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Adaptive mesh refinement (AMR) has been shown to allow solving partial differential equations to
significantly higher accuracy at reduced numerical cost. This paper presents a state-of-the-art AMR
algorithm applied to the multigroup neutron diffusion equation for reactor applications. In order to
follow the physics closely, energy group-dependent meshes are employed. We present a novel algorithm
for assembling the terms coupling shape functions from different meshes and show how it can be made
efficient by deriving all meshes from a common coarse mesh by hierarchic refinement. Our methods are
formulated using conforming finite elements of any order, for any number of energy groups. The spatial
error distribution is assessed with a generalization of an error estimator originally derived for the Poisson
equation.
Our implementation of this algorithm is based on the widely used Open Source adaptive finite element
library deal.II and is made available as part of this library’s extensively documented tutorial. We illustrate
our methods with results for 2-D and 3-D reactor simulations using 2 and 7 energy groups, and using
conforming finite elements of polynomial degree up to 6.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In many engineering disciplines, from structural mechanics to
fluid dynamics, automated Adaptive Mesh Refinement (AMR) is
now an established technique for obtaining numerical solutions
with higher accuracy and resolution, while requiring less memory
and shorter CPU times. Adaptivity, which can be traced back to the
late 1970s (Babuška and Rheinboldt, 1978), is based on the idea that
in order to achieve high accuracy, a uniformly fine mesh is not
necessarily required; rather, the computational grid only needs to
be fine in regions where the solution is rough and can be coarse in
areas where the solution is smooth and, therefore, well resolved
even on large cells. The challenge is that, in general, it is not known
a priori where the solution will require the mesh to be fine.
Consequently, the computation of local error or smoothness indi-
cators from a numerical solution, previously obtained on a coarser
mesh, lies at the heart of all adaptive mesh refinement algorithms,
and a significant number of successful approaches have been
developed for this problem in the last decade (Ainsworth and Oden,
2000; Bangerth and Rannacher, 2003; Babuška and Strouboulis,
2001; Braess and Verfürth, 1996). Using these methods, it has been
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shown for many problems that the computational effort needed to
reach a certain accuracy can often be reduced by one or several
orders of magnitude compared to uniform meshes, frequently
enabling the solution of entire new classes of problems that were
previously considered too computationally expensive to solve the
required accuracy.

For a variety of reasons, AMR has not yet been widely used in
nuclear science and engineering, with only a few references avail-
able in the literature (see our review below). Among the main
causes is that the correct description of many processes in
neutronics applications in nuclear engineering is the transport
equation (Bell and Glasstone, 1970; Duderstadt and Martin, 1979),
an equation that is extraordinarily complicated to solve numeri-
cally, even in the absence of advanced numerical methods like
adaptivity. These complications arise from its hyperbolic character
that allows discontinuous solutions and in particular its depen-
dence on seven variables (three space dimensions, the two-
dimensions of direction, time, and energy).

Consequently, a significant number of approximations have
been developed to make it tractable for particular cases. For
example, the multigroup diffusion approximation is often
employed in 3-D reactor analysis and design (Covington, 1995;
Lautard et al., 1990). This approximation leads to a collection of
partial differential equations for individual energy groups that need
to be solved concurrently. While adaptive mesh refinement tech-
niques have been investigated for a wide variety of engineering
daptivity for the multigroup neutron diffusion equations, Prog. Nucl.
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problems in the past, the multigroup approximation that arises in
the treatment of the transport or diffusion equations has properties
that require a re-analysis of straightforward approaches. Among its
particularities is that, unlike most other coupled systems the
authors are aware of, individual solution components are not
necessarily smooth or rough in the same parts of the domain (see
the numerical examples in Section 4 as well as those shown in Jatuff
and Gho (1998)). This is easy to understand: fast particles typically
travel relatively unimpeded through fine-scale features of the
medium and their spatial distribution is therefore a relatively
smooth function; on the other hand, thermal (slow) particles
typically interact more locally and strongly with materials, and the
resulting large variations of cross sections values and mean-free-
path lengths then lead to less smooth solutions. Thus, it is not
a priori clear that it is worthwhile to discretize different energy
groups with a single mesh.

In this contribution, we propose and evaluate an automated
mesh adaptation technique based on the use of arbitrary-order
finite elements that is applied to the multigroup diffusion
approximation. The main feature of this method is the use of
separate and possibly differing meshes for individual energy
groups. While in general the use of different meshes can lead to
expensive algorithms, we will show how to efficiently use our
approach by using meshes that are hierarchically refined from
a common coarse grid. The spatial integration of terms that involve
shape functions from different meshes can therefore be performed
efficiently by considering only prolongations of shape functions
from parent to child cell; this will be needed for group coupling
terms such as scattering and fission events. We will illustrate this
approach using k-eigenvalue benchmark problems taken from
reactor analysis applications. We will present our algorithms and
demonstrate their advantages over uniformly refined meshes using
two 2-D 2-group examples as well as a 3-D 7-group example of
significant complexity.

Our implementation of these algorithms is freely available as
part of the widely used Open Source finite element library deal.II
(Bangerth et al., 2007, 2008). The tutorial step-28 of deal.II contains
the code developed in this present work; this tutorial is extensively
documented and we explicitly encourage the use of this program as
the basis for further experiments by other researchers. The results
presented here use a slightly optimized but otherwise unchanged
version of tutorial step-28. Since deal.II already provides most of
the functionalities required for a project like this (including, for
example, the handling of adaptive meshes, a variety of finite
elements, all components of linear algebra, and input/output
features), step-28 is in fact a relatively small code, of about 1200
lines of code, with several times that amount in documentation.
Together with the extensive documentation of all aspects of deal.II
(more than 5000 pages of API documentation along with more than
30 tutorial programs), we believe that step-28 is a good starting
point for future research in this area.

We conclude this section by a brief review of the literature on
adaptive mesh refinement for transport problems. For instance,
Kanschat used fully adaptive finite approximations to the
stationary, monochromatic radiative transfer problem (Richling
et al., 2001; Kanschat, 1996) with mesh refinement driven by
rigorously derived error estimates. Radiative transfer solvers are
frequently coupled to AMR hydrodynamics codes, and conse-
quently there has been a natural inclination to develop AMR
capabilities for the transport/diffusion solvers as well. In Jessee
et al. (1998), the gradient of the solution is employed to drive
adaptive mesh refinement for the radiation transport component in
2-D Cartesian geometries for 1-group (one-frequency) equations. In
Aussourd (2003), local a priori refinement techniques based on the
value (or changes therein) of the neutron mean-free-path in a given
cell are used for the 1-group transport equation in 3-D Cartesian
Please cite this article in press as: Wang, Y., et al., Three-dimensional h-a
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geometries. While this approach takes into account the size of
potential internal layers at a given location in the domain, it does
not account for the actual smoothness of the solution at these
locations and is therefore far from optimal; for example, in optically
thick areas, the solution may well be approximated by a smooth
spatial representation on coarse meshes despite the smallness of
the mean-free-path. Klar et al. (2005) consider a coupled radiation-
temperature model and apply adaptive methods to it that can
resolve the boundary layer of a hot, homogeneous body that is in
thermal contact with a cooler exterior.

In neutronics applications, Jatuff and coworkers (Jatuff, 1995;
Jatuff and Gho, 1998) proposed error estimators applied to nodal
diffusion equations. These estimators are based on the norm of the
residual; they are related to the ones we use in the current
contribution but do not have the correct scaling with powers of the
mesh size. Zhang and Lewis (2001) presented a p-refinement
technique (adaptive selection of the polynomial approximation) for
the inter-element approximation in a primal hybrid finite element
technique. Results were given for a 2-D 1-group diffusion problem;
later they expanded the technique to the 2-D 1-group PN equations
(Zhang and Lewis, 2002). More recently, Wang and Ragusa applied
the hp-adaptation concept to the multigroup diffusion equations,
where both the local polynomial degree of shape functions and the
local cell size are selected adaptively (Wang and Ragusa, 2006, in
press). Error estimators for the combined hp adaptation are less
mature and, as a consequence, these authors used the difference
between a finer mesh solution Ffine and a coarser mesh solution
Fcoarse to drive the refinement (Demkowicz, 2006), with an over-
head due to the computation of a fine solution at each step of the
adaptation. Their results included mesh adaptation for 1-D multi-
group and 2-D 1-group diffusion problems. Finally, the authors of
(Ragusa, 2004, 2008) employed an error indicator based on esti-
mating the second derivatives of the numerical solution and
applied the resulting method to 1-group and 2-group diffusion
applications. The error indicator used there is based on the inter-
polation error of linear finite elements (Gago et al., 1983). We will
use a similar technique herein also for higher polynomial approx-
imations; alternative methods for polynomial shape functions of
degree p may use the tensor of pþ 1st derivatives of the numerical
solution (see the general discussion in The deal.II manual and
application in Leicht and Hartmann (2007) to the simulation of
aerodynamic flows).

An outline of the remainder of this contribution is as follows: In
Section 2, we briefly introduce the mathematical formulation used
for the multigroup diffusion approximation eigenproblem. Section
3 presents the discrete formulation upon which we base our finite
element scheme, the error indicator used to select mesh cells for
refinement, and the mesh refinement scheme. In particular we also
discuss the specificities of having group-dependent meshes and
how an implementation can be made efficient. Finally, in Section 4,
2-D and 3-D results are presented using 2-group and 7-group
diffusion problems. We conclude in Section 5 and present an
outlook on open problems and possible next steps.

2. Mathematical formulation

2.1. The steady state multigroup diffusion equations

The goal of this paper is the development of automated spatial
adaptivity for the numerical solution of the multigroup neutron
diffusion equations. These equations can be derived as the diffu-
sion dominated limit of the neutron transport equation and by
binning neutron energies into a finite number G of groups (Bell
and Glasstone, 1970; Duderstadt and Hamilton, 1976). Such
problems in nuclear engineering typically involve either a criti-
cality search eigenproblem or a source-driven problem. Here, we
daptivity for the multigroup neutron diffusion equations, Prog. Nucl.
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will only present the eigenproblem case; the source-driven case is
generally simpler and can be dealt with using the same
techniques.

For conciseness, let us consider the neutron flux fg(r), 1� g�G
in the G different energy groups. In the absence of external neutron
source, these satisfy the balance equations

�V$
�

DgðrÞVfgðrÞ
�
� Sr;gðrÞfgðrÞ ¼

X
g0sg

Ss;g0/gðrÞfg0 ðrÞ

rþ
cg

keff

XG

g0 ¼1

nSf ;g0 ðrÞfg0 ðrÞ r˛U;1 � g � G: (1)

The various coefficients in these equations have the following
meaning:

� Dg(r) is the diffusion coefficient in group g;
� Sr, g(r) is the removal cross section in group g;
� Sf, g(r) is fission cross section in group g, n is the number of

neutrons emitted per fission event, and cg is the fission spec-
trum. The quantity Sf ðrÞ ¼

PG
g0 ¼1 nSf ;g0 ðrÞfg0 ðrÞ is often

referred to as the fission integral;
� Ss, g

0
/ g is the scattering cross section from group g0 to group g.

The equations above are augmented by Dirichlet boundary
conditions fg¼ 0 on the exterior boundaries of the domains we
consider in Section 4 and boundary conditions n$Vfg¼ 0 on planes
of symmetry since we only consider one quadrant of a full reactor in
our examples.
2.2. The eigenvalue problem

Considering all energy groups at once, we can re-write equation
(1) in the following operator form:

ðL� XÞf ¼ F
keff

f (2)

where L, X, and F are the loss, scattering, and fission operators,
respectively. L here includes both the leakage and removal terms.
Note that L is symmetric, whereas F and X are not. The multipli-
cative factor keff is the largest (and unique) eigenvalue of the
operator (L�X)�1F (Krein–Rutman theorem, (Krein and Rutman,
1962)).

The goal of this paper is to solve the above k-eigenvalue problem
using spatial adaptivity. Our numeric implementation uses the
power method with Chebyshev acceleration (Ferguson and Ders-
tine, 1977). The basic algorithm for this is as follows:

(1) Initialize the multigroup fluxes and the eigenvalue with fg
(0),

keff
(0)

; compute the initial fission integral

Sð0Þf ¼
PG

g¼1 nSf ;gðrÞf
ð0Þ
g ðrÞ and set the iteration index to n¼ 1.

(2) Solve for the multigroup fluxes fg
(n), g¼ 1, ., G using

ðnÞ ðnÞ X ðnÞ cg ðn�1Þ
�V$DgVfg þ Sr;gfg ¼
g0sg

Ss;g0/gfg0 þ
kðn�1Þ

eff

Sf : (3)

Without scattering of particles from lower energy to higher
energy groups the above system is lower triangular in energy
groups. When upscattering is present, the linear system is no
longer triangular and an additional iterative loop is needed to solve
for the thermal fluxes.

(3) Update the fission integral: SðnÞf ðrÞ ¼
PG

g0 ¼1 nSf ;g0 ðrÞf
ðnÞ
g0 ðrÞ:

(4) Update the eigenvalue: kðnÞeff ¼
R

USðnÞf ðrÞ=
R

USðn�1Þ
f ðrÞkðn�1Þ

eff :
Please cite this article in press as: Wang, Y., et al., Three-dimensional h-a
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(5) Compare keff
(n) with keff

(n–1) and f(n) with f(n–1). If the changes are
greater than a prescribed tolerance, then set n¼ nþ 1 and
repeat the iteration starting at step-2; otherwise end the
iteration.

We implement this algorithm to solve for the multiplication
factor keff and the associated fundamental mode using the adaptive
finite element scheme described in the following sections.

3. h-Adaptivity for the multigroup diffusion equations

Before describing our spatially adaptive algorithm, let us first
consider the question whether it is adequate to solve for the fluxes
fg of all energy groups g¼ 1, ., G on the same mesh T, or whether it
would be more appropriate to discretize each flux fg on its own
mesh Tg. To this end, it is important to realize that a single mesh T
can only be suitable for resolving all solution components fg

simultaneously to equal accuracy if it is fine wherever at least one
of these functions is non-smooth. If all components are non-
smooth to the same degree in the same locations, then a single
mesh is adequate. On the other hand, if the components fg have
different degrees of variability in the same parts of the domain, or if
they are non-smooth in different parts of the domain, then a single
mesh would either be too fine in some areas for some of the
components and consequently the mesh would be wasteful and
lead to unnecessarily many degrees of freedom; or, alternatively,
the mesh would be too coarse in some areas for at least some of the
components and not yield appropriate accuracy uniformly for all
components.

As will become obvious by looking at images of the individual
components of solutions in Section 4, multigroup diffusion prob-
lems fall in the second category. In particular, it is physically
obvious that fast neutrons tend to travel farther (due to smaller
cross sections) and are, therefore, less affected by local variations in
the material properties, whereas thermal neutrons ‘‘see’’ more
localized details. Hence, smoother solutions are usually expected
for higher energy neutrons and more rapidly varying solutions for
lower energy neutrons. We can therefore expect that meshes that
are adjusted to each energy group solution are significantly more
efficient than using a single mesh for all groups.

The use of separate meshes for different energy groups has two
principal consequences for their efficient implementation. First, we
need to find a way to refine the meshes individually. Secondly,
when assembling the cross-group source terms (fission and scat-
tering) in the power iteration, we have to integrate the solution
fg
0(n) defined on mesh Tg

0 against the shape functions defined on
mesh Tg. We will discuss efficient algorithms for these tasks below,
following a concise statement of the finite element discretization
we use.

3.1. Discrete formulation

In order to discretize the nth power iteration of the eigenvalue
problem of Eq. (1), we approximate fg

(n) by expanding it with
respect to a set of Ng finite element shape functions fg

i (r) defined on
meshes Tg, g¼ 1, ., G, yielding fðnÞg;hðrÞ ¼

PNg

i¼1 FðnÞg;i 4i
gðrÞ, see

Brenner and Scott (2002), Braess (1997), Carey and Oden (1984).
The coefficients Fg, i

(n) are the unknowns to be solved for. For lowest-
order (linear) continuous elements, shape functions are associated
with the vertices of the mesh Tg. However, below we will also use
higher order shape functions up to polynomial degree 6 that are
associated with the faces, the edges, and the interior of cells. In the
following sections, we will only consider meshes that consist of
quadrilaterals (in 2-D) and hexahedra (in 3-D); however, all algo-
rithms are readily applicable to triangular or tetrahedral elements
as well.
daptivity for the multigroup neutron diffusion equations, Prog. Nucl.



Y. Wang et al. / Progress in Nuclear Energy xxx (2009) 1–134

ARTICLE IN PRESS
Using a Galerkin procedure to determine the coefficients Fg, i
(n),

we arrive at the following weak discrete form of 3, which we obtain
by multiplying that equation by test functions 4g

j , integrating over
the spatial domain U, and integrating by parts all terms involving
second derivatives:

�
DgVfðnÞg;h;V4j

g

�
þ
�

Sr;gfðnÞg;h;4
j
g

�

¼
X
g0sg

�
Ss;g0/gfðnÞg0;h;4

j
g

�
þ
�

cgSðn�1Þ
f ;4j

g

�
: (4)

Here, ðu; vÞ ¼
R

UuðrÞvðrÞd3r. Since this has to hold for each of the
test functions 4g

j , j¼ 1, ., Ng, g¼ 1, ., G, we obtain a system of
linear equations for the coefficients Fg, i

(n) that can be solved using
a preconditioned conjugate gradient solver, owing to its symmetry
and positive definiteness.

Instead of going into the technical details of the other steps of
the iterative procedure to compute keff, which were outlined in
Section 2.2 and are detailed in Wachspress (1966) for instance, we
will focus on the implications of automatically choosing adaptive
meshes in the remainder of this section.

3.2. Outer mesh iteration

In adaptive mesh refinement algorithms, one usually starts
with a coarse mesh in order to compute a rough approximate
solution. This solution is then used to compute a refinement
indicator that states on which cells the error is likely to be the
largest. The cells with the largest error are then refined, those with
the smallest error are coarsened, and the solution procedure starts
over on this new mesh. The mesh adaptation iteration proceeds
until we are satisfied with the accuracy of the solution. Since each
mesh has more cells than the previous one, the total compute time
is usually dominated by computations on the last mesh. The
additional effort necessary to achieve a well-chosen mesh for
a given accuracy (i.e., computing solutions and refinement indi-
cators on coarser meshes) is, therefore, not a large factor in
adaptive mesh calculations.

For the present problem, we solve the entire eigenvalue problem
on one set of meshes Tg

m, g¼ 1, ., G, where m denotes the mesh
iteration number. We then compute refinement indicators hg,K for all
cells K˛Tg

m. With these indicators, we refine the mesh Tg
m to obtain

the next mesh Tg
mþ1. The final solution fg, h

(n) on the old mesh Tg
m

is interpolated to the new mesh to obtain the initial guess fg, h
(0) for

the power iteration procedure on the next set of meshes, Tg
mþ1.

Because all following discussions will only concern a single set
of meshes, we will drop the mesh iteration index m in the
remainder of this paper, except where ambiguous.

3.3. Mesh refinement

The central component of the mesh iteration is the estimation of
the error on each cell K of each of the meshes Tg

m
, g¼ 1, ., G, in

order to obtain refinement and coarsening criteria. Such error
indicators are ideally derived using a posteriori error estimators
using strict upper bounds on the total error (Ainsworth and Oden,
2000). For the current nonlinear eigenvalue problem 2, strict esti-
mates or error approximations could be derived using the tech-
niques discussed in Bangerth and Rannacher (2003); however, they
would be complicated to implement and expensive to evaluate,
requiring the solution of a second problem and the evaluation of
a significant number of primal and dual residual terms on each cell.

On the other hand, experience has shown that oftentimes it is
sufficient to have error indicators to drive mesh refinement. Such
indicators typically determine the smoothness of a solution, by
computing estimates of higher order derivatives. In our
Please cite this article in press as: Wang, Y., et al., Three-dimensional h-a
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calculations, we use an indicator that uses the formula derived by
Kelly et al. in Gago et al. (1983). In that paper, an a posteriori error
estimator is derived for the Poisson equation; it approximates the
error per cell by integrating the jump of the gradient of the solution
along the faces of each cell, i.e., by computing

rg;K ¼
ffiffiffiffiffiffi
hK

p ���
h
n$VfðnÞg;h

i���
vK
;

where hK is the diameter of cell K˛Tg, g¼ 1, ., G. vK represents the
edges in 2-D or the faces in 3-D of cell K, and n is the normal unit
vector on vK. This quantity is equivalent to the norm of the second
derivatives of a function, up to a power of hK. While the expression
was derived as an error estimator for the Poisson equation, it is
widely used as a heuristic refinement indicator in many other
applications as well and is considered a good choice in the absence
of actual estimators for a particular equation (see, for example,
(Bangerth and Joshi, 2008; Bangerth, 2008; Kirk and Carey, 2008)).
It is also implemented in a number of standard finite element
software packages (Bangerth et al., 2007, 2008; Kirk et al., 2006).
The obvious generalization of the indicator above to cases where
the diffusion operators contains a non-constant diffusion coeffi-
cient is to use the jump of net current,

rg;K ¼
ffiffiffiffiffiffi
hK

p ���
h
Dgn$Vf

ðnÞ
g;h

i���
vK
:

This is the form that we will use in our numerical experiments
below.

The next question is how to use these indicators to refine the
cells of all the triangulations Tg. In general, it needs to be under-
stood that the quantities rg, K only indicate the magnitude of the
second derivative of the solution component fg at the location of
cell K, and thereby presumably the magnitude of the local error
fg� fg, h. However, rg, K does not contain any information regarding
the quantity of interest (for example the eigenvalue keff) that drives
the numerical solution, or, in other words, why it is important to
have a small local error on cell K. For example, in 2-group diffusion
problems, the fast flux is about one order of magnitude larger than
the thermal flux; if the solutions would otherwise have similar
qualitative behavior, then the indicators rg,K would also be ten
times larger for the fast neutron flux. However, this does not mean
that the fast group mesh should be preferentially refined: suppose,
for example, that the quantity we are interested in is the power
distribution – a quantity mostly driven by thermal neutrons in light
water reactors due to the significantly higher thermal cross sections
– then refinement of the thermal group mesh is clearly of impor-
tance as well.

A good error indicator would therefore multiply the smooth-
ness indicator rg,K by an importance factor zg,K to obtain refine-
ment indicators hg,K¼ rg, Kzg, K. Such importance factors can be
computed using duality techniques (Bangerth and Rannacher,
2003), however at the price of a significant mathematical and
computational overhead. In this contribution, we do not intend to
describe such a theory and instead will choose the importance
factors heuristically as zg;K ¼ ðk fðnÞg;h kLNðUÞÞ�1, thereby ensuring
equal weight for all energy groups. An alternative choice we have
investigated is zg;K ¼k Sf ;g kLNðKÞ (i.e., the magnitude of the
fission cross section on each cell), a choice suggested by the
importance with which fg appears in the fission integral that is
employed in the computation of keff; however, despite the fact
that it makes intuitive sense, this choice does not lead to an
efficient refinement indicator and performs significantly worse
than the simple choice above in numerical experiments, mostly
due to the fact that regions containing no fissile materials, such as
reflector zones, are not considered for refinement with this
alternate choice.
daptivity for the multigroup neutron diffusion equations, Prog. Nucl.
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Using above definition for our refinement indicators hg, K, we
refine a mesh cell K if

hg;K > a1 max
1�g�G; K˛Tg

hg;K (5)

and coarsen it if

hg;K < a2 max
1�g�G; K˛Tg

hg;K : (6)

In the numerical experiments shown in Section 4, we use
a1¼0.3 and a2¼ 0.01.

An interpretation of this strategy is that if for a given energy
group g there are many cells K˛Tg for which the refinement indi-
cators are large, due to roughness in the solution or large impor-
tance factor, then many cells will be above the refinement
threshold and will be selected for refinement. On the other hand, if
there are a few cells with large errors and many cells with small
errors, for example because the solution is overall rather smooth
except at a few places, then only the few cells with large refinement
indicators will be refined. Finally, if the solution for a given energy
group is smooth everywhere, then none of its cells will be refined
until the refinement indicators for cells on the meshes of other
energy groups have been sufficiently reduced by mesh refinement.
Consequently, the strategy allows for meshes that track the global
smoothness properties of the solutions of all energy groups equally
well.
3.4. Assembling terms on different meshes

A consequence of using different meshes for different energy
groups is that in the discrete counterpart of step-3 of the eigenvalue
iteration, i.e., in equation (4), we have to compute a right hand side
vector that contains terms of the following form:

Fi ¼
Z

U
f ðrÞfðnÞg0;hðrÞ4

i
gðrÞd3r; (7)

where f(r) is one of the coefficient functions Ss, g
0

/ g or cgnSf, g
0

used in the right hand side of the eigenvalue equation. 4g
0 can be

expanded as fg0 ;hðrÞ ¼
P

jF
j
g04

j
g0 ðrÞ, with basis functions 4g

0j(r).
Consequently, the contribution to the right hand side can be
written as

Fi ¼
XNg0

j¼1

8><
>:
Z

U
f ðrÞ4i

gðrÞ4
j
g0 ðrÞd

3r

9>=
>;Fj

g0 : (8)

Note that the test functions 4g(r) are defined on mesh Tg,
whereas the basis functions 40g(r) are defined on mesh Tg

0. Hence, it
is not possible to simply split the integral over U into integrals over
the cells of either mesh g or g0.

In general, integrating terms that involve functions defined on
two entirely different meshes is an expensive procedure, since it
involves finding the cell of one mesh in which a quadrature point
defined on the other mesh lies. The integration will in this case have
a complexity higher than O(N), i.e., the number of operations will
grow faster than linearly with the number of cells N. However, as
we will show in the following, this problem can be avoided if we
use hierarchical meshes that all result from regular refinement of
the same initial coarse mesh. In that case, we assume that all energy
groups start out with the same coarse mesh, i.e., Tg

0¼ Tg
00, and that

we refine a mesh by regular bisection of cells (i.e., quadrilaterals in
2-D are subdivided into four child-cells whereas hexahedra in 3-D
yield eight child-cells). In the rest of this section we present an
algorithm that retains optimal order complexity (i.e., its compute
time and memory are linear in the number of cells) and that to our
Please cite this article in press as: Wang, Y., et al., Three-dimensional h-a
Energy (2009), doi:10.1016/j.pnucene.2008.11.005
knowledge has not been presented before in the finite element
literature.

The algorithm rests on the observation that cells on each of the
two grids remain related despite different refinement histories and
that we can always find a set of cells, which we denote by Tg X Tg

0,
that satisfy the following conditions:

� the union of the cells covers the entire domain, and
� a cell K˛Tg X Tg

0 is active on at least one of the two meshes.

Here, we denote a cell as active if it is not refined any further, i.e.,
it is a cell on which shape functions are defined. A cell becomes
inactive after it is refined.

A way to construct this set of cells is to take each cell of the
coarse mesh and do the following steps: (i) if the cell is active on
either Tg or Tg

0, then add this cell to the set; (ii) otherwise, i.e., if this
cell has children on both meshes, then do step (i) for each of the
children of this cell. With this, we can write Eq. (8) as follows:

Fi ¼
X

K˛TgXTg0

FijK ; FijK ¼
X

j

8<
:
Z

K
f ðrÞ4i

gðrÞ4
j
g0 ðrÞd

3r

9=
;Fj

g0 : (9)

By construction, there are now three cases to be considered:

(i) The cell K is active on both meshes, i.e., both the basis func-
tions 4g

i as well as 4g
0j are defined on K.

(ii) The cell K is active on mesh g, but not on mesh g0, i.e., the 4g
i are

defined on K, whereas the 4g
0 j are defined on children of K.

(iii) The opposite case, i.e., the cell K is active on mesh g0, but not on
mesh g.

To compute the right hand side contributions above, we need to
consider each of these three cases separately:

(i) If the cell K is active on both meshes, then we can directly
evaluate the integral since both sets of shape functions are
defined on this cell.

(ii) If the cell K is active on mesh g, but not on mesh g0, then the
basis functions 4g0

j are only defined either on the children Kc,
with 0� c< 2dim, or on children of these children if cell K is
refined more than once on mesh g0.

Let us assume that K is only refined once more on mesh g0 than
on mesh g. Using the fact that we use embedded finite element
spaces where each basis function on one mesh can be written as
a linear combination of basis functions on the next refined mesh,
we can expand the restriction of 4g

i to child cell Kc into the basis
functions defined on that child cell (i.e., on cells on which the basis
functions 4g 0

l are defined):

4i
g;hjKc

¼
X

l

Bil
c 4l

g0 jKc
: (10)

Bc is the matrix that interpolates data from a cell to its c-th child
cell. We then write the contribution of cell K to the right hand side
component Fi as

FijK ¼
X

j

8<
:
Z

K
f ðrÞ4i

gðrÞ4
j
g0 ðrÞdx

9=
;Fj

g0

¼
X

j

8><
>:
X2dim

c¼1

X
l

Bil
c

Z

Kc

f ðrÞ4l
g0 ðrÞ4

j
g0 ðrÞd

3r

9>=
>;Fj

g0 :

In matrix notation, this can be written as
daptivity for the multigroup neutron diffusion equations, Prog. Nucl.



Fig. 1. Example 1: Solutions after 9 adaptive refinement iterations, fast group (left),
thermal group (right), using quadratic finite elements.
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Fig. 3. Example 1: Accuracy in the core power peaking factor as a function of CPU time
(top) and the number of unknowns (bottom) for uniform and adaptive mesh refine-
ment, for linear, quadratic, and cubic elements.
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FijK ¼
X2dim

c¼1

FijKc
; FijKc

¼
X

j

X
l

Bil
c Mlj

Kc
Fj

g0 ¼
X

j

�
BcMKc

�ij
Fj

g0 ;

where Mlj
Kc
¼
R

Kc
f ðrÞ4l

g0 ðrÞ4
j
g0 ðrÞd

3r is the weighted mass matrix on
child c of K.

On the other hand, if a child Kc of K is not active, then we have to
apply the process recursively, i.e., we have to interpolate the basis
functions 4g

i onto child Kc of K, then onto child Kcc
0 of that cell, onto

child Kcc
0
c
00 of that one, etc, until we find an active cell. We then

have to sum all the contributions from all the children, grand-
children, etc, of cell K, with contributions of the form

FijKcc0
¼
X

j

�
BcBc0MKcc0

�ij
Fj

g0 ; (11)

or

FijKcc0c00
¼
X

j

�
BcBc0Bc00MKcc0c00

�ij
Fj

g0 ; (12)

etc. The matrix on the right can be computed by recursing into the
hierarchy of cells generated by regular subdivision of cells.

(iii) The last case is where K is active on mesh g0 but not mesh g. In
that case, we have to express basis function 4g

0 j in terms of the
basis functions defined on the children of cell K, rather than 4g

i

as before. This of course works in exactly the same way. If the
children of K are active on mesh g, then a similar procedure
leads to the following expression:
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Fig. 2. Example 1: Accuracy in the eigenvalue keff as a function of CPU time for uniform
and adaptive mesh refinement, for linear, quadratic, cubic, and quartic elements.
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FijK ¼
X8<
:
Z

K
f ðrÞ4i

gðrÞ4
j
g0 ðrÞdx

9=
;Fj

g0
j

¼
X

j

8><
>:
X2dim

c¼1

Z

Kc

f ðrÞ4i
g0 ðrÞB

jl
c 4l

g0 ðrÞd
3r

9>=
>;Fj

g0 :

In matrix notation, this expression now reads as

FijK ¼
X2dim

c¼1

FijKc
; FijKc

¼
X

j

X
l

Mil
Kc

Bjl
c Fj

g0 ¼
X

j

�
MKc

BT
c

�ij
Fj

g0 ;

(13)

and, correspondingly, for cases where cell K is refined more than
once on mesh g:

FijKcc0
¼
X

j

�
MKcc0

BT
c0B

T
c

�ij
Fj

g0 ; (14)

or

FijKcc0c00
¼
X

j

�
MKcc0c00

BT
c00B

T
c0B

T
c

�ij
Fj

g0 ; (15)

etc. In other words, the process works in exactly the same way as
before, except that we have to take the transpose of the
daptivity for the multigroup neutron diffusion equations, Prog. Nucl.



Fig. 5. Example 2: solutions of the 2-D 2-group multigroup neutron diffusion equations (top row; left: fast energy group g¼ 1, right: thermal energy group g¼ 2) and meshes after 2
and 4 adaptive refinement cycles (bottom row, left two panels: fast group; bottom row, right two panels: thermal group).

Fig. 4. Example 1: fast (top) and thermal (bottom) group meshes after 0, 2, 4 and 6 adaptive refinement iterations, using linear finite elements.
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Fig. 6. Example 2: comparison of accuracy reached with a given number of unknowns
for uniform and adaptive mesh refinement, for linear, quadratic, and cubic elements
(top). Comparison of accuracy achieved with adaptive mesh refinement for elements of
degree 1 through 6 (bottom).

Fig. 7. Example 3: Core layout.

1 Use of step-28 as the starting point for numerical experiments by others is
possible and encouraged under the Open Source license of deal.II. We kindly
request that all publications resulting from its use acknowledge the original
authors, Yaqi Wang and Wolfgang Bangerth, as well as the creators of the deal.II
library (Bangerth et al., 2007). The step-28 program differs from the one here only
in that it does not use the Chebychev acceleration and it builds the cross-grid terms
discussed in Section 3.4 on the fly in each iteration, whereas our final version
caches some information for performance reasons.
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prolongation matrices and need to multiply it to the mass matrix
from the other side.

The expressions for cases (ii) and (iii) can be understood as
repeatedly interpolating either the left or right basis functions in
the scalar product (f4g

i , 4g
0 j)K onto child cells, and then finally

forming the inner product (the mass matrix) on the final cell. To
make the symmetry in these cases more obvious, we can write
them as follows: for case (ii), we have

FijK
cc0/cðkÞ

¼
X

j

h
BcBc0/BcðkÞMK

cc0/cðkÞ

iij
Fj

g0 ; (16)

whereas for case (iii) we get

FijK
cc0/cðkÞ

¼
X

j

h�
BcBc0/BcðkÞMK

cc0/cðkÞ

�Tiij
Fj

g0 ; (17)

Although this process of computing terms that involve quanti-
ties defined on different meshes may appear cumbersome, it is
easily implemented in a rather straightforward way using recursion
and using the hierarchical structure of the meshes we use. In
particular, we note that following from Eq. (9) the components Fi ¼P

K˛TgXTg0
FijK of the right hand side vectors result from a sum of

terms each of which is a linear function of the coefficients Fg0
j, see

equations (11–13). Consequently, we can write
Please cite this article in press as: Wang, Y., et al., Three-dimensional h-a
Energy (2009), doi:10.1016/j.pnucene.2008.11.005
F ¼ Tgg0Fg0 (18)

where the (sparse) matrix Tgg0 is built using the techniques just
described. In our implementation we build and store these matrices
rather than re-assembling the terms on each cell in each power
iteration, and F is then formed by a simple matrix-vector product;
given the significant number of times we need to form vectors F this
is more efficient. We will investigate this in Section 4.3.

4. Numerical results

In this section we present a number of numerical experiments
that illustrate the approach we have described above. All compu-
tations were performed with a program based on the deal.II finite
element library (Bangerth et al., 2008, 2007), an Open Source library
that supports fully adaptive 1-D, 2-D, and 3-D meshes, a variety of
different finite element types, and a large collection of classes
supporting general finite element computations. An earlier version
of the program used here has been extensively documented and will
be distributed with next release of deal.II as step-28 of the tutorial.1

The test cases we will discuss below are: (1) the 2-D version of
the 2-group IAEA PWR problem (Argonne Code Center, 1977),
where data is given as piece-wise constant for each fuel assembly,
(2) the C4 configuration of the 2-D 2-group pin-by-pin design of the
OECD mixed oxide fuel benchmark (Lefebvre et al., 1996), where the
data is piece-wise constant at the pin cell level, and (3) a 3-D
7-group problem with cross sections representative of UOX and
MOX fuels and partial rod insertion.

In the following sections, we will compare results obtained on
uniform and adaptively refined meshes with respect to (i) the
accuracy of the eigenvalue keff, and (ii) the accuracy in the core
power peaking factor. Here, we define the core power peaking factor
as the maximum power produced in each initial mesh cell Ki, i.e.,

PPF ¼ max
Ki

R
Ki

PG
g¼1 Sf ;gfg

1
jUj
R

U

PG
g¼1 Sf ;gfg

: (19)
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Fig. 8. Example 3: three-slice at x¼ y¼ 0 cm z¼ 200 cm of the Q1 (left) and Q2 (right) group-7 solutions and associated meshes after 7 and 2 adaptive mesh refinements,
respectively.
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It may seem that this definition, based on the initial cells favors
uniform coarse meshes, in which errors may partially cancel out in
through averaging. However, as we will show, this is in fact not the
case, and adaptivity yields significantly more accurate results. Note
that the initial meshes we will consider are based on the problem
geometry (e.g., the core layout of fuel assemblies) and are typically
used to output computed data such as power per assembly or
quarter assembly; therefore, the power peaking factor above is not
defined on an arbitrary set of cells but rather the fixed set of reactor
blocks we are actually interested in.

4.1. Example 1: 2-D, two energy groups IAEA PWR benchmark

In this test, we use the 2-D version of the IAEA PWR benchmark
(Argonne Code Center, 1977). The 2-D geometry consists of one
quarter of a cross-sectional cut of the 3-D geometry at a height of
z¼ 200 cm, in which four control rods are inserted. The initial mesh
consists of square cells of 10 cm width (i.e., four cells per fuel
assembly). We will present results obtained with uniform and
adaptive refinement, for Lagrange elements of polynomial order 1
through 4. Fig. 1 shows the solutions for the two energy groups. It
clearly shows that the solution for the fast group is significantly
smoother than that for the thermal group, as well as the effect of
the reflector layer on the outer rim of the reactor.

Fig. 2 shows the error in keff as a function of the CPU time
required to compute it to a certain accuracy. For practical purposes,
the eigenvalue must be obtained with at least 5 digits of accuracy
(1 pcm) though for this particular case it is easy to approximate it to
much higher accuracy. We computed the error in keff using
a reference value obtained by extrapolating from a sequence of
globally refined meshes using cubic polynomials. Comparing linear
finite elements (Q1) results, we observe that adaptive mesh
refinement becomes competitive against uniform meshes in the
1-pcm range; for higher accuracy, e.g., 0.1 pcm, adaptive refinement
with Q1 elements is clearly superior than uniform mesh refinement.
For higher order elements, adaptive refinement becomes compet-
itive in the 0.1-pcm range as well.

Since the eigenvalue is a global quantity, it may not be too
surprising to see that the benefits of adaptation are modest.
Consequently, we also compare adaptive and uniform refinements
for the core power peaking factor introduced above, a local quan-
tity. Fig. 3 (top) shows the convergence in the peaking factor
between the various refinement techniques as a function of CPU
time. It is obvious that adaptive linear finite elements provide 1%
Please cite this article in press as: Wang, Y., et al., Three-dimensional h-a
Energy (2009), doi:10.1016/j.pnucene.2008.11.005
accuracy five times faster than uniform refinement, and a 0.01%
accuracy 20 times faster; for an accuracy of 0.01%, adaptive Q1

elements are comparable to uniform Q2 elements. Similarly, for
higher finite elements, there is always a significant gain in accuracy
of the power peaking factor when using mesh adaptation over
uniform refinement. Similar gains can also be seen in Fig. 3
(bottom), where the convergence in the core power peaking factor
is shown a function of the number of unknowns.

Meshes for Q1 elements after no, 2, 4 and 6 adaptive refinements
are shown in Fig. 4. From these images, it is clear that adaptive
mesh refinement provides better results than uniform meshes:
refinement occurs in regions of steep flux variations leading to
a better numerical approximation, whereas regions of smooth
solution do not require the same level of refinement. It is also worth
mentioning that the same accuracy as obtained with Q1 elements
after six adaptive refinements is already reached with two refine-
ments and Q2 elements (see Fig. 3)

4.2. Example 2: 2-D, two energy groups, OECD-L-336 fuel
assembly benchmark

As a second example, we consider a 2-D 2-group C4
configuration (semi-reflected MOX checker board) of the OECD/
NEACRP L-336 mixed oxide fuel benchmark problem issued by the
Organization for Economic Cooperation and Development/Nuclear
Energy Agency Committee on Reactor Physics. We compare solu-
tions using Qp finite elements of polynomial degrees p¼ 1 through
6. In the initial mesh, each initial computational cell is equal to the
homogeneous square fuel pin cell (i.e., an array of 34� 34 cells).
The meshes used for the fast and thermal energy groups are then
refined according to the criteria discussed in Section 3.

We show the solutions of both groups as well as a succession of
meshes used for the computations using Q1 (i.e., bilinear) elements
in Fig. 5. Even more so than in the first example, it is apparent that
the solutions have entirely different smoothness properties: the
fast group is relatively smooth, with only little dimples at the
location of the guide tubes, while the thermal group shows large
variations in neutron fluxes depending on the local neighborhood.
On the other hand, the fast group flux is larger in magnitude by
almost one order of magnitude. Thus, normalizing the group error
estimators by the flux of each group proved to be important as it
allows for an appropriate selection of the spatial zones and energy
groups which require refinement, as can be seen by the level of
refinement performed on the thermal flux in Fig. 5.
daptivity for the multigroup neutron diffusion equations, Prog. Nucl.



Fig. 9. Example 3: cross-section view at z¼ 200 cm of the Q1 (left column) and Q2 (right column) adapted meshes and solutions after 7 (left) and 2 (right) adaptive mesh
refinements. Top row: group 1; middle row: group 5; bottom row: group 7.
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In order to investigate if adaptive mesh refinement is indeed
better than uniform meshes, the top panel of Fig. 6 shows
a comparison of the convergence history for Q1, Q2, and Q3 elements
using both adaptive and uniform refinement. As can be seen from
the figure, depending on the desired accuracy, adaptive meshes can
achieve the same accuracy with up to 2–3 times fewer degrees of
freedom as required for uniformly refined meshes. An alternative
Please cite this article in press as: Wang, Y., et al., Three-dimensional h-a
Energy (2009), doi:10.1016/j.pnucene.2008.11.005
viewpoint is that adaptivity produces meshes on which the error is
smaller by a factor of up to 10 for the same number of unknowns as
on uniformly refined meshes. We observe similar savings by
comparing the error with respect to CPU time rather than the
number of degrees of freedom.

The bottom panel of Fig. 6 compares convergence of keff on
adaptive meshes for elements Qp of order p¼ 1, 2, ., 6. As can be
daptivity for the multigroup neutron diffusion equations, Prog. Nucl.
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Fig. 10. Example 3: comparison of the eigenvalue keff as a function of the number of unknowns (left) and CPU time (right) for uniform and adaptive mesh refinement, for linear,
quadratic, and cubic elements.
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seen, the accuracy in the result can be increased significantly by
choosing higher order finite elements up to p¼ 4. Beyond this, yet
higher orders do not pay off any more. This should not be too
unexpected given that the solution is rather rough at least for the
thermal group.

4.3. Example 3: three space dimensions, seven energy groups

To conclude our series of tests, we consider a 3-D core, 7-group
calculation. The core layout, composed of homogenized fuel
assemblies, is given in Fig. 7. We have chosen to consider two
distinct types of fuel, representative of a UOX fuel (labeled Material
1, see Fig. 7) and MOX fuel (Material 2). This results in different and
rapidly varying spatial flux distributions in the lower energy range.
Additionally, a control rod (Material 3) is partially inserted in the
UOX fuel. A reflector (Material 4) surrounds the fissile core radially
and axially. For simplicity, a unique reflector composition is
employed. The square fuel assemblies have a width of 21.504 cm,
the active core height is 3.6 m, with an additional 20 cm of reflector
at both top and bottom extremities, for a total height of 4 m. The
control rods are inserted from the top in 120 cm of five fuel
assemblies (the 240 cm below them are made of Material 1). The
initial mesh is composed of right prisms with a square base of
width 10.752 cm and height of 20 cm. We list the material
constants used for this test case in Appendix A.

Fig. 8 presents the group-7 solutions and adapted meshes for Q1

and Q2 finite elements. The plots are provided at refinement cycle 7
for Q1 and cycle 2 for Q2, for which the answers have approximately
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Fig. 11. Example 3: comparison of the core power peaking factor as a function of the number
linear, quadratic, and cubic elements.
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reached the same level of accuracy (see the discussion of Figs. 10
and 11 below). Fig. 9 shows cross sections of the solution and
adaptive meshes for groups 1 (fastest neutron group), 5, and 7
(slowest group), obtained using Q1 and Q2 elements. Again, the Q1

results are shown at mesh iteration 7 whereas the Q2 results are for
mesh iteration 2, both computations yielding about similar accu-
racies on these meshes. As in the previous examples, the solution
shows significant differences in smoothness between the energy
groups and has appreciable variation in particular for the slower
energy groups with steep gradients in MOX fuel assemblies (higher
absorption) and in the reflector.

Figs. 10 and 11 show convergence of keff and the core power
peaking factor under mesh refinement. This test case, being three-
dimensional and with a significant number of energy groups, is
complicated enough that we were not able to compute keff or the
core power peaking factor to enough digits to allow us to compute
convergence rates; all plots therefore only show actual values of
these quantities (rather than errors) though convergence is
apparent visually and a qualitative comparison of different
methods is obviously possible. As in previous experiments, linear
finite elements performed modestly better with adaptive refine-
ment regarding the accuracy in the eigenvalue (significant gains in
memory but comparable CPU times); for a local quantity, such as
the core power peaking factor, linear finite elements on adapted
meshes are clearly superior than on uniform meshes, with memory
and CPU time savings of about one order of magnitude for a given
accuracy. For quadratic finite elements, the results are even more
favorable: Within a couple of mesh adaptations the power peaking
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of unknowns (left) and CPU time (right) for uniform and adaptive mesh refinement, for
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Fig. 12. Example 3: flux profile 47(x, y¼ 39, z¼ 200). Left: Solution in adaptive refinement cycles 2, 4, 6, using Q1 elements and as a reference solution cycle 3 of computations with
Q2 elements. Right: Solution in adaptive refinement cycles 0, 1, 2, and 3 using Q2 elements.
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factor appears converged, whereas the results obtained from Q2

elements with one level of uniform refinement are still inaccurate.
By extrapolating the results from the Q2 initial and once-uniformly
refined meshes, we can estimate that the twice-uniformly refined
mesh would give results of the same accuracy level as the solution
obtained from two mesh adaptations, but at a memory and CPU
cost about 100 times larger; we have not been able to verify this in
actual computations due to the excessive memory requirements of
a twice globally refined mesh. As shown by the figure, Q3 elements
yield even higher accuracy at lower cost.

Finally, Fig.12 shows the profile of the group-7 solution along the
line y¼ 39 cm, z¼ 200 cm for several refinement cycles. The refer-
ence result utilizes Q2 elements with 3 adaptive refinement cycles.
From the left pane we can conclude that for Q1 elements even after 6
adaptive cycle some discrepancies remain. On the other hand, from
the right pane we infer that for Q2 elements, after 2 adaptive cycles
agreement with the reference solution is excellent.

Using this realistically sized test case we also investigated the
cost associated with dealing with multiple meshes, rather than
using a single mesh. To this end, we measured that only 2.5% of the
total CPU time was spent on computing the transfer matrices Tgg0

discussed in equation (18) and that approximately 9.3% of the total
CPU time was used in forming the right hand sides of the power
iterations; not all of this time is of course caused by dealing with
different meshes. Almost the entire rest of the CPU time was spent on
solving the linear systems associated with power iterations. We
conclude from this that the additional overhead for dealing with one
mesh per energy group as compared to having a single mesh
(adaptively or uniformly refined) is not very large and is easily offset
by savings in the sizes of meshes adapted to individual energy
groups.
5. Conclusions and outlook

In this contribution, we have presented an adaptive finite
element algorithm for the multigroup diffusion approximation to
the radiative transfer equation. It uses different meshes for each of
the energy groups to resolve the smoothness properties of the
solutions in each group. This approach is efficient because for this
set of equations the smoothness of solution components varies
greatly between energy groups, due to the significant variation in
material parameters with energy.

Through a sequence of numerical experiments we have shown
that the proposed algorithm performs better than uniformly
refined meshes – in the most complicated three-dimensional case
by orders of magnitude – and is therefore able to solve problems to
Please cite this article in press as: Wang, Y., et al., Three-dimensional h-a
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accuracies previously impossible or to solve problems to the
required accuracy for the first time at all.

Although we believe that the methods proposed here are
a significant step forward, we are also of the opinion that it can be
significantly extended and improved. Among these possibilities are:

� When implemented on a parallel computer with distributed
memory, meshes have to be replicated on each machine
anyway. This removes the additional (modest) memory
requirements we currently impose on our computations by
keeping G instead of only one mesh. The algorithms discussed
in the current paper may therefore be even more efficient if
implemented on distributed memory machines. The drawback
of parallel implementations is, of course, that the eigensolver
currently loops over energy groups in a sequential fashion,
solving each one in turn.
� The choice of importance factor zg, K in Section 3.3 is

heuristic. A proper importance factor can be derived by
solving a dual problem (Bangerth and Rannacher, 2003) that
computes the influence of a given cell K for a given group g
on a target functional, for example the accuracy of the
eigenvalue keff. For nonlinear problems like the current
eigenvalue problem, the solution of such a dual problem only
amounts to one additional power iteration step; neverthe-
less, the implementational burden would be significant. We
believe that a properly computed weight factor should
significantly increase the accuracy and reliability of adaptive
approaches.
� Our approach of using several different grids can of course be

applied also to some of the other approximations to the radi-
ative transfer equation that result in a set of coupled partial
differential equations. This includes, in particular, approaches
like the PN and SPN methods.
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Appendix A

The following table lists the material parameters (cross sections)
used for the 7-group example discussed in Section 4.3. Cross
sections for the other two examples can be found in the references
cited in the respective sections.
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g Dg St
g Sg/1

s Sg/2
s Sg/3

s Sg/4
s Sg/5

s Sg/6
s Sg/7

s nSf
g cg

Material 1
1 1.9645058 0.0676314 0.1020466 0.0620793 0.0002150 0.0000011 0.0000000 0.0000000 0.0000000 0.0134820 0.5880000
2 0.9536659 0.0419533 0.0000000 0.3075751 0.0387120 0.0001802 0.0000139 0.0000022 0.0000003 0.0013607 0.4116600
3 0.6713391 0.0905403 0.0000000 0.0000000 0.4059798 0.0670154 0.0049246 0.0007649 0.0001458 0.0105424 0.0003400
4 0.6121584 0.2108010 0.0000000 0.0000000 0.0000000 0.3337204 0.1242644 0.0184459 0.0035045 0.0304014 0.0000000
5 0.7927936 0.1951705 0.0000000 0.0000000 0.0000000 0.0001053 0.2252836 0.1551156 0.0176976 0.0290938 0.0000000
6 0.5279811 0.2476514 0.0000000 0.0000000 0.0000000 0.0000000 0.0015182 0.3836842 0.1681179 0.1356622 0.0000000
7 0.2891938 0.2450183 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0437284 0.9076112 0.3530487 0.0000000
Material 2
1 1.9414176 0.0683040 0.1033918 0.0616757 0.0002144 0.0000011 0.0000000 0.0000000 0.0000000 0.0159816 0.5880000
2 0.9463810 0.0419533 0.0000000 0.3102656 0.0387188 0.0001802 0.0000139 0.0000022 0.0000003 0.0026033 0.4116600
3 0.6588437 0.0952487 0.0000000 0.0000000 0.4106882 0.0669145 0.0049246 0.0007649 0.0001458 0.0162543 0.0003400
4 0.5854027 0.2282893 0.0000000 0.0000000 0.0000000 0.3411193 0.1242039 0.0184459 0.0035045 0.0635115 0.0000000
5 0.6296201 0.2967373 0.0000000 0.0000000 0.0000000 0.0001396 0.2326825 0.1540596 0.0176976 0.0308870 0.0000000
6 0.3597307 0.5536969 0.0000000 0.0000000 0.0000000 0.0000000 0.0021774 0.3729222 0.1656292 0.6254627 0.0000000
7 0.2473365 0.4488244 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0439369 0.8988671 0.7031916 0.0000000
Material 3
1 1.8996137 0.0667524 0.1087219 0.0611430 0.0002033 0.0000010 0.0000000 0.0000000 0.0000000 0.0134820 0.5880000
2 0.9222381 0.0391507 0.0000000 0.3222889 0.0354180 0.0001643 0.0000127 0.0000020 0.0000003 0.0013607 0.4116600
3 0.6232103 0.0894575 0.0000000 0.0000000 0.4454075 0.0611758 0.0044825 0.0006961 0.0001326 0.0105424 0.0003400
4 0.5665006 0.2233427 0.0000000 0.0000000 0.0000000 0.3650651 0.1135291 0.0167962 0.0031905 0.0304014 0.0000000
5 0.7291666 0.2249611 0.0000000 0.0000000 0.0000000 0.0001071 0.2321818 0.1421733 0.0161370 0.0290938 0.0000000
6 0.4990789 0.2915378 0.0000000 0.0000000 0.0000000 0.0000000 0.0015247 0.3763592 0.1531972 0.1356622 0.0000000
7 0.2788687 0.3157843 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0407812 0.8795214 0.3530487 0.0000000
Material 4
1 2.6455026 0.0598000 0.0662000 0.0591000 0.0002830 0.0000015 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
2 1.1376564 0.0530000 0.0000000 0.2400000 0.0524000 0.0002500 0.0000192 0.0000030 0.0000004 0.0000000 0.0000000
3 1.1737089 0.1010000 0.0000000 0.0000000 0.1830000 0.0924000 0.0069400 0.0010800 0.0002060 0.0000000 0.0000000
4 1.1862396 0.2021000 0.0000000 0.0000000 0.0000000 0.0789000 0.1700000 0.0259000 0.0049300 0.0000000 0.0000000
5 0.9980040 0.2343000 0.0000000 0.0000000 0.0000000 0.0000373 0.0997000 0.2070000 0.0245000 0.0000000 0.0000000
6 0.5889282 0.2490000 0.0000000 0.0000000 0.0000000 0.0000000 0.0009170 0.3170000 0.2390000 0.0000000 0.0000000
7 0.2849003 0.0700000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0498000 1.1000000 0.0000000 0.0000000
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