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ABSTRACT

Many important existing and upcoming biomedical imaging

modalities lead to nonlinear relationships between state vari-

ables from which measurements result and the tissue proper-

ties one would like to reconstruct, and typically involve partial

differential equations. For such cases, exact reconstruction

formulas are rarely known and their solution requires numer-

ical techniques such as the finite element method that approx-

imates all involved variables on a mesh.

Traditionally, the same mesh is used for all involved vari-

ables. In this contribution, we argue that this is inappropriate

and meshes should be chosen independently of each other for

the various variables involved. We support this claim through

a numerical experiment.

1. INTRODUCTION

In a number of current and upcoming biomedical imaging

methods, the relationship between the quantities that can be

measured and the tissue properties one would like to recon-

struct are nonlinear, and typically involve partial differential

equations that relate the two. Examples for this are electrical

impedance tomography (EIT, see [1]) as well as several re-

cently developed optical tomography (OT) schemes (see, for

example, [2, 3]).

In these inverse problems, exact reconstruction formulas

are not usually known due to the nonlinearity of the problem.

Their solution therefore requires the use of numerical tech-

niques that convert the underlying partial differential equa-

tion into a finite-dimensional system of equations. The most

widely used approach for this is the finite element method

that replaces all distributed functions by piecewise polyno-

mial approximations with finitely many degrees of freedom,

and thereby replaces the nonlinear inverse problem by a non-

linear system of (possibly very many) algebraic equations.

Traditionally, the same mesh is taken for all variables in-

volved in this. These are the state variable(s) that describe

how the system reacts to external forcing (in EIT the elec-

tric potential, in OT the light field amplitude), the parameter

we want to identify (in EIT the electric conductivity, in OT

1Part of this work has been funded through NIH grant no. R01 CA112679.

the light absorption and scattering coefficients or the concen-

tration of fluorescent dye molecules), and possibly Lagrange

multiplier(s) coupling the various equations. The number of

variables increases if we make multiple experiments; in OT,

for example, we may illuminate a body with differently pat-

terned light sources and get a number of different light field

amplitudes inside the body from measurements of all of which

we hope to reconstruct our parameter fields [4]. The tradi-

tional approach is to also use the same mesh for all of these

fields, even though each of these light fields may be localized

in a different part of the domain.

In this contribution, we argue that this approach is inap-

propriate. In particular, efficient discretizations will lead to

meshes for different variables that are chosen independently

of each other, in order to capture the characteristics and lo-

calization of the variable discretized on it. In the above ex-

ample, the mesh used for the light field in each of the exper-

iments should be fine where the patterned source illuminates

the body, whereas it may be coarse elsewhere (possibly in-

cluding locations where we illuminate the body in a different

experiment). In addition, the mesh for the parameter field that

we want to recover should be independent of the meshes used

for the state variables and should only reflect the properties of

the recovered parameter.

Such an approach in which all meshes are chosen inde-

pendently has two main advantages:

• Each mesh is adapted to the variables it is used for and

can deliver high accuracy at an optimal cost.

• The mesh for the parameter we want to recover can be

made as coarse as possible in regions where the param-

eter is smooth or even constant (e.g. in the background);

this coarseness reduces the size of the problem, but also

acts as an additional regularization that both suppresses

unwanted oscillations as well as make the problem sim-

pler to solve.

In the following, we will demonstrate our approach using a

simple model problem akin to electrical impedance tomogra-

phy. More complex applications of this technique to optical

tomography can be found in [4, ?].
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2. METHODS

Let us consider a simple model similar to electrical impedance

tomography. In this model, electric currents are induced in a

body by applying certain voltage patterns gi(r), i = 1, . . . , M
to the surface. For each source pattern i, the electric potential

ui(r) in the body then satisfies the equations

−∇ · q∇ui = 0 in Ω, ui = gi on ∂Ω, (1)

where q = q(r) is the spatially varying electric conductiv-

ity we want to recover from measurements of the electric po-

tential u or of currents ji = q∇ui. Let us further consider

the model situation where we are able to measure the electric

potentials ui everywhere; this corresponds to certain newer

variants of electric impedance tomography such as acousto-

electric tomography. Similarly, newer variants of optical to-

mography, such as ultrasound modulated optical tomography

are able to probe the light intensity not only at the surface, but

everywhere in the body.1

Under this assumption, our aim is to find a parameter q(r)
such that the predicted potentials ui for all source patterns gi

match the actual measurements. Let us denote measurements

for the i-th experiment by zi. Then our goal is to find a pa-

rameter q that minimizes the misfit functional

J(u, q) =
1
2

M∑

i=1

‖ui − zi‖2 + β‖q‖2, (2)

where the last term acts as a regularization term, ‖v‖2 =∫
Ω

v2 dx, and the ui are related to q and gi through equa-

tion (1). If we consider (1) as a constraint to the minimization

task (2), then the problem can be posed in the framework of

constrained minimization [5] by introducing Lagrange mul-

tipliers λi for the state equations (1) and forming the La-

grangian

L(u, λ, q) = J(u, q) +
M∑

i=1

(q∇ui,∇λi), (3)

in addition to the constraint ui = gi on ∂Ω which we enforce

separately. Here, (v, w) =
∫
Ω

v w dx. Note that we have

incorporated the Laplace equation in its weak form, i.e. by

multiplying the equation −∇ · q∇ui = 0 by λi, integrating

over Ω, and integrating by parts once.

The desired solution is then a stationary point of this La-

grangian, i.e. a point (u, λ, q) where all (variational) deriva-

tives of the Lagrangian L vanish. The equations that define

this point form a system of nonlinear coupled partial differen-

tial equations that can be solved using a Newton-type method

safeguarded by a linear search.

1In contrast, in traditional EIT only measurements of j on the boundary

∂Ω are available, as is the light intensity u in traditional optical tomography.

This lack of data leads to mathematically harder, more ill-posed problems.

We consider the present, simpler situation in order to separate the effects of

meshing and ill-posedness, the former being the focus of this paper.

Instead of going into the details of such an algorithm (for

this, we refer to [6, 7]), let us here comment on the question

of how to discretize the various variables involved. In partic-

ular, we note that the variables that need to be discretized are:

(a) the M different state variables ui(r), (b) the M different

Lagrange multipliers λi(r), and finally (c) the parameter q(r).
It turns out to be advantageous to choose M + 1 differ-

ent meshes for the M state and adjoint variables on the one

hand, and the parameter on the other hand. The reason for this

choice is that these M + 1 sets of variables may have entirely

different and independent properties. For example, if bound-

ary sources gi, gj describe independent experiments where

we have changed the location of electrodes through which

we inject current, then it is clear that the current patterns for

these two experiments need not have much in common. In

fact, currents may flow through entirely different parts of the

body, and a mesh that accurately resolves these current pat-

terns for measurement i need not be good for measurement

j. In order to focus numerical work to where it is necessary,

we should therefore choose meshes independently adapted to

each of these experiments. Because the Lagrange multiplier

λi tracks how well ui satisfies its state equation, it is reason-

able to also discretize it on the same mesh.

Likewise, the mesh used to resolve the parameter q should

be fine where q jumps or has otherwise large variation. How-

ever, these locations do not necessarily have to coincide with

where any of the state variables varies strongly. In particu-

lar, the latter often have their strongest variation close to the

surface, due to the exponential decay with depth inherent in

solutions of the Laplace equation, whereas, for example, if

we are interested in tumor detection, we want to identify pa-

rameters that are discontinuous deep inside the body.

Our approach therefore is to start with a relatively coarse,

uniform mesh for all these variables and perform a number of

Newton steps towards the solution of the nonlinear inverse

problem. We then evaluate the different functions using a

smoothness indicator [7, 4], and refine each mesh indepen-

dently and with the goal of adequately capturing the charac-

teristics of the functions discretized on it. We then repeat this

sequence of performing a few iterations followed by mesh re-

finement until we are satisfied with the results.

3. RESULTS

We present results for a test case where four different voltage

patterns are applied to the top surface of the three-dimensional

box [−1, 1]3. The patterns are meant to imitate pairs of elec-

trodes at positive and negative voltage attached to opposite

sides of the top surface, and are moved over the surface for

successive measurements. The top surfaces of Fig. 1a/b show

the boundary conditions for the first and third measurement,

respectively, i.e. g1, g3, along with the respective solutions

u1, u3 on three planes through the domain.

Using these boundary conditions, we acquire “synthetic”
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(a) (b) (c) (d)

Fig. 1. Numerical solutions: state variables. (a,b) Boundary conditions on the top surface and cuts through the solution for
experiments i = 1 and i = 3. (c) Isocontour surfaces for the electric potential for the third pair of electrodes. (d) The mesh
used in the discretization of the electric potential for the third pair of electrodes.

measurements zi, i = 1, . . . , M by numerically solving

−∇ · q∗∇zi = 0 in Ω, zi = gi on ∂Ω, (4)

for the electric conductivity field q∗(r) with value 8 inside a

sphere of radius 1
2 around the origin, and value 1 in the rest of

the domain. Using these synthetic measurements, we then in-

voke the procedure described above to recover the parameter

q(r). Ideally, this reconstruction would be close to or equal to

the “exact” value q∗, although we can not usually expect this

for solutions of such ill-posed problems, in particular in areas

of the domain far away from the sources. The reconstruction

procedure is of course unaware of the exact q∗.

Fig. 1c shows iso-surfaces of the solution u3. The banana-

shaped region through which most of the current flows from

one electrode to the other is easily imagined by recalling that

current flows perpendicular to these iso-surfaces. The effect

of the high-conductivity region at the center of the domain is

clearly seen at the bottom of these surfaces.

Fig. 1d depicts the mesh used to discretize u3. It was

obtained after 5 refinement steps. It clearly shows the areas

where the boundary condition g3 has a jump and where the

solution is correspondingly rough. This mesh has approxi-

mately 7,000 cells, which is also roughly the number of cells

we obtain for the meshes used in the discretization of the other

three experiments i = 1, 2, 4. We note that a uniformly re-

fined mesh after 5 refinement would have 32,768 cells.

By comparing the numerical solutions ui with the pre-

viously obtained synthetic measurements zi, and varying the

parameter field q until the mismatch between the two becomes

minimal, we obtain a numerical approximation of the electric

conductivity q. Fig. 2 shows the results of this reconstruc-

tion process and the mesh used for it.2 The reconstruction

clearly recovers the high-conductivity zone at the center and

2These reconstructions were obtained with a program based on the deal.II

finite element library [8]. Run times on a laptop equipped with an Intel Core

processor and 1GB of memory were roughly 5min for reconstructions with

M = 4 independent measurements.

approximates its shape and size well. Its elongation is due to

the fact that all electrode pairs are arranged left-right; a com-

pletely symmetric reconstruction can be obtained by adding

front-back electrode measurements as well.

Since the smoothness properties of the reconstructed pa-

rameter field q (i.e. the discontinuities of the parameter deep

in the domain) have little to do with the smoothness of each

of the solutions ui (which are rough primarily in the vicinity

of the electrodes), it is clear that none of the meshes used for

the ui is relevant for the discretization of q. As discussed be-

fore, we therefore choose a completely independent mesh for

it, shown in Fig. 2c. This mesh is fine only in the vicinity of

the jump in the values of q, and coarse everywhere else, in-

cluding in the regions where the state variables ui are rough.

It has 904 only cells, again much less than the 32,768 cells

a uniformly refined mesh would have that was everywhere at

least as fine as our adaptive mesh.

4. DISCUSSION

Comparing the number of cells in each of the meshes dis-

cussed above with those that would be necessary if one were

to use a uniformly refined mesh makes it clear that our ap-

proach leads to large savings both in terms of memory con-

sumption and run time of our reconstruction algorithm. Even

though we have to deal with M + 1 different meshes that do

not share a common memory representation or matrix struc-

ture, the savings are clearly large enough to still be beneficial.

Of particular importance is the vastly smaller number of

mesh cells necessary to discretize the parameter q(r), com-

pared to a uniformly refined mesh or a hypothetical mesh that

could be constructed by using the finest cells of all meshes

involved. The importance of this lies in the fact that even

with the best linear solvers, the numerical work to solve the

inverse problem will grow at least linearly with the number of

parameter unknowns, but also with the condition number of

the problem. As mentioned in the previous section, the num-
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(a) (b) (c)

Fig. 2. Numerical reconstructions of the electric conductivity. (a) Cross sections through the recovered parameter. (b) Volume
at which the parameter is above 90% of the maximum value. (c) The mesh for the parameter after two refinement steps.

ber of cells is already smaller by a factor of 35. The change in

condition number is less tractable, but it is well known that for

inverse problems the use of overly fine meshes for the param-

eter leads to badly conditioned problems and results in spu-

rious oscillations. The relevance of adaptive meshes in this

context is that the question whether a mesh is “overly fine”

rests on the amount of information available at a location; in

particular, the amount of information decreases exponentially

with depth and with the distance from the sources.

It is therefore important to choose a coarse mesh deep in

the body and far away from the source patterns. The resulting

decreased condition number of the linear subproblems solved

in each Newton step consequently leads not only to faster iter-

ative solvers, but also avoids additional spurious oscillations

of the reconstructed parameter and thereby reduces the need

for artificial and non-physical regularization strategies.

5. CONCLUSIONS

Through numerical examples, we have shown that our ap-

proach of using separate meshes for the solutions ui of the

state equations as well as for the parameter q that we want

to reconstruct, leads to significant savings in the number of

unknowns. This is important for both reducing the computa-

tional requirements for numerically solving the inverse prob-

lem, as well as for the accuracy of solutions and for the sup-

pression of spurious oscillations.

Although the numerical results presented here are for a

problem akin to electrical impedance tomography, the tech-

niques are applicable to similar inverse problems as well. In

particular, applications to fluorescence-enhanced optical to-

mography can be found in [7, 4], with savings on a similar

order of magnitude.
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