of different meshes for the discretization of different quantities, for
example, of state variables and of parameters, to reflect their respective prop-
erties;

• the use of Newton-type methods for the outer (nonlinear) iteration and of
efficient linear solvers for the Newton steps;
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• the use of approaches that allow for the parallelization of work, yielding sub-
problems that are equivalent to only state and adjoint problems; and

• the inclusion of pointwise bounds on the parameters into the solution process.
Except for the derivation of error estimates, which we defer to future work (see also
[4]), we will discuss all these building blocks and will show that these techniques allow
us to solve problems of the size outlined above.

We envision that the techniques to be presented are used for relatively complex
problems. Thus, we will state them in the setting of a generic inverse problem. In
order to explain their concrete structure, we will define a model problem involving the
Poisson equation and apply the framework to it. Numerical examples at the end of
the paper will show this model problem as well as application of the framework to a
significantly more complex case in optical tomography. Applications of the framework
to other problems in acoustic scattering can be found in [4], and further work in optical
tomography in biomedical imaging is also presented in [7, 40, 41].

Solving large-scale, multiple-experiment inverse problems requires algorithms on
several levels, all of which have to be tailored to high efficiency. In this article, we
will review the building blocks of a framework for this:

• formulation as a Lagrangian optimization problem with PDE constraints (sec-
tion 2); a model problem is given in section 3;

• outer nonlinear solution by a Gauss–Newton method posed in function spaces
(section 4);

• discretization of each Newton step by finite elements on independent meshes
(section 5);

• Schur complement solvers for the resulting linear systems (section 6);
• methods to incorporate bound constraints on the parameters (section 7).

Section 8 is devoted to numerical examples, followed by conclusions in the final section.

2. General formulation and notation. Let us begin by introducing some ab-
stract notation, which we will use for the derivation of the entire scheme. This, above
all, concerns the set of parameters, state equations, measurements, regularization,
and the introduction of an abstract Lagrangian.

We note that some of the formulas below will become cumbersome to read because
of the number of indices. To understand their meaning, it is often helpful to imagine
we had only a single experiment (for example, only one incidence angle in tomography,
or only one source position in seismic imaging). In this case, one may drop the index
i on first reading, as well as all summations over i. In addition, the formulas of this
section will be made concrete by introducing a model problem in section 3.

State equations. Let the general setting of the problems we consider be as fol-
lows: assume that we subject a physical system to i = 1, . . . , N different external
stimuli and that we intend to learn about the system’s material parameters by mea-
suring how the system reacts. For the current purposes, we assume that the system’s
states can be described by (independent) partial differential equations posed on a
domain Ω ⊂ R

d:

Ai[q] ui = f i in Ω,(2.1)

Bi[q] ui = hi on Γi
N ⊂ ∂Ω,(2.2)

ui = gi on Γi
D = ∂Ω\Γi

N ,(2.3)

where Ai[q] are partial differential operators all of which depend on a common set of a
priori unknown distributed (i.e., spatially variable) coefficients q = q(x) ∈ Q, x ∈ Ω,
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and Bi[q] are boundary operators that may also depend on the coefficients. f i, hi,
and gi are the known external forcing terms that are independent of the coefficients
q. The functions ui are the solutions of the partial differential equations, i.e., the
physical outcomes (“states”) of our N experiments. These scalar or vector-valued
solutions are assumed to be from spaces V i

g = {ϕ ∈ V i : ϕ|Γi
D

= gi}. We assume that

solutions ui, uj of different equations are independent except for their dependence on
the common set of parameters q. We also assume that the solutions to each of the
differential equations is unique for every given set of parameters q in a subset Qad ⊂ Q
of physically meaningful values, for example, Qad = {q ∈ L∞(Ω) : q0 ≤ q(x) ≤ q1}.

Typical cases we have in mind would be a Laplace-type equation when we are con-
sidering electrical impedance tomography or gravimetry inversion, Helmholtz or wave
equations for inverting seismic or magneto-telluric data, or diffusion-reaction equa-
tions for optical tomography applications. The set of parameters q would, in these
cases, be electrical conductivities, densities, elasticity coefficients, or optical proper-
ties. The operators Ai may be the same if we repeat the same kind of experiment
multiple times with different forcings, but they will be different if we use different
physical effects (for example gravimetry and seismic data) to identify q.

This formulation may easily be extended also to the case of time-dependent prob-
lems. Likewise, the case that the parameters are a finite number of scalar values
instead of distributed functions is a simple special case, omitted here for brevity.

For treatment in a Lagrangian setting in function spaces as well as for discretiza-
tion by finite elements, it is necessary to formulate the state equations (2.1)–(2.3) in
a variational form. For this we assume that the solutions ui ∈ V i

g are solutions of the
following variational equalities:

(2.4) Ai(q;ui)(ϕi) = 0 ∀ϕi ∈ V i
0 ,

where V i
0 = {ϕi ∈ V i : ϕi|Γi

D
= 0}. The semilinear form Ai : Q× V i

g × V i
0 → R may

be nonlinear in its first set of arguments but is linear in the test function and includes
the actions of domain and boundary operators Ai and Bi as well as of inhomogeneous
forcing terms. We will later have to assume that the Ai are differentiable.

As an example, we will introduce a model problem for the Poisson equation. In
that case, Ai[q]ui = −∇ · (q∇ui), Bi[q]ui = q∂nu

i, and

A(q;ui)(ϕi) = (q∇ui,∇ϕi)Ω − (f, ϕi)Ω − (h, ϕi)ΓN
.

Measurements. To determine the unknown quantities q, we measure how the
physical system reacts to the external forcing, i.e., we measure (parts of) the states
ui or derived quantities. For example, we might have measurements of voltages,
optical fluxes or stresses at certain points, averages on subdomains, or gradients.
Let us denote the space of measurements of the ith state variable by Zi, and let
M i : V i

g → Zi be the measurement operator, i.e., the operator that extracts from

physical state ui that information that we measure.
If we knew the parameters q, we could use the state equation (2.4) to predict the

state the system would be in, and M iui would then be the predicted measurements.
On the other hand, we do not know q, but we have actual measurements that we
denote by zi ∈ Zi. Reconstruction of the coefficients q will be accomplished by
finding that coefficient, for which the predicted measurements M iui match the actual
measurements zi best. We will measure this comparison using a convex, differentiable
functional m : Zi → R. In many cases, m will simply be an L2 norm on Zi, but more
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general functionals are allowed, for example, to suppress the effects of non-Gaussian
noise [54].

Examples of common measurement situations are as follows:
• L2 measurements of values. If measurements on a set Σ ⊂ Ω are available,

then M i is the embedding operator from V i
g into Zi = L2(Σ), and we will

try to find q by minimizing

mi(M iui − zi) =
1

2
‖ui − zi‖2

L2(Σ).

In many nondestructive testing or tomography applications, one has Σ ⊂ ∂Ω
because measurements in the interior are not possible. The case of distributed
measurements occurs in situations where a measuring device can be moved
around to every point of Σ, for example, a laser scanning a membrane, or a
camera imaging a body.

• Point measurements. If we have S measurements of u(x) at positions xs ∈
Ω, s = 1, . . . , S, then Zi = R

S , and (M iui)s = u(xs). If we take again a
quadratic norm on Zi, then, for example,

mi(M iui − zi) =
1

2

S∑
s=1

|ui(xs) − zis|2

is a possible choice. The case of point measurements is frequent in applica-
tions where a small number of stationary measurement devices is used, for
example, seismometers in seismic data assimilation.

Other choices are possible and are usually dictated by the type of available measure-
ments. We will in general assume that the operators M i are linear, but there are
applications where this is not the case. For example, in some applications only sta-
tistical correlations of ui are known, or a power spectrum. Extending the algorithms
below to nonlinear M i is straightforward, but we omit this for brevity.

Regularization. Since inverse problems are often ill-posed, regularization is
needed to suppress unwanted features in solutions q. In this work, we include it
by using a Tikhonov regularization term involving a convex differentiable regular-
ization functional r : Q → R

+; see, for example, [27, 44]. Most frequently r(q) =
1
2‖∇t(q− q̄)‖2

L2(Ω) with an a priori guess q̄ and some t ≥ 0. Other popular choices are

smoothed versions of bounded variation seminorms [24, 26, 29]. As above, the type
of regularization is usually dictated by the application and insight into physical and
unphysical features of solutions.

Characterization of solutions. The goal of the inverse problem is to find that
set of physical parameters q ∈ Qad for which the predictions M iui match the actual
observations zi best. We formulate this as the following constrained minimization
problem over ui ∈ V i

g , q ∈ Qad:

minimize J({ui}, q) =

N∑
i=1

σimi(M iui − zi) + βr(q)(2.5)

such that Ai(q;ui)(ϕi) = 0 ∀ϕi ∈ V i
0 , 1 ≤ i ≤ N.

Here, σi > 0 are factors weighting the relative importance of individual measurements,
and β > 0 is a regularization parameter. As the choice of these constants is a topic
of its own, we assume their values as given within the scope of this work.
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To characterize solutions to (2.5), let us subsume the individual solutions ui to
a vector u, and likewise Vg = {V i

g },V0 = {V i
0 }. Furthermore, we introduce a set of

Lagrange multipliers λ ∈ V0 and denote the joint set of variables by x = {u,λ, q} ∈
Xg = Vg × V0 ×Q.

Under appropriate conditions (see, e.g., [9]), solutions of problem (2.5) are sta-
tionary points of the following Lagrangian L : Xg → R, which couples the functional
J : Vg ×Q → R

+ defined above to the state equation constraints through Lagrange
multipliers λi ∈ V i

0 :

(2.6) L(x) = J(u, q) +

N∑
i=1

Ai(q;ui)(λi).

The optimality conditions then read in abstract form

(2.7) Lx(x)(y) = 0 ∀y ∈ X0,

where the semilinear form Lx : Xg × X0 → R is the derivative of the Lagrangian L,
and X0 = V0 × V0 × Q. Indicating derivatives of functionals with respect to their
arguments by subscripts, we can expand (2.7) to yield the following set of nonlinear
equations:

Lλi(x;ϕi) ≡ Ai(q;ui)(ϕi) = 0 ∀ϕi ∈ V i
0 ,(2.8)

Lui(x;ψi) ≡ σimi
u(M iui − zi)(ψi) + Ai

u(q;ui)(ψi, λi) = 0 ∀ψi ∈ V i
0 ,(2.9)

Lq(x;χ) ≡ βrq(q)(χ) +

N∑
i=1

Ai
q(q;u

i)(χ, λi) = 0 ∀χ ∈ ∂Q.(2.10)

The first set of equations denotes the state equations for i = 1, . . . , N and the second
the adjoint equations defining the Lagrange multipliers λi; the third is the control
equation holding for all functions from the tangent space ∂Q to Q at the solution q.

3. A model problem. As a simple model problem which we will use to give
the abstract results of this work a more concrete form, we will consider the following
situation. Assume we intend to identify the coefficient q in the (single) elliptic PDE

−∇ · (q∇u) = f in Ω, u = g on ∂Ω,(3.1)

and that measurements are the values of the solution u everywhere in Ω, i.e., we
choose m(Mu−z) = 1

2‖u−z‖2
L2(Ω). This situation can be considered as a mathemat-

ical description of a membrane with variable stiffness q(x). We try to identify this
coefficient by subjecting the membrane to a known force f and clamping it at the
boundary with boundary values g. This results in displacements of which we obtain
measurements z everywhere.

For this situation, Vg = {u ∈ H1 : u|∂Ω = g}, Q ⊂ L∞. Choosing σ = 1, the
Lagrange functional has the form

L(x) = 1
2‖u− z‖2

L2(Ω) + βr(q) + (q∇u,∇λ) − (f, λ).

With this, the optimality conditions (2.8)–(2.10) read in weak form

(q∇u,∇ϕ) = (f, ϕ),(3.2)

(q∇ψ,∇λ) = −(u− z, ψ),(3.3)

βrq(q;χ) = −(χ∇u,∇λ)(3.4)

and have to hold for all test functions {ϕ,ψ, χ} ∈ H1
0 ×H1

0 ×Q. Note that the first
of these is the state equation, while the second is the adjoint equation.
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4. Nonlinear solvers. The stationarity conditions (2.7) form a set of nonlinear
partial differential equations that has to be solved iteratively, for example, using
Newton’s method, or a variant thereof. In this section, we formulate the Gauss–
Newton method in function spaces. The discretization of each step by adaptive finite
elements will then be presented in the next section, followed by a discussion of solvers
for the resulting linear systems.

Since there is no need to compute the initial nonlinear steps on a very fine grid
when we are still far away from the solution, we will want to use successively finer
meshes as we approach the solution. To make quantities computed on different meshes
comparable, all of the following algorithms will be formulated in a continuous setting
and only then will be discretized. This also answers once and for all questions about
the correct scaling of weighting matrices in misfit and regularization functionals, as
discussed, for example, in [2], even if we choose locally refined grids, as they will
appear naturally upon discretization.

In this section, we indicate a Gauss–Newton procedure, i.e., determination of
search direction and step length, in infinite dimensional spaces, and in the next section
we discuss its discretization by a finite element scheme. At least for finite-dimensional
problems, there is a vast number of alternatives to the Gauss–Newton method; see,
for example, [1, 23, 34, 38, 47, 48, 53]. However, we believe that the Gauss–Newton
method is particularly suited since it allows for scalable algorithms even with large
numbers of experiments, and large numbers of degrees of freedom both in the dis-
cretization of the state equations as well as of the parameter. Comparing this method
to a pure Newton method, it allows for the use of more efficient linear solvers for the
discretized problems; see section 6. In addition, the Gauss–Newton method has been
shown to have better stability properties for parameter estimation problems than the
Newton method; see [18, 19]. This and similar methods have also been analyzed
theoretically; see, for example, [36, 37, 55] and the references cited therein.

Strictly speaking, the algorithms we propose below may converge to a local max-
imum or saddle point. This does not appear to happen for the problems shown in
section 8, possibly a result of the kind of state equations we consider there. More
sophisticated algorithms may add steps to safeguard against this possibility.

Search directions. Given a current approximation xk = {uk,λk, qk} ∈ X after
k iterations, the first task of any iterative nonlinear solver method is to compute a
search direction δxk = {δuk, δλk, δqk} ∈ Xδg, in which we seek the next iterate xk+1.
The Dirichlet boundary values δg of this update are chosen as δui

k|ΓD
= gi − ui

k|ΓD
,

δλi
k|ΓD

= 0, bringing us to the exact boundary values if we take a full step.
The Gauss–Newton method determines search directions {δuk, δqk} by minimiz-

ing the following quadratic approximation to J(·, ·) with linearized constraints:

min
δuk,δqk

J(uk, qk) + Ju(uk, qk)(δuk) + Jq(uk, qk)(δqk)

+
1

2
Juu(uk, qk)(δuk, δuk) +

1

2
Jqq(uk, qk)(δqk, δqk)

such that Ai(qk;u
i
k)(ϕ

i) + Ai
u(qk;u

i
k)(δu

i
k, ϕ

i) + Ai
q(qk;u

i
k)(δqk, ϕ

i) = 0,

(4.1)

where the linearized constraints are understood to hold for 1 ≤ i ≤ N and for all test
functions ϕi ∈ V i

0 . The solution of this problem provides us with updates δuk, δqk
for the state variables and the parameters. The updates for the Lagrange multiplier
δλk are not determined by the Gauss–Newton step at first. However, we can get
updates δλk for the original problem by using λk + δλk as Lagrange multiplier for
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the constraint of the Gauss–Newton step (4.1). Bringing the terms with λk to the
right-hand side, the updates are then characterized by the system of linear equations

σimi
uu(M iui

k − zi)(δui
k, ϕ

i) + Ai
u(qk;u

i
k)(ϕ

i, δλi
k) = −Lui(xk)(ϕ

i),

Ai
u(qk;u

i
k)(δu

i
k, ψ

i) + Ai
q(qk;u

i
k)(δq

i
k, ψ

i) = −Lλi(xk)(ψ
i),∑

i

Ai
q(qk;u

i
k)(χ, δλ

i
k) + βrqq(qk)(δqk, χ) = −Lq(xk)(χ)

(4.2)

for all test functions {ϕi, ψi, χ}. The right-hand side of these equations is the negative
gradient of the original Lagrangian, given already in the optimality condition (2.8)–
(2.10).

Note that the equations determining the updates for the ith experiment decouple
from all other experiments, except for the last equation. This will allow us to solve
them mostly separated, and in particular it allows for simple parallelization by placing
the description of different experiments onto different machines. Furthermore, the first
and second equations can be solved sequentially.

To illustrate these equations, we state their form for the model problem of sec-
tion 3. In this case, the above system reads

(δuk, ϕ) + (∇δλk, qk∇ϕ) = − Lu(xk)(ϕ),

(∇ψ, qk∇δuk) + (∇ψ, δqk∇uk) = − Lλ(xk)(ψ),

(∇δλk, χ∇uk) +βrqq(qk)(δqk, χ) = − Lq(xk)(χ)

with the right-hand sides being the gradient of the Lagrangian given in section 3.
In general, this continuous Gauss–Newton direction will not be computable an-

alytically. We will therefore approximate it by a finite element function δxk,h, as
discussed in the next section.

As a final remark, let us note that the pure Newton method would read

(4.3) Lxx(xk)(δxk, y) = −Lx(xk)(y) ∀y ∈ X0,

where Lxx(xk)(·, ·) denotes the bilinear form of second variational derivatives of the
Lagrangian L at position xk. The Gauss–Newton method can alternatively be ob-
tained from this by simply dropping all terms that are proportional to the Lagrange
multiplier λk. This is based on considering (2.9) or (3.3): λi is proportional to
M iui − zi and thus will be small if M iui − zi is small, assuming stability of the
(linear) adjoint operator.

Step lengths. Once we have a search direction δxk, we have to decide how far
to go in this direction starting at xk to obtain the next iterate xk+1 = xk + αkδxk.
In constrained optimization, a merit function including the minimization functional
J(·) as well as the violation of the constraints is usually used for this [52].

One particular problem here is the infinite dimensional nature of the state equa-
tion constraint, with the residual of the state equation being in the dual space, V ′

0 , of
V0 (which, for the model problem, is H−1). Consequently, it is unclear which norm
to use and whether we need to weight a violation of the state equation in different
parts of the domain differently. Furthermore, the relative weighting of constraint and
objective function is not obvious.

To avoid these problems, we propose to use the norm of the residual of the opti-
mality condition (2.7) on the dual space of X0 as merit function:

p(α) =
1

2
‖Lx(xk + αδxk)(·)‖2

X ′
0
≡ 1

2
sup
y∈X0

[Lx(xk + αδxk)(y)]
2

‖y‖2
X0

.
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We will show in the next section that we can give a simple-to-compute lower bound
for p(·) using the discretization we already employ for the computation of δxk.

The following lemma shows that this merit function is actually useful.
Lemma 4.1. The merit function p(α) is valid, i.e., Newton directions are direc-

tions of descent, p′(0) < 0. Furthermore, if xk = x is a solution of the parameter
estimation problem, then p(0) = 0. Finally, in the vicinity of the solution, full steps
are taken, i.e., α = 1 minimizes p as xk → x.

Proof. We prove the lemma for the special case of only one experiment (N = 1)
and that X = H1

0 ×H1
0 × L2, i.e., the situation of the model example. However, it is

obvious how to extend the proof to the general case. In this simplified situation, by
the Riesz theorem there is a representation gu(xk +αδxk) = Lu(xk +αδxk)(·) ∈ H−1,
gλ(xk+αδxk) = Lλ(xk+αδxk)(·) ∈ H−1, and gq(xk+αδxk) = Lq(xk+αδxk)(·) ∈ L2.
The dual norm of Lx can then be written as

‖Lx‖2
X ′

0
=

〈
gu, (−Δ)−1gu

〉
+
〈
gλ, (−Δ)−1gλ

〉
+ (gq, gq),

where (−Δ)−1 : H−1 → H1
0 and where 〈·, ·〉 indicates the duality pairing between

H−1 and H1
0 . Then,

p′(0) =
〈
guu(δuk), (−Δ)−1gu

〉
+
〈
gλλ(δλk), (−Δ)−1gλ

〉
+ (gqq(δqk), gq),

where gux(δxk) is the derivative of gu in direction δxk, i.e., the functional of second
derivatives of L. However, by definition of the Newton direction, (4.3), this is equal
to the negative gradient, i.e.,

p′(0) = −‖Lx(xk)‖2
X ′

0
= −2p(0) < 0.

Thus, Newton directions are directions of descent for this merit function.
The second part of the lemma is obvious by noting the optimality condition (2.7).

The last part can be shown by noting that near the solution, the Lagrangian (and
thus the function p(α)) is well approximated by a quadratic function if the various
functionals involved in the Lagrangian are sufficiently smooth. As xk → x, Newton
directions satisfy δxk → x − xk and minα p(α) → 0. On the other hand, it is easy
to show that quadratic functions with p′(0) = −2p(0) and minα p(α) = 0 have their
minimum at α = 1. A complete proof would require the more involved step of showing
uniformity estimates of the Hessian Lxx in a ball around the solution. This must be
shown for each individual application; since this paper is concerned with a general
framework, rather than a particular application, we omit this step here.

5. Discretization. The goal for the preceding section was to provide the func-
tion space tools to find a solution x of the inverse problem. To actually compute
finite-dimensional approximations to x, we have to discretize both the state and ad-
joint variables, as well as the parameters. In this section, we introduce finite element
schemes to do so. The main point is to be able to change meshes between Gauss–
Newton iterations. This has at least three advantages over an a priori choice of a
mesh: (i) it makes the initial iterations significantly cheaper when we are still far
away from the solution; (ii) coarser meshes act as an additional regularization, mak-
ing the problem better posed; and (iii) it allows us to adapt the resolution of the mesh
to the characteristics of the solution.

In each iteration, we define finite element spaces Xh ⊂ X over triangulations in
the usual way. In particular, let T

i
k be the mesh on which to discretize state and
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adjoint variables ui
k, λ

i
k of the ith experiment in the kth Gauss–Newton iteration.

Independently, a mesh T
q
k will be used to discretize the parameters q on step k.

This reflects that the regions of missing regularity of parameters and state variables
need not necessarily coincide. We may also use different discretization spaces for
parameters and state/adjoint variables, for example, spaces of discontinuous functions
for quantities like density or elasticity coefficients. On the other hand, we use the same
mesh T

i
k for state and adjoint variables; maybe the most important reason for this

is that not doing so would create significantly more work in assembling matrices and
vectors for the operations discussed below; the matrices Ai would also not necessarily
be square any more and may not be invertible.

For these grids and the finite element spaces defined on them, we assume the
following requirements:

• Nesting. The mesh T
i
k must be obtainable from T

i
k−1 by hierarchic coarsening

and refinement. This greatly simplifies operations like evaluation of the right-
hand side of the Newton direction equation, Lx(xk)(yk+1) for all discrete test
functions yk+1, but also the update operation xk+1 = xk + αkδxk,h.

• State versus parameter meshes. Each of the “state meshes” T
i
k can be ob-

tained by hierarchical refinement from the “parameter mesh” T
q
k.

Although obvious, the choice of entirely independent grids for state and parameter
meshes apparently has not been used in the literature, to the author’s best knowledge.
On the other hand, this technique offers the prospect of greatly reducing the amount
of numerical work. We will see that with the requirements on the meshes above, the
additional work associated with using different meshes is in fact small.

Choosing different “state” and “parameter meshes” is also beneficial for problems
where the parameters do not require high resolution, or require it only in certain areas
of the domain, while the state equation does. A typical problem is high-frequency
potential scattering, where the coefficient might be a function that is constant in
large parts of the domain, while the high-frequency oscillations of state and adjoint
variables require a fine grid everywhere.

In the next few paragraphs, we briefly describe the process of discretizing the
equations for the search directions and the choice of the step length. We then give a
brief note on the criteria for generating the meshes on which we discretize.

Search directions. By choosing a finite dimensional subspace Xh = Vh × Vh ×
Qh ⊂ X and a basis of this space, we obtain a discrete counterpart for (4.2) describing
the Gauss–Newton search direction. Its matrix form is⎛

⎝ M AT 0
A 0 C
0 CT βR

⎞
⎠

⎛
⎝ δuk,h

δλk,h

δqk,h

⎞
⎠ =

⎛
⎝ Fu

Fλ

Fq

⎞
⎠ .(5.1)

Since the individual state equations and variables do not couple across experiments,
M = diag(Mi) and A = diag(Ai) are block diagonal matrices, with the diagonal
blocks stemming from second derivatives of the misfit functionals, and of the tangential
operators of the state equations, respectively. They are equal to

(Mi)kl = mi
uu(M iui

k − zi)(ϕi
k, ϕ

i
l), (Ai)kl = Ai

u(xk)(ϕ
i
l, ϕ

i
k),

where ϕi
l are test functions for the discretization of the ith state equation. Likewise,

C = [C1, . . . ,CN ] is defined by (Ci)kl = Ai
q(xk)(χ

q
l , ϕ

i
k) with χq

l being discrete test
functions for the parameters q and (R)kl = rqq(qk)(χ

q
k, χ

q
l ).
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The evaluation of Ci may be difficult since it involves shape functions from dif-
ferent meshes and finite element spaces. However, since we have required that T

i
k can

be obtained from T
q
k by hierarchical refinement, we can represent each shape function

χq
k on the parameter mesh as a sum over respective shape functions χi

s on each of the

state meshes: χq
k =

∑
s Xi

ksχ
i
s. Thus, Ci = ĈiXi, with Ĉi built with shape functions

from only one grid. The matrix Xi is fairly simple to generate in practice because of
the hierarchical structure of the meshes.

Solving (5.1) will give us an approximate search direction. The solution of this
linear system will be discussed in section 6.

Step lengths. Since step length selection is only a tool for seeking the exact
solution, we may be content with approximating the merit function p(α) introduced
in section 4. To this end, we use a lower bound p(α) for p(α) by restricting the set
of possible test functions to the discrete space Xh which we are already using for the
discretization of the search direction:

p(α) =
1

2
sup
y∈Xh

[Lx(xk + αδxk)(y)]
2

‖y‖2
X0

≤ 1

2
‖Lx(xk + αδxk)(·)‖2

X ′
0

= p(α).

By selecting a basis of Xh, p(α) can be computed by linear algebra. For example, for

the single experiment case (N = 1) and if X = H1
0 ×H1

0 × L2, we have that

p(α) =
1

2

[〈
gu(α), Y −1

1 gu(α)
〉

+
〈
gλ(α), Y −1

1 gλ(α)
〉

+
〈
gq(α), Y −1

0 gq(α)
〉]

,

where (Y0)kl = (χk, χl), (Y1)kl = (∇ϕk,∇ϕl) are mass and Laplace matrices, respec-
tively. The gradient vectors are (gu)l = Lu(xk + αδxk)(ϕl), and correspondingly for
gλ and gq. Here, ϕl are again basis functions from the discrete approximation space
to the state and adjoint variable, and χl for the parameters.

The evaluation of p(α) therefore requires the solution of two linear systems per
experiment with Y1 and one linear system with the mass matrix Y0 for the parameters.
Setting up the gradient vectors reuses operations that are also available from the
generation of the linear system in each Gauss–Newton step. With this merit function,
the computation of a step length is then done using the usual methods (see, e.g., [52]).
Having to solve large linear systems for step length selection would seem expensive.
However, compared to the effort required for the solution of (5.1), the work for the
line search procedure is usually rather negligible. On the other hand, we note that
p(·) correctly scales components of the residual according to the size of cells on our
adaptive meshes, unlike the usual lp norms of the residual vectors gu, gλ, gq, and is
therefore a robust indicator for progress of the nonlinear iteration.

Mesh refinement. The meshes we choose for discretization share a minimum
of characteristics as described above but are otherwise refined independently of each
other. Generally, meshes are kept constant for several nonlinear iterations. They are
refined by monitoring the discrete approximation of the residual ‖Lx(xk)‖′X—already
computed during step length determination—at the end of each iteration. Heuristic
rules then refine the meshes whenever either (i) enough progress in reducing this
residual has been made on the current set of meshes, for example, a reduction by
103 compared to the first iteration on the current set of meshes, or (ii) if progress
appears stalled for several iterations—determined by the lack of residual reduction by
more than a certain factor—or if step lengths αk are too small. The latter rule proves
surprisingly effective in returning the iteration to greener pastures if iterates are stuck
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in an area of exceptional nonlinearity: Newton iterations after mesh refinement almost
always achieve full step length, exploiting the suddenly larger search space.

Once the algorithm decides that mesh refinement is warranted, we need a refine-
ment indicator for each cell. Ideally, these are based on rigorous error estimates for
the inverse problem [4, 8, 12, 45, 46, 49, 56]. For the first two examples shown in sec-
tion 8 involving the model problem, we recall that in the duality-based error estimation
framework it can be shown that J(x) − J(xh) = 1

2Lx(xh)(x− xh) + R(x, xh), where

the remainder term is given by R(x, xh) = 1
2

∫ 1

0
Lxxx(xh + se)(e)(e)(e) s(s − 1) ds,

with e = x − xh; see [4, 8]. Using that the remainder term is cubic in the difference
between exact and discrete solution, we can therefore assume that the difference in
observable output J(·) is well approximated by 1

2Lx(xh)(x − xh). By replacing the

exact solution x in this expression by a postprocessed solution x̃ = {ũ, λ̃, q̃} obtained
from xh, this leads to an error indicator that can be evaluated in practice by splitting
terms into cellwise contributions for each experiment. For example, for the model the
error indicator for a cell K ∈ T

i
k of the ith state mesh will read

ηiK =
1

2

[(
−f−∇ · (qh∇uh), λ̃− λh

)
K

+ 1
2

(
n · [qh∇uh], λ̃− λh

)
∂K

+ (uh − z −∇ · (qh∇λh), ũ− uh)K + 1
2 (n · [qh∇λh], ũ− uh)∂K

]
,

clearly revealing the dual-weighted structure of the indicator. Here [·] denotes the
jump of a quantity across a cell boundary ∂K. Likewise, the error indicator for a cell
K ∈ T

q
k of the parameter mesh will read ηqK = 1

2

[
(βqh + ∇λh · ∇uh, q̃ − q)K

]
.

On the other hand, the implementation of such refinement indicators is application
dependent and, in the case of more complicated models such as the one presented in
section 8.3, leads to a proliferation of terms. For the last example, we therefore simply
use an indicator that estimates the magnitude of the second derivative of the primal
variables ∇2

hu
i
k, which in turn is approximated by the jump of the gradient across cell

faces; i.e., for cell K ∈ T
i
k we calculate the refinement indicator ηiK,k = h1/2‖[∇ui

k]‖∂K ,
reminiscent of error estimators for the Laplace equation [43]. If this simpler error
indicator is used for the state meshes, we use the indicator ηqK,k = h‖∇hqk‖K to drive
refinement of the parameter mesh cells, with ∇h a finite difference approximation of
the gradient that also works for piecewise constant fields qk. This indicator essentially
measures the interpolation error.

Various improvements to these rather crude indicators are possible. For instance,
incorporating the size of the dual variables by weighting the second derivatives of the
primal variable with |λ| or |∇2

hλ| (and reversely) often yields slightly better meshes.
For simplicity, we don’t use these approaches here; see, however, [7].

6. Linear solvers. The linear system (5.1) is hardly solvable as is, except for the
simplest problems: its size is twice the sum of the number of variables in each discrete
state problem plus the number of discretized parameters; for many applications this
size easily reaches into the tens of millions. Furthermore, it is indefinite and often
extremely ill-conditioned (see [4]): for the model problem with m(ϕ) = 1

2‖ϕ‖2, the
condition number of the matrix grows with the mesh size h as O(h−6).

Several schemes have been devised in the literature to solve (5.1) [3, 25, 33].
Particularly noteworthy is the comparison of different methods by Biros and Ghattas
[16]. Because it leads to an algorithm that is relatively simple to parallelize and
because it allows for the inclusion of bound constraints (see section 7), we prefer to
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restate the system by block elimination and use the substructure of the individual
blocks to obtain the following Schur complement formulation:

S δqk,h = Fq −
N∑
i=1

CiTAi−T
(Fi

u − MiAi−1
Fi

λ),(6.1)

Ai δui
k,h = Fi

λ − Ciδqk,h,(6.2)

AiT δλi
k,h = Fi

u − Miδui
k,h.(6.3)

Here S denotes the Schur complement

S = βR +

N∑
i=1

CiTAi−T
MiAi−1

Ci.(6.4)

These equations are much simpler to solve, mainly for their size and their struc-
ture: for the second and third equations, which are linearized state and adjoint prob-
lems, efficient solvers are usually available. Since the equations for the individual
experiments are independent, they can also be solved in parallel. The system in the
first equation, (6.1), is small, its size being equal to the number #δqk,h of discretized
parameters δqk,h, which is much smaller than the total number of degrees of freedom
and in particular independent of the number of experiments. Furthermore, S has
some nice properties, as follows.

Lemma 6.1. The Schur complement matrix S is symmetric and positive definite
if at least βR as defined above is positive definite.

Proof. The proof of symmetry is trivial, noting that both R and M stem from
second derivatives and are therefore symmetric matrices. Because m(·) and r(·) were
assumed to be convex, M and R are also at least positive semidefinite. Consequently,

vTSv =
∑N

i=1(A
i−1

Civ)TM(Ai−1
Civ) + βvTRv > 0 for all vectors v and S is

positive definite.
By consequence of the lemma, we can use well-known and fast iterative methods

for the solution of this equation, such as the conjugate gradient (CG) method. In each

matrix-vector multiplication we have to perform one solve with Ai and AiT each.
Since we will do a significant number of these solves, the experiments in section 8
compute and store a sparse direct decomposition of these matrices, as this turned out
to be fastest and the most stable. Alternatively, good iterative solvers for the state
equation and its adjoint are often available.

Of crucial importance for the speed of convergence of the CG method is the
condition number of the Schur complement matrix S. Numerical experiments have
shown that, in contrast to the original matrix (5.1), the condition number only grows
as O(h−4), i.e., by two orders of h less than the full matrix [4]. Furthermore and even
more importantly, the condition number improves if more experiments are available,
i.e., N is higher, corresponding to the fact that more information reduces the ill-
posedness of the problem [41]. In particular, it is not hard to show using Rayleigh
quotients for the largest and smallest eigenvalues that the condition number of the
Schur complement matrix is not greater than the maximal condition number of its
building blocks, i.e., that

κ(S) ≤ max

[
κ(R), max

1≤i≤N
κ
(
CiTAi−T

MiAi−1
Ci

)]
,
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assuming that both R and CiTAi−T
MiAi−1

Ci are regular. In practice, the condition
number κ(S) of the joint inversion matrix is often significantly smaller than that of
the single experiment inversion matrices [41].

Finally, the CG method allows us to terminate the iteration relatively early. This
is important since high accuracy is not required in the computation of search direc-
tions. Experience shows that for typical cases, a good solution can be obtained with
10 to 30 iterations, even if the size of S, #δqk,h, is several hundred to a few thousand.
A good stopping criterion is a reduction of the linear residual of (6.1) by 103.

The solution of the Schur complement equation can be accelerated by precondi-
tioning the matrix. Since one will not usually build up the matrix, a preconditioner
cannot make use of the individual matrix elements. However, other approaches have
been investigated in the literature; see, for example, [16, 57].

Finally, we note that the Schur complement formulation is simple to parallelize
(see [4]): matrix-vector multiplications with S are easily performed in parallel due
to the sum structure of this matrix, and the remaining two equations defining the
updates for the state and adjoint variables are independent anyway.

7. Bound constraints. In the previous sections, we have described an efficient
scheme for the discretization and solution of the inverse problem (2.5). However, in
practical applications, one often has more information on the parameter than included
in the formulation so far. For example, lower and upper bounds q0 ≤ q(x) ≤ q1 may be
known, possibly only in parts of the domain, or with spatially dependent bounds. Such
inequalities typically denote prior physical knowledge about the material properties
we would like to identify, but even if such knowledge is absent, we will often want to
impose constraints of the form q ≥ q0 > 0 if q appears as a coefficient in an elliptic
operator (as in the model problem).

In this section, we will extend the scheme developed above to incorporate such
bounds, and we will show that the inclusion of these bounds comes at essentially no
additional cost, since it only reuses information that is already there. On the contrary,
as it reduces the size of the problems, it makes its solution faster. We would also like
to stress that the approach does not make use of the actual form of state equations,
misfit, or regularization functionals; it is therefore possible to implement it in a very
generic way inside the Newton solver. The approach is based on the same ideas that
active set methods use (see, e.g., [52]) and is similar to the gradient projection-reduced
Newton method [58]. However, since we consider problems with several thousand or
more parameters, some parts of the algorithm have to be devised differently. In
particular, the determination of the active set has to happen on the continuous level,
as discussed in the introduction. For related approaches to constrained optimization
problems in partial differential equations, see [14, 46, 60].

Basic idea. Since the method to be introduced is simple to extend to the more
general case, let us describe the basic idea here for the special case that q is only
one scalar parameter function and that we have only lower bounds, q0 ≤ q(x).
The approach is then as follows. Before each step, identify those regions where the
parameters are already at their bounds and we expect their values to move out of
the feasible region. Let us denote this part of the domain, the so-called active set, by
I = {x ∈ Ω : qk(x) = q0, δqk(x) presumably < 0}. After discretization, I will usually
be the union of a number of cells from T

q
k.

We then have to answer two questions: how do we identify I, and once we have
found it what do we do with the parameter degrees of freedom inside I? Let us
start with the second question. In order to prevent these parameters from moving
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further outside, we simply set the respective updates to zero, and for this augment
the definition (4.1) of the Gauss–Newton step by a corresponding equality condition:

min
δuk,δqk

J(uk, qk) + Ju(uk, qk)(δuk) + Jq(uk, qk)(δqk)

+ Juu(uk, qk)(δuk, δuk) + Jqq(uk, qk)(δqk, δqk)(7.1)

such that Ai(qk;u
i
k)(ϕ

i) + Ai
u(qk;u

i
k)(δu

i
k, ϕ

i) + Ai
q(qk;u

i
k)(δqk, ϕ

i) = 0,

(δqk, ξ)I = 0,

where the last constraint is to hold for all test functions ξ ∈ L2(I).
The optimality conditions for this minimization problem are then equal to the

original ones stated in (4.2), except that the last equation has to be replaced by

(7.2)
∑
i

Ai
q(qk;u

i
k)(χ, δλ

i
k) + βrqq(qk)(δqk, χ) + (μ, χ)I = −Lq(xk)(χ),

where μ is the Lagrange multiplier corresponding to the constraint δqk|I = 0.
These equations can be discretized in the same way as before. In particular, we

take the same space Qh for the discrete Lagrange multiplier μ as for δqk. After per-
forming the same block elimination procedure we used for (5.1), we then get as matrix
the following system to compute the Lagrange multipliers and parameter updates:(

S BT
I

BI 0

)(
δqk,h
μh

)
=

(
Fred

0

)
(7.3)

with the reduced right-hand side Fred equal to the right-hand side of (6.1). The
equations identifying δuk,h and δλk,h are exactly as in (6.2) and (6.3) and are solved
once δqk,h is available.

The matrix BI appearing in (7.3) is of mass matrix type. If we denote by Ih
the set of indices of those basis functions in Qh with a support that intersects I, and
Ih(k) its kth element, then BI is of size #Ih × #δqk,h, and (BI)kl = (χIh(k), χl)I .
In this way, the last row of the system, BIδqk,h = 0, simply sets parameter updates
in the selected region to zero.

Let us now denote by Q the projector onto the feasible set for δqk,h, i.e., it is a
rectangular matrix of size (#δqk,h − #Ih) × #δqk,h, where we have a row for each
degree of freedom i ∈ Ih with a 1 at position i, such that QBT

I = 0. Elementary
calculations then yield that the updates we seek satisfy[

QSQT
]

(Qδqk,h) = QFred, BI δqk,h = 0,

which are conditions for disjoint subsets of parameter degrees of freedom. Besides
being smaller, the reduced Schur complement QSQT inherits the following desirable
properties from S.

Lemma 7.1. The reduced Schur complement Sred = QSQT is symmetric and
positive definite. Its condition number satisfies κ(Sred) ≤ κ(S).

Proof. While symmetry is obvious, we inherit (positive) definiteness from S by
the fact that the matrix Q has by construction full row rank. For the proof of the
condition number estimate, let Nq = #δqk,h, N

q
red = Nq −#Ih; then we have for the

maximal eigenvalue of Sred

Λ(Sred) = max
v∈R

N
q
red

‖v‖=1

vTSredv = max
w∈RNq

‖w‖=1
w|Ih

=0

wTSw ≤ max
w∈RNq

‖w‖=1

wTSw = Λ(S).
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Similarly, we get for the smallest eigenvalue λ(Sred) ≥ λ(S).
In practice, Sred needs not be built up for use in a CG method. Since application

of Q is essentially free, the inversion of QSQT for the constrained updates is at most as
expensive as that of S for the unconstrained ones, and possibly cheaper if the condition
number is indeed smaller. It is worth noting that treating constrained nodes in this
way does not imply knowledge of the actual problem under consideration: if we have
code to produce the matrix-vector product with S, then adding bound constraints is
simple.

This approach has several advantages. First, in the implementation of solvers for
the state equations, one does not have to care about constraints as one would need to
if positivity of a parameter were enforced by replacing q by eq. Second, it is simple to
add bound constraints in the Schur complement formulation, while it would be more
complicated to add them to a solver operating directly on (5.1).

Determination of the active set. There remains the question of how to deter-
mine the set of parameter updates we want to constrain to zero. For this, let us for a
moment consider I as an unknown set that is implicitly determined by the fact that
the constraint is active there at the solution. The idea of active set methods is then the
following. From (7.2), we see that at the optimum there holds (μ, χ)I = −Lq(x)(χ)
for all test functions χ. Outside I, μ should be zero, and optimization theory tells us
that it must be negative inside. If we have not yet found the solution, these properties
do not hold exactly, but as we approach the solution, the updates δλk, δqk become
small and we can use the identity to get an approximation μ̃k to the Lagrange mul-
tiplier defined on all of Ω. If we discretize it using the same space Qh as for the
parameters, then we can define μ̃k,h by

(μ̃k,h, χh) = −Lq(xk,h)(χh) ∀χh ∈ Qh.

We will then use μ̃k,h as an indicator whether a point lies inside the set where the
constraint on q is active and define

Ih = {x ∈ Ω : qk,h(x) = q0, μ̃k,h(x) ≤ −ε}

with a small positive number ε. With the so fixed set Ih, the algorithm proceeds
as above. Since −Lq(xk,h)(χh) is already available as the right-hand side of the
discretized Gauss–Newton step, computing μ̃k,h only requires the inversion of the
mass matrix resulting from the left-hand-side term (μk,h, χh). This is particularly
cheap if Qh is made up of discontinuous shape functions.

Numerical experiments indicate that it is necessary to set up this scheme in a
function space first and discretize only afterwards. Enforcing bounds only after dis-
cretization would amount to replacing the mass matrix by the identity matrix. This
would then lead to the elements of the Lagrange multiplier μ̃k,h having a size that
scales with the size of the cell they are defined on, preventing us from comparing their
size with a fixed number ε in the definition of the set Ih.

8. Numerical examples. In this section, let us give some examples of com-
putations that have been performed with an implementation of the framework laid
out above. The first two examples are applications of the model problem defined in
section 3, i.e., we want to recover the spatially dependent coefficient q(x) in a Laplace-
type operator −∇· (q∇) from measurements of the state variable. In one or two space
dimensions, this is a model of a bar or membrane of variable stiffness that is subjected
to a known force; the stiffness coefficient is then identified by measuring the deflection
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at every point. Similar applications arise also in groundwater management, where the
hydraulic head satisfies a Poisson equation with q being the water permeability, as
well as in biomedical imaging methodologies such as electrical impedance tomography
[20] or ultrasound-modulated optical tomography [59].

The third example deals with a parameter estimation problem in fluorescence-
enhanced optical tomography and will be explained in section 8.3. Further examples
of the present framework to Helmholtz-type equations with high wave numbers, as
appearing in seismic imaging, can be found in [4].

The program used here is built on the open source finite element library deal.II

[5, 6] and runs on multiprocessor machines or clusters of computers.

8.1. Example 1: A single experiment. In this first example, we consider the
model problem introduced in section 3 with N = 1, i.e., we attempt to identify a
possibly discontinuous coefficient from a single global measurement of the solution of
a Poisson equation. This corresponds to the situation

A(q;u)(ϕ) = (q∇u,∇ϕ) − (f, ϕ), m(Mu− z) =
1

2
‖u− z‖2

Ω,

where Ω = [−1, 1]d, d = 2. Measurement data z was generated synthetically by
solving −∇ · q∗∇u∗ = f numerically for u∗ using a higher order method (to avoid the
inverse crime), and setting z(x) = u∗(x) + ε(x), where ε is random noise with a fixed
amplitude ‖ε‖∞.

For this example, we choose q∗ as

q∗(x) =

{
1 for |x| < 1

2 ,
8 otherwise,

f(x) = 2d,

which yields u∗(x) = |x|2 inside |x| < 1
2 and u∗(x) = 1

8 |x|2 + 7
32 otherwise. Boundary

conditions g for u are chosen accordingly. The circular jump in the coefficient is not
aligned with the mesh cells and can be resolved properly only by mesh refinement.
u∗ and q∗ are shown in Figure 8.1.

For the case of no noise, i.e., measurements can be made everywhere without error,
Figure 8.2 shows the mesh T

q and the identified parameter after some refinement
steps. The left panel shows the reconstruction with no bounds on q imposed, whereas
the right panel shows results with tight bounds 1 ≤ q ≤ 8. The latter case can be
considered typical if one knows that a body is composed of two different materials but
their interface is unknown. In both cases, the accuracy of reconstruction is good, and
it is clear that adding bound information stabilizes the process. No regularization is
used for this experiment.

On the other hand, if ‖ε‖∞/‖z‖∞ = 2% noise is present, Figure 8.3 shows the
identified coefficient without and with bounds imposed on the parameter. Again, no
regularization is used, and it is obvious that the additional information of bounds
on the parameter improves the result significantly (quantitative results are given as
part of the next section). Of course, adding a regularization term, for example, of
bounded variation type [24, 26, 29], would also aid a better reconstruction. Instead
of regularization, we will rather consider noise suppression by multiple measurements
in the next section.

8.2. Example 2: Multiple experiments. Let us consider the same situation
as in the previous section, but this time we perform multiple experiments with different
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Fig. 8.1. Example 1: Exact coefficient q∗ (left) and displacement u∗ (right).
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Fig. 8.2. Example 1: Recovered coefficient with no noise, on grids T
q with 800 to 900 degrees

of freedom. Left: No bounds on q imposed. Right: 1 ≤ q ≤ 8 imposed.

forcing f i, producing measurements zi. Thus, for each experiment 1 ≤ i ≤ N ,

Ai(q;ui)(ϕ) = (q∇ui,∇ϕ) − (f i, ϕ), mi(M iui − zi) =
1

2
‖ui − zi‖2

Ω.(8.1)

Our hope is that if each of these measurements is noisy, we can still recover the
correct coefficient well if we only measure often enough. Since the measurements have
independent noise, measuring more than once would already yield a gain even if we
chose the right-hand sides f i identically. However, we expect to gain more if we use
different forcing functions f i in different experiments.

In addition to f1(x) = 2d already used in the last example, we use

f i(x) = π2k2
i sin(πki · x), 2 ≤ i ≤ N,

as forcing terms for the rest of the state equations (8.1). The vectors ki are chosen as
the first N elements of the integer lattice {0, 1, 2, . . .}d when ordered by their l2-norm
and after eliminating collinear pairs in favor of the element of smaller magnitude.
Numerical solutions for these right-hand sides are shown in Figure 8.4 for i = 2, 6, 12.
Synthetic measurements zi were obtained as in the first example.

Figure 8.5 shows a quantitative comparison of the reconstruction error ‖qh −
q∗‖L2(Ω), as we increase the number of experiments used for the reconstruction, and
as Newton iterations proceed on successively finer grids. In most cases, we perform
only one Newton iteration on each grid, but if we are not satisfied with the progress
on this grid, more than one iteration will be done; in this case, curves in the charts
have vertically stacked data points. The finest discretizations had 300,000 to 400,000
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Fig. 8.3. Example 1: Same as Figure 8.2, but with 2% noise in the measurement.

Fig. 8.4. Example 2: Solutions of the state equations for experiments i = 2, 6, 12.

degrees of freedom for the discretization of state and adjoint variables in each exper-
iment (i.e., up to a total of about 4 million unknowns in the examples shown) and
about 10,000 degrees of freedom for the discretization of the parameter qh. We show
only the case of nonzero noise level, since otherwise the number of experiments was
not relevant for the reconstruction error.

From these numerical results, several conclusions can be drawn. First, imposing
bounds helps identify significantly more accurate reconstructions, but using more
measurements also strongly reduces the effects of noise. Second, if noise is present,
there is a limit for the amount of information that can be obtained; as can be seen
from the erratic and growing behavior of curves for small N and large numbers of
degrees of freedom, further refining meshes may deteriorate the result beyond a certain
mesh size (the identified parameter deteriorates by high-frequency oscillations). This
deterioration can be avoided by adding regularization, albeit at the cost of changing
the exact solution of the problem. Finally, since the numerical effort required to
solve the problem grows roughly linear with the number of experiments, using more
experiments may be cheaper than using finer meshes in many cases: discretizing twice
as many experiments yields better reconstructions of q than choosing meshes with
twice as many unknowns, a point of important practical consequences in designing
fast and accurate inversion schemes.

8.3. Example 3: Optical tomography. The third and last application comes
from a relatively recent biomedical imaging technique, fluorescent-enhanced optical
tomography. The state equations in this case consist of two coupled equations,

−∇ · [Dx∇w] + kxw = 0, −∇ · [Dm∇v] + kmv = bxmqw.(8.2)

These equations describe the propagation of light in tissue and are the diffusion ap-
proximation of the full radiative transfer equation. Here, w is the light intensity at
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Fig. 8.5. Error ‖qh − q∗‖L2(Ω) in the reconstructed coefficient as a function of the number N
of experiments used in the reconstruction and the average number of degrees of freedom used in the
discretization of each experiment. Left: No bounds imposed. Right: 1 ≤ q ≤ 8 imposed. 2% noise
in both cases. Note the different scales.

the wave length of a laser with which the skin is illuminated. v is the intensity of
fluorescent light excited in the interior by the incident light in the presence of a fluo-
rescent dye of unknown concentration q. If the incident light intensity is modulated
at a frequency ω, then both w and v are complex-valued functions and the various
coefficients in the equations above are given by

Dx =
1

3(μaxi + q + μ′
sx)

, kx =
iω

c
+ μaxi + q, bxm =

φ

1 − iωτ
,

Dm =
1

3(μami + μamf + μ′
sm)

, km =
iω

c
+ μami + μamf ,

where μaxi, μami are intrinsic absorption coefficients at incident and fluorescent wave
lengths, μ′

sx, μ
′
sm are reduced scattering coefficients, μamf absorption due to fluo-

rophore, φ the fluorophore’s quantum efficiency, τ its half life, and c the speed of
light. All of these coefficients are assumed known. More details about this model and
the actual values of material parameters can be found in [40, 41].

In clinical applications, one injects a fluorescent dye into tissue suspected to have
a tumor. Since certain dyes specifically bind to tumor cells while they are washed
out from the rest of the tissue, their presence is considered to be a good indicator for
the existence and location of a tumor. The goal of the inverse problem is therefore to
identify the unknown concentration of fluorescent dye, q = q(x), in the tissue, using
the above model. Note that q appears in the diffusion coefficient Dx, the absorption
coefficient kx, and the right-hand side of the second equation. To identify q one
illuminates the body at the incident wave length (but not at the fluorescent wave
length) with a laser, which we can model using the boundary conditions

(8.3) 2Dx
∂w

∂n
+ γw + S = 0, 2Dm

∂v

∂n
+ γv = 0,

where n denotes the outward normal to the surface and γ is a constant depending on
the optical reflective index mismatch at the boundary [28], and S(x) is the intensity
pattern of the incident laser light. We would then measure the fluorescent intensity
v(x) on a part Σ of the boundary ∂Ω. Intuitively, in areas of Σ where we see much
fluorescent light, a fluorescent source must be close by, i.e., the dye concentration is
large pointing to the presence of a tumor.
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Fig. 8.6. Example 3: Left and middle: Real part of the solution w of model (8.2)–(8.3) for
experiments 2 and 6, characterized by different boundary sources S2(x), S6(x). Right: Mesh T

6

after four refinement cycles.

Given these explanations, we can define the inverse problem in the language of
section 2 by setting ui = {wi, vi} ∈ V i = [H1(Ω → C)]2, defining test functions
ϕi = {ζi, ξi} ∈ V i, and using

A(q;ui)(ϕi) = (Dx∇ui,∇ζi)Ω + (kxu
i, ζi)Ω +

γ

2
(ui, ζi)∂Ω +

1

2
(Si, ζi)∂Ω

+ (Dm∇vi,∇ξi)Ω + (kmvi, ξi)Ω +
γ

2
(vi, ξi)∂Ω − (bxmui, ξi)Ω

as the bilinear form, where all scalar products apply to complex-valued quantities.
The measurement operator is given by M i : V i �→ Zi = L2(Σ → C),M iui = vi|Σ,
we use mi(M iui − zi) = 1

2‖vi − zi‖2
L2(Σ), r(q) = 1

2‖q‖2
L2(Ω), and the regularization

parameter is initially chosen as β = 3 · 10−11 and reduced in later iterations [7].
Figures 8.6 and 8.7 show results obtained with a program that implements the

framework laid out before for these equations and operators. It shows a situation in
which a simulated widened laser line is scanned in N = 8 increments over an area
of roughly 8 × 8 cm of the experimentally determined surface of a tissue sample (in
this case the groin region of a pig; see [42]). Synthetic data zi is generated assuming
that a spherical tumor of 1-cm diameter is located at the center of the scene some
1.5 cm below the surface. This data is then used to reconstruct the function q(x),
which should ideally match the previously assumed size and location of the tumor.

Figure 8.6 shows the real parts of the current iterates u2
25, u

6
25 after 25 Gauss–

Newton iterations for experiments 2 and 6, along with the mesh T
6
25 used to discretize

the latter. This mesh has approximately 22,900 cells, on which a total of some 270,000
primal and adjoint variables are discretized. The total number of unknowns involved
in this inverse problem, added up over all N = 8 experiments, is some 1.5 million.
It is quite clear that a single mesh able to resolve the features of all state solutions
would have to have significantly more degrees of freedom since the areas where ui(x)
varies are different between experiments. A back-of-the-envelope calculation shows
that this single mesh would have to have on the order of 2 million cells, giving rise
to a total number of degrees of freedom on the order of 10 to 12 million. Since the
solution of the inverse problem is not dominated by generating meshes but by solving
the linear systems (6.1)–(6.3), the savings resulting from using adaptive meshes are
apparent.

Finally, Figure 8.7 shows the meshes T
q
11 and T

q
25, as well as a cloud image of the

solution after 25 Gauss–Newton iterations. The reconstruction has correctly identified
the location and size of the tumor, and the mesh is appropriately refined to resolve
its features. The image does contain a few artifacts, mainly below the target and
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Fig. 8.7. Example 3: Left and middle: Meshes T
q used to discretize the parameter q(x) after

one and four refinement cycles, respectively. The left mesh is used for Gauss–Newton iterations
8–11, the one in the middle for iterations 22–25. Right: Reconstructed parameter q25 after 25
Gauss–Newton iterations.

elsewhere deep inside the tissue; this is not overly surprising given that light does
not penetrate very deep into tissue. However, the main features are clearly correct.
(For similar reconstructions, in particular using experimentally measured instead of
synthetically generated data, see also [40, 42].)

In the case shown, the final mesh has 977 unknowns, of which 438 are constrained
by the condition 0 ≤ q ≤ 2.5 (the upper bound is, in fact, not attained here). Over the
course of the entire 25 Gauss–Newton iterations, some 9,000 CG iterations were per-
formed to solve the Schur complement systems. Since each iteration involves 2N solves

with Ai or AiT , and we also need 2N solves for (6.2)–(6.3) per the Gauss–Newton
step, this amounts to a total of some 150,000 solutions of the three-dimensional, cou-
pled system (8.2)–(8.3) over the course of the entire computation, which took some
6 hours on a 2.2-GHz Opteron system; approximately two-thirds of the total compute
time was spent on the last four iterations on the finest grid, underlining the claim
that the initial iterations on coarser meshes are relatively cheap.

9. Conclusions. Adaptive meshing strategies have become the state-of-the-art
technique in solving partial differential equations. However, they are not yet widely
used in solving inverse problems. This may in part be because the numerical solu-
tion of inverse problems has been considered more in the context of optimization than
discretization. Since practical optimization methods are mostly developed in finite di-
mensions, the notion that discretizations can change over the course of a computation
therefore doesn’t fit very well into existing algorithms.

To merge these two streams of research, optimization and discretization, we have
presented a framework for the solution of large-scale multiple-experiment inverse
problems that can deal with adaptively changing meshes. Its main features are as
follows:

• formulation in function spaces, allowing for different discretizations in subse-
quent steps of Newton-type nonlinear solvers;

• discretization by adaptive finite element schemes, with different meshes for
state and adjoint variables on the one hand and the parameters sought on
the other;

• inclusion of bound constraints with a simple but efficient active set strategy;
and

• choice of a formulation that allows for efficient parallelization.
This framework has then been applied to some examples showing that inclusion

of bounds can stabilize the identification of a coefficient from noisy data, as well as the
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(obvious) fact that measuring more than once can reduce the effects of noise. The last
example also demonstrated that the framework is applicable to problems of realistic
complexity beyond mathematical model problems as well.

There are many aspects of our framework that obviously warrant further research:

• More efficient linear solvers. The majority of the compute time is spent on
inverting the Schur complement system (6.1) because constructing precondi-
tioners for the matrix S is complicated by the fact that its entries are not
known. Attempts to use simpler versions of this matrix to precondition can
be found in [16]. Another possibility is Krylov subspace recycling techniques
using information from previous Gauss–Newton iterations. This, however,
would have to deal with the fact that the matrix S results from discretiza-
tions that may change between iterations.

• Rigorous regularization strategies to determine optimal values of β.
• Very little theoretical justification, for example, in terms of convergence

proofs, has been presented for the viability of the individual steps of the
framework. Such proofs need to address the function-space setting as well as
the variable discretization.

We hope that future research will answer some of these open questions.

Acknowledgments. The author thanks Rolf Rannacher for the encouragement
given for this research. It is also a pleasure to thank Amit Joshi for the collaboration
on optical tomography, from which Example 3 was generated. The author wishes to
thank the two anonymous referees whose suggestions have made this a better paper.

REFERENCES

[1] R. Acar, Identification of coefficients in elliptic equations, SIAM J. Control Optim., 31 (1993),
pp. 1221–1244.

[2] U. M. Ascher and E. Haber, Grid refinement and scaling for distributed parameter estimation
problems, Inverse Problems, 17 (2001), pp. 571–590.

[3] U. M. Ascher and E. Haber, A multigrid method for distributed parameter estimation prob-
lems, ETNA, 15 (2003), pp. 1–12.

[4] W. Bangerth, Adaptive Finite Element Methods for the Identification of Distributed Param-
eters in Partial Differential Equations, Ph.D. thesis, University of Heidelberg, 2002.

[5] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II – a general purpose object oriented
finite element library, ACM Trans. Math. Softw., 33 (2007), pp. 24/1–24/27.

[6] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II Differential Equations Analysis
Library, Technical Reference. http://www.dealii.org/ (2008).

[7] W. Bangerth and A. Joshi, Adaptive finite element methods for the solution of inverse
problems in optical tomography, Inverse Problems, 24 (2008), 034011.

[8] W. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Differential Equa-
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