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Abstract
Optical tomography attempts to determine a spatially variable coefficient in
the interior of a body from measurements of light fluxes at the boundary.
Like in many other applications in biomedical imaging, computing solutions
in optical tomography is complicated by the fact that one wants to identify an
unknown number of relatively small irregularities in this coefficient at unknown
locations, for example corresponding to the presence of tumors. To recover
them at the resolution needed in clinical practice, one has to use meshes that,
if uniformly fine, would lead to intractably large problems with hundreds of
millions of unknowns. Adaptive meshes are therefore an indispensable tool.
In this paper, we will describe a framework for the adaptive finite element
solution of optical tomography problems. It takes into account all steps starting
from the formulation of the problem including constraints on the coefficient,
outer Newton-type nonlinear and inner linear iterations, regularization, and in
particular the interplay of these algorithms with discretizing the problem on
a sequence of adaptively refined meshes. We will demonstrate the efficiency
and accuracy of these algorithms on a set of numerical examples of clinical
relevance related to locating lymph nodes in tumor diagnosis.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Fluorescence-enhanced optical tomography is a recent and highly active area in biomedical
imaging research. It attempts to reconstruct interior body properties using light in the red and
infrared range in which biological tissues are highly scattering but not strongly absorbing.
It is developed as a tool for imaging up to depths of several centimeters, which includes in
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particular important applications to breast and cervix cancer detection and staging, lymph
node imaging, but also imaging of the brain of newborns through the skull.

Optical tomography addresses a number of shortcomings of established imaging
techniques. Most currently available techniques only image secondary effects of tumors
such as calcification of blood vessels (x-rays), density and stiffness differences (ultrasound)
or water content (MRI) of tissues. While such effects are often associated with tumors, they
are not always, and frequently lead to both false positive and false negative assessments. In
addition, x-ray imaging uses ionizing radiation and is therefore harmful and potentially cancer
inducing. In contrast, optical tomography is a method that (i) does not use harmful radiation,
and (ii) can be made specific to tumors on the molecular level, distinguishing proteins and
other molecules that are only expressed in certain tissues we are interested in (for example
tumor cells, or lymph nodes if the goal is to track the spread of a tumor).

The idea behind optical tomography [4] is to illuminate the tissue surface with a known
laser source. The light will diffuse and be absorbed in the tissue. By observing the light
flux exiting the tissue surface, one hopes to recover the spatial structure of absorption and
scattering coefficients inside the sample, which in turn is assumed to coincide with anatomical
and pathological structures. For example, it is known that hemoglobin concentration, blood
oxygenation levels and water content affect optical tissue properties, all of which are correlated
with the presence of tumors. As a result diffuse optical tomography (DOT) can uniquely image
the in vivo metabolic environment [23, 36, 37, 77].

However, DOT has been recognized as a method that is hard to implement because it does
not produce a very large signal-to-noise ratio. This follows from the fact that a relatively small
tumor, or one that does not have a particularly high absorption contrast, does not produce
much dimming of the light intensity on the surface, in particular in reflection geometry, i.e.
where illumination and measurement surfaces coincide. Another drawback of DOT is that it
is non-specific: it detects areas of high light absorption, but does not distinguish the reasons
for absorption; for example, it cannot distinguish between naturally dark tissues as compared
to invading dark diseased tissues.

During the last decade, a number of approaches have been developed that attempt to avoid
these drawbacks. One is fluorescence-enhanced optical tomography, in which a fluorescent
dye (or ‘fluorophore’) is injected that specifically targets certain tissue types, for example
tumor or lymph node cells. The premise is that it is naturally washed out from the rest of the
tissue. If the dye is excited using light of one wavelength, then we will get a fluorescent signal
at a different wavelength, typically in the infrared, from areas in which dye is present (i.e.
where the tumor or a lymph node is). In other words, if we illuminate the skin with a red laser,
light will travel into the tissue, be absorbed by the dye, and will be re-emitted at a different
wavelength (in the infrared range). This secondary light is then detected again at the skin:
here, a bright infrared spot on the surface indicates the presence of a high dye concentration
underneath, which is then indicative of the presence of the tissue kind the dye is specific to.

Since the signal is the presence of a different kind of light, not a faint dimming of the
incident light intensity, the signal to noise ratio of fluorescence optical tomography is much
better than in DOT. It is also much better than, for example, in positron emission tomography
(PET) because dyes can be excited millions or billions of times per second, each time emitting
an infrared photon. In addition, the specificity of dyes can be used for molecularly targeted
imaging, i.e. we can really image the presence of diseased cells, not only secondary effects.

In the past, fluorescence tomography schemes have been proposed for pre-clinical small
animal imaging applications [31] as well as for the clinical imaging of large tissue volumes
[25, 28, 30, 43, 57, 58, 61, 67–69, 72, 74, 76, 81]. Typical fluorescence optical tomography
schemes employ iterative image reconstruction techniques to determine the fluorescence yield
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or lifetime map in the tissue from boundary fluorescence measurements. A successful clinically
relevant fluorescence tomography system will have the following attributes: (i) rapid data
acquisition to minimize patient movement and discomfort, (ii) accurate and computationally
efficient modeling of light propagation in large tissue volumes and (iii) a robust image
reconstruction strategy to handle the ill-posedness introduced by the diffuse propagation
of photons in tissue and the scarcity of data.

From a computational perspective, the challenge in optical tomography—as in many other
nonlinear imaging modalities—is to reach the clinically necessary resolution within acceptable
compute times. To illustrate this, consider that the typical volume under interrogation in
imaging, for example a human breast or the axillar region, is of the size of one liter. On the
other hand, the desired resolution is about one millimeter. A discretization of the unknown
coefficient on a uniform mesh therefore leads to an optimization problem with one million
unknowns. In addition to this, we have to count the number of unknowns necessary to
discretize the state and adjoint equation in this PDE-constrained problem; to guarantee basic
stability of reconstructions we need a mesh that is at least once more refined, i.e. would
have 8 million cells. As will be shown below, in optical tomography, we have four solution
variables for states and adjoints each, i.e. we already have some 64 million unknowns for the
discretization of each measurement. In practice, one makes 6–16 measurements, leading to a
total size of the problem of between 300 million and 1 billion unknowns. It is quite clear that
nonlinear optimization problems of this size cannot be solved on today’s hardware within the
time frame acceptable for clinical use: 1–5 min.

We therefore consider the use of adaptive finite element methods indispensable to reduce
the problem size to one that is manageable while retaining the desired accuracy in those areas
where it is necessary to resolve features of interest. As we will see, the algorithms proposed
here will enable us to solve problems of realistic complexity with only up to a few thousand
unknowns in the discretization of the unknown coefficient, and a few ten or hundred thousand
unknowns in the discretization of the forward problem for each measurement. Utilizing a
cluster of computers where each node deals with the description of a single measurement, we
are able to solve these problems in 10–20 min, only a factor of 5 away from our ultimate goal
[7, 48, 50].

Over the last decade, adaptive finite element methods have seen obvious success in
reducing the complexity of problems in the solution of partial differential equations [3, 10, 22].
It is therefore perhaps surprising that they have not yet found widespread use in solving inverse
problems, although there is some interest for PDE-constrained optimization in the very recent
past [12, 13, 15, 19, 20, 32–35, 45, 56, 62, 63]. Part of this may be attributed to the fact
that adaptive finite element schemes have largely been developed on linear, often elliptic
model problems. Conversely, the optimization community that has often driven the numerical
solution of inverse problems is not used to the consequences of adaptive schemes, in particular
that the size of solution vectors changes under mesh refinement, and that finite-dimensional
norms are no longer equivalent to function space norms on locally refined meshes.

The goal of this paper is therefore to review the numerical techniques necessary to solve
nonlinear inverse problems on adaptively refined meshes, using optical tomography as a
realistic testcase. The general approach to solving the problem is similar as used in work by
other researchers [1, 17, 18] and related to methods described and analyzed in [26, 38, 39, 79].
However, adaptivity is a rather intrusive component of PDE solvers, and we will consequently
have to re-consider all aspects of the numerical solution of this inverse problem and modify
them for the requirements of adaptive schemes. To this end, we will start with a description
of the method and the mathematical formulation of the forward and inverse problems in
section 2. We will then discuss continuous and discrete Newton-type schemes in section 3,
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including practical methods to enforce inequality constraints on the parameter, for mesh
refinement and for regularization. Section 4 is devoted to numerical results. We will conclude
and give an outlook in section 5.

2. Mathematical formulation of the inverse problem

Optical tomography in most of its variants is a nonlinear imaging modality, i.e. the equations
that represent the forward model contain nonlinear combinations of the parameters we intend to
reconstruct and the state variables. Consequently, it is no surprise that analytic reconstruction
formulae are unknown, and it would be no stretch to assume that they in fact do not exist.

In the absence of analytic methods, the typical approach to solve such problems is to use
numerical methods, and more specifically the framework known as model-based optimization
or PDE-constrained parameter estimation. In this framework, one draws up a forward model,
typically represented by a partial differential equation (PDE), that is able to predict the outcome
of a measurement if only the internal material properties (the parameters) of the body under
interrogation were known. In a second step, one couples this with an optimization problem:
find that set of parameters for which the predicted measurements would be closest to what
we actually measured experimentally. In other words, minimize (optimize) the misfit, i.e. the
difference between the prediction and experiment, by varying the coefficient.

Model-based imaging therefore requires us to first formulate the inverse problem with
three main ingredients: a forward model, a description of what we can measure, and a measure
of difference between the prediction and experiment. In the following, we will discuss these
building blocks for the fluorescence-enhanced optical tomography application mentioned in
the introduction, and then state the full inverse problems. Algorithms for the solution of the
resulting inverse problem are given in section 3 and numerical results are given in section 4.

2.1. The forward model

Fluorescence-enhanced optical tomography is formulated in a model-based framework,
wherein a photon transport model is used to predict boundary fluorescence measurements
for a given dye concentration map in the tissue interior. For photon propagation in large tissue
volumes, the following set of coupled photon diffusion equations posed on a domain � ⊂ R

d

is an accurate model [75]

−∇ · [Dx∇u] + kxu = 0, in �, (1)

−∇ · [Dm∇v] + kmv = βxmu in �. (2)

Subscripts x and m denote the excitation (incident) and the emission (fluorescence) light
fields, and u, v ∈ H 1(�) are the photon fluence fields at excitation and emission wavelengths,
respectively. These equations can be obtained as the scattering limit of the full radiative
transfer equations [24] and have been shown to be an accurate approximation. Under the
assumption that the amplitude of the incident light field is modulated at a frequency ω (in
experiments around 100 MHz, i.e. much less than the oscillation period of the electromagnetic
waves), we can derive the following expressions for the coefficients appearing above:

D∗ = 1

3(µa∗i + µa∗f + µ′
s∗)

, k∗ = iω

c
+ µa∗i + µa∗f , βxm = φµaxf

1 − iωτ
,

Here, ∗ stands for either x (excitation) or m (emission) material parameters; D∗ are the photon
diffusion coefficients; µa∗i is the absorption coefficient due to endogenous chromophores;
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µa∗f is the absorption coefficient due to exogenous fluorophore; µ′
s∗ is the reduced scattering

coefficient; φ is the quantum efficiency of the fluorophore, and finally, τ is the fluorophore
lifetime associated with first-order fluorescence decay kinetics. All these coefficients, and in
particular the fluences u, v and the absorption/scattering coefficients are spatially variable and
can be assumed to be in L∞(�).

Above equations are complemented by Robin-type boundary conditions on the boundary
∂� of the domain � modeling the NIR excitation source

2Dx

∂u

∂n
+ γ u + S = 0, 2Dm

∂v

∂n
+ γ v = 0, on ∂�, (3)

where n denotes the outward normal to the surface and γ is a constant depending on the optical
refractive index mismatch at the boundary. The complex-valued function S = S(r), r ∈ ∂�

is the spatially variable excitation boundary source.
Equations (1)–(3) can be interpreted as follows: the incident light fluence u is described

by a diffusion equation that is entirely driven by the boundary source S, and where the
diffusion and absorption coefficients depend on a number of material properties, including
the dye induced absorption µaxf . On the other hand, there is no boundary source term for
the fluorescence fluence v: fluorescent light is only produced in the interior of the body
where incident light u is absorbed by a dye described by its absorption coefficient µaxf that is
proportional to its concentration, and then re-emitted with probability φ and phase shift 1

1−iωτ
.

It then propagates through the tissue in the same way as the incident fluence, i.e. following a
diffusion/absorption process.

The goal of fluorescence tomography is to reconstruct the spatial map of coefficients
µaxf (r) and/or τ(r), r ∈ � from measurements of the complex emission fluence v(r) on
the boundary. In this work we will focus on the recovery of only µaxf (r), while all other
coefficients are considered known a priori. For notational brevity, and to indicate the special
role of this coefficient as the main unknown of the problem, we set q = µaxf in the following
paragraphs. Note that q does not only appear in the right-hand side of the equation for v, but
also in the diffusion and absorption coefficients of the domain and boundary equations.

2.2. The inverse problem for multiple illumination patterns

Assume that we make W experiments, each time illuminating the skin with different excitation
light patterns Si(r), i = 1, 2, . . . , W and measuring the fluorescent light intensities that result.
For each of these experiments, we can predict fluences ui, vi satisfying (1)–(3) with Si(r) as
source terms if we assume knowledge of the yield map q. In addition, we take fluorescence
measurements on the measurement boundary � ⊂ ∂� for each of these experiments that
we will denote by zi . The fluorescence image reconstruction problem is then posed as a
constrained optimization problem wherein an L2 norm based error functional of the distance
between fluorescence measurements z = {zi, i = 1, 2, . . . , W } and the diffusion model
predictions v = {vi, i = 1, 2, . . . , W } is minimized by variation of the parameter q; the
diffusion model for each fluence prediction vi is a constraint to this optimization problem. In
a function space setting, the mathematical formulation of this minimization problem reads as
follows:

min
{q,u,v}∈L∞(�)×H 1(�)2W

J (q, v)

subject to Ai(q; [ui, vi])([ζ i, ξ i]) = 0, ∀ ζ i, ξ i ∈ H 1(�), i = 1, 2, . . . , W.

(4)

Here, the error functional J (q, v) incorporates a least-squares error term over the measurement
part � of the boundary ∂� and a Tikhonov regularization term
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J (q, v) =
W∑
i=1

1

2
‖vi − zi‖2

� + βr(q), (5)

where β is the Tikhonov regularization parameter. The Tikhonov regularization term βr(q) is
added to the minimization functional to control undesirable components in the map q(r) that
result from a lack of resolvability. In our computations, we will choose r(q) = 1

2‖q‖2
L2(�). The

constraint Ai(q; [ui, vi])([ζ i, ξ i]) = 0 is the weak or variational form of the coupled photon
diffusion equations with partial current boundary conditions, (1)–(3), for the ith excitation
source, and with test functions [ζ, ξ ] ∈ H 1(�):

Ai(q; [ui, vi])([ζ i, ξ i]) = (Dx∇ui,∇ζ i)� + (kxu
i, ζ i)� +

γ

2
(ui, ζ i)∂� +

1

2
(Si, ζ i)∂�

+ (Dm∇vi,∇ξ i)� + (kmvi, ξ i)� +
γ

2
(vi, ξ i)∂� − (βxmui, ξ i)�. (6)

Here, all inner products have to be considered as between two complex-valued functions.
This optimization problem is, so far, posed in function spaces. An appropriate setting

is ui, vi ∈ H 1(�), q ∈ Qad = {χ ∈ L2(�) : 0 < q0 � χ � q1 < ∞ a.e.}. The bilateral
constraints on q are critically important to guarantee physical solutions: dye concentrations
must certainly be at least positive, but oftentimes both nonzero lower as well as upper bounds
can be inferred from physiological considerations, and their incorporation has been shown to
greatly stabilize the inversion of noisy data [7].

In contrast to output least-squares based techniques, we will not directly enforce the
dependence of the state variables u and v on the parameter q by solving the state equations for
a given parameter q and substituting these solutions in place of v in the error functional. Rather,
in the following subsection, we will adopt an all-at-once approach in which this dependence
is implicitly enforced by treating u, v, q as independent variables and including the forward
model as a constraint on the error functional.

Note that in analogy to the Dirichlet–Neumann problem, one would expect that infinitely
many measurements (i.e. W = ∞) are necessary to recover q. In practice, it has been shown
that after discretization on finite-dimensional meshes, even W = 1 can lead to reasonably
good reconstructions. Better resolution and stability is achieved using more measurements,
for example W = 16 or W = 32, see [50].

3. Solving the inverse problem

3.1. Continuous algorithm

The solution of minimization problem (4) is a stationary point of the following Lagrangian
combining objective functional, state equation constraints and parameter inequalities [65]

L(x,µ0, µ1) = J (q, v) +
W∑
i=1

Ai(q; [ui, vi])
([

λex
i , λem

i

])
+ (µ0, q − q0)� + (µ1, q1 − q)�. (7)

Here, λex = {
λex

i , i = 1, 2, . . . ,W
}
,λem = {

λem
i , i = 1, 2, . . . ,W

}
are the Lagrange

multipliers corresponding to the excitation and emission diffusion equation constraints for
the ith source, respectively, and we have introduced the abbreviation x = {u, v,λex,λem, q}
for simplicity; u = {ui, i = 1, 2, . . . ,W } and v = {vi, i = 1, 2, . . . ,W } are excitation and
emission fluences for the W experiments. µ0, µ1 are Lagrange multipliers for the inequality
constraints expressed by the space Qad, and at the solution x∗ will have to satisfy the following
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conditions in addition to those already expressed by stationarity of L(x): µ∗
k � 0, k = 1, 2

and (q∗ − q0, µ
∗
0)� = (q1 − q∗, µ∗

1)� = 0.
In what follows we will adhere to the general framework laid out in [7] for the solution of

problems like the one stated above. Similar frameworks, albeit not using adaptivity, are also
discussed in [1, 17, 18]. To this end, we use a Gauss–Newton-like iteration to find a stationary
point of L(x,µ0, µ1), i.e. a solution of the constrained minimization problem (4). In this
iteration, we seek an update direction δxk = {

δuk, δvk, δλ
ex
k , δλem

k , δqk

}
that is determined

by solving the linear system

Lxx(xk)(δxk, y) = −Lx(xk)(y) ∀ y,

(δqk, χ)A = 0 ∀ χ ∈ L2(A),
(8)

where Lxx(xk) is the Gauss–Newton approximation to the Hessian matrix of second derivatives
of L at point xk , and y denotes possible test functions. A ⊂ � is the active set where we
expect qk+1 to be either at the upper or the lower bound at the end of the iteration. We will
comment on the choice of this set below in section 3.3.

Equations (8) represent one condition for each variable in δxk , i.e. they form a coupled
system of equations for the 4W + 1 variables involved: all W excitation and emission fluences,
excitation and emission Lagrange multipliers, and the parameter map q. By construction, we
also know that q0 � qk + δqk � q1 at least on A. Once the search direction is computed from
equation (8), the actual update is determined by calculating a safeguarded step length αk

xk+1 = xk + αkδxk. (9)

The step length αk can be computed from one of several methods, such as the Goldstein–Armijo
backtracking line search [65]. Merit functions for step length determination are discussed in
[18]; our choice is detailed in [7].

3.2. Discrete algorithm

The Gauss–Newton equations (8) form a coupled system of linear partial differential equations.
However, since the solution of the previous step appears as non-constant coefficients in these
equations, there is clearly no hope for analytic solutions. We therefore need to discretize these
equations to compute numerical approximations of their solution.

For discretization, we use the finite element method: in Gauss–Newton iteration k, state
and adjoint variables u, v,λex and λem and their Gauss–Newton updates are discretized and
solved for on a set of meshes

{
T

i
k

}W

i=1 with continuous elements, reflecting the fact that
solutions of the diffusion equations (1)–(2) are continuous. In addition, the fact that we use
different meshes for the discretization of variables corresponding to different experiments
i = 1, . . . ,W follows the observation that if we illuminate the body with different source
patterns, the solutions may be entirely different. This will become apparent from the numerical
examples shown in section 4.

On the other hand, we use yet another mesh, T
q

k to discretize the parameter map q and
Lagrange multipliers for upper and lower bounds in iteration k. Since (discretized) inverse
problems become ill-posed if the parameter mesh is too fine, we typically choose T

q

k coarser
than the state meshes T

i
k , and in particular adapt it to the parameter q, i.e. we choose it fine

where the parameter is rough, and coarse where q is smooth; note that the smoothness
properties of q do not necessarily coincide with those of the state variables (see again
section 4) and it will therefore be beneficial to adapt all the meshes independently. On
the mesh T

q

k , discontinuous finite elements are employed, reflecting the fact that both the
parameters and the Lagrange multipliers will in general only be in L2(�).
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We will return to the question of how to choose all these meshes in section 3.4 below. For
the moment, let us assume that in iteration k we are given a set of meshes T

i
k, T

q

k with associated
finite element spaces. Discretizing the Gauss–Newton system (8) then leads to the following
linear system for the unknowns of our discrete finite element update δxk = {δpk, δqk, δdk}
and the Lagrange multipliers for the bound constraints:⎡

⎢⎢⎣
M 0 P T 0
0 R CT XT

P C 0 0
0 X 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

δpk

δqk

δdk

δµk

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

F1

F2

F3

0

⎤
⎥⎥⎦ , (10)

where the updates for the primal and dual (Lagrange multiplier) variables are abbreviated
as δpk = [δuk, δvk]T , δdk = [

δλex
k , δλem

k

]T
and δµk are the Lagrange multipliers enforcing

δqk = 0 on the active set where parameters are at their bounds. Since each of these 4W + 2
variables is discretized with several ten or hundred thousand unknowns on our finite element
meshes, the matrix on the left-hand side can easily have a dimension of several millions to
over 10 million. Furthermore, it is typically very badly conditioned, with condition numbers
easily reaching 1012 and above.

At first glance, it therefore seems infeasible or at least very expensive to solve such a
system. In the past, this has led researchers to the following approach: use one experiment
alone to invert for the fluorescence map, then use the result as the starting value for inverting
the next data set and so on; one or several loops over all data sets may be performed. While
this approach often works for problems that are only moderately ill-posed, it is inappropriate
for problems with the severe ill-posedness of the one at hand. The reason is that if we scan
the source over the surface, we will only be able to identify the yield map in the vicinity of
the illuminated area. Far away from it, we have virtually no information on the map. We will
therefore reconstruct invalid information away from the source, erasing all prior information
we have already obtained there in previous steps.

Consequently, it is mandatory that we use all available information at the same time,
in a joint inversion scheme. Fortunately, we can make use of the structure of the problem:
because experiments are independent of each other, the joint Gauss–Newton matrix is virtually
empty, and in particular has no couplings between the entries corresponding to primal and
dual variables of different illumination experiments. The only thing that keeps the matrix fully
coupled is the presence of the yield map q on which all experiments depend.

This structure is manifested in the fact that M, the second derivative of the measurement
error function with respect to state variables ui, vi for all the excitation sources, is a
block diagonal matrix {M1,M2, . . . ,MW }. Likewise P = blockdiag{P1, P2, . . . , PW } is
the representation of the discrete forward diffusion model for all the excitation sources.
The matrix C = [C1, C2, . . . , CW ] is obtained by differentiating the semi-linear form Ai in
equation (6) with respect to the parameter q. Since we choose different meshes for individual
measurements, the individual blocks Mi, Pi, Ci all differ from each other. Finally, the right-
hand side F denotes the discretized form of −Lx(xk)(y). The detailed form of the individual
blocks Mi, Pi, Ci and the right-hand side F is provided in [49] for a single excitation source
measurement.

Given these considerations, the block structure of the Gauss–Newton KKT matrix (10) is
used to form the Schur complement of this system with respect to the R block, also called the
reduced KKT matrix. This leads to the simpler sequence of systems:

(
S XT

X 0

)(
δqk

δµk

)
=

(
F2 − ∑W

i=1 CT
i P −T

i

(
F i

1 − MiP
−1
i F i

3

)
0

)
, (11)
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Piδp
i
k = F i

3 −
W∑
i=1

Ciδqk, (12)

P T
i δdi

k = F i
1 −

W∑
i=1

Miδp
i
k, (13)

where

S = R +
W∑
i=1

CT
i P −T

i MiP
−1
i Ci . (14)

Here, we first have to solve for the yield map updates δqk and Lagrange multipliers, and then for
updates of state and adjoint variables for all the experiments individually and independently,
a task that is obviously simpler than solving for the one big and coupled matrix in (10).

The first system of equations can be further simplified. Let us denote by Q the
(rectangular) matrix that selects from a vector δqk of discretized parameter updates those
that are not in the active set A of the bound constraints. Then δqk = QT Qδqk because
(1 − QT Q)δqk = δqkχA = 0 where χA is the characteristic function of degrees of freedom
located in A. Consequently, equation (11) can also be written as(

SQT Q XT

X 0

) (
δqk

δµk

)
=

(
F2 − ∑W

i=1 CT
i P −T

i

(
F i

1 − MiP
−1
i F i

3

)
0

)
.

On the other hand, if either (i) we use piecewise constant finite elements for δqk and δµk ,
or (ii) we use piecewise polynomial elements that are discontinuous across cell faces and the
active set A contains only entire cells, then QXT = 0 since XT takes us from the space of the
constrained parameter to the space of all parameters, and Q projects onto the unconstrained
ones. Consequently, premultiplying the first line with Q yields an equation for those degrees
of freedom in δqk that are not constrained to zero, i.e. those not located on the active set of the
upper or lower bounds

(QSQT )Qδqk = Q

[
F2 −

W∑
i=1

CT
i P −T

i

(
F i

1 − MiP
−1
i F i

3

)]
. (15)

The remaining degrees of freedom not determined by this equation are the ones constrained
to zero.

We note that the Schur complement matrix S is symmetric and positive definite. This
property is inherited by the reduced Schur complement Ŝ = QSQT . We can therefore
use the conjugate gradient (CG) method to efficiently invert it, and in practice do so only
approximately [16]. In each iteration of this method, one multiplication of S and a vector is
required. Given the structure of the matrix, this can be implemented on separate computers
or separate processors on a multiprocessor system, each of which is responsible for one or
several of the experiments (and corresponding matrices Ci, Pi,Mi). Since multiplication of
a vector with the matrices CT

i P −T
i MiP

−1
i Ci is completely independent, a workstation cluster

with W nodes is able to perform the image reconstruction task in approximately the same time
a single machine requires for inverting a single excitation source. In our implementation, we
use a sparse direct solver to compute a factorizing of the matrices Pi . This pays off because
we have to solve with Pi multiple times. However, other efficient solvers for the forward
problem such as multigrid are also conceivable.

9



Inverse Problems 24 (2008) 034011 W Bangerth and A Joshi

3.3. The active set strategy to enforce bound constraints

We have so far not commented on how we determine the active set A ⊂ � on which either
the lower bound q(r) � q0(r) or the upper bound q(r) � q1(r) is active. On the other hand,
determining A is necessary in order to properly define equations (8) and (10) from which
we determine Gauss–Newton search directions both on the continuous level as well as after
discretization. We note that for inverse problems operating on noisy data, the incorporation
of bounds on the parameter is crucially important: first, it acts as an additional regularization
using information available from physical reasoning. For example, we know for the current
application that dye concentrations cannot be negative; they can also not exceed a certain value.
It is therefore not a surprise that reconstructed parameters are much more accurate if bounds
are enforced than when they are not, see for example [7]. On the other hand, bound constraints
also help from a mathematical perspective: first, our forward model (1)–(2) is only well posed
if D∗ > 0, Re(k∗) � 0, which is only satisfied if q = µaxf is greater than a certain lower
bound. In addition, we can use weaker norms for the regularization term q(r) if we enforce
additional bounds on q; for example, we can use q(r) = 1

2‖q‖2
L2(�) to obtain a well-posed

minimization problem, while we would need the far stronger form q(r) = 1
2‖q‖2

H 2(�)
if no

bounds were available.
So how do we choose A? In finite-dimensional optimization, one starts a Newton step

by choosing an initial guess for A, and then solving the quadratic program (QP) using the
constraints indicated by this initial guess. One then finds those degrees of freedom that would
after updating the solution violate a constraint not already in A, and add one of them to A.
One may also drop a constraint that would actually be inactive. With this modified set of
constraints, the same QP is then solved again, i.e. the Lagrangian is again linearized around
the same iterate xk . This procedure is repeated until the active set no longer changes, at which
time we perform the update to obtain xk+1. The last active set may then serve as a starting
guess for the next iteration.

While this approach can be shown to guarantee convergence of solutions [65], it is clearly
very expensive since we have to solve many QPs in each Newton iteration, a costly approach in
PDE-constrained optimization. Alternatives have been developed in the context of PDE-based
optimization, see for example [40, 41] and the references therein. Here, it can be expected
that even if the set of active constraints is not ideal, the computed search direction is still
reasonably good. This is particularly true since the constraints are on somewhat artificial
variables: they result from discretization of a distributed function on a presumably sufficiently
fine mesh. Consequently, in the worst case, we have forgotten some constraints (the updated
parameter values may then lie outside the prescribed bounds on a small part of the domain, but
can be projected back at the end of the Gauss–Newton step) or have some constraints in the
active set that should not be there (in which case the corresponding parameter will be stuck
at the bound on a small part of the domain, instead of being allowed to move back inside the
feasible region).

In view of the artificiality of discretized parameters, we therefore opt for a cheaper
approach where we determine the active set A only once at the beginning of the step, then
solve the resulting QP, and immediately do the update, followed by a projection onto [q0, q1]
of those few parameters that had inadvertently been forgotten from A. This appears to produce
a stable and efficient algorithm. For Gauss–Newton iteration k we then choose

A =
⋃ {

K ∈ T
q

k : qk|K = q0 or qk|K = q1, and (qk + δqk)|K will likely be 	∈ [q0, q1]
}
.

As usual in active set methods [65], the determination whether a parameter will move outside
the feasible region [q0, q1] is done using the first-order optimality conditions Lq(x)(χ) = 0

10
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for test functions χ ∈ Q. Consequently, considering only lower bounds, we see that in the
vicinity of the solution we have

Jq(qk, vk)(χ) +
W∑
i=1

Ai
q(xk)(χ) + (µ0,k, χ)� ≈ 0,

from which get the following estimate for the Lagrange multiplier µ0,k:

(µ0,k, χ)� ≈ −Jq(qk, vk)(χ) −
W∑
i=1

Ai
q(xk)(χ). (16)

Discretizing this equation with test and ansatz functions for µ0,k and χ , we can therefore get an
estimate for the Lagrange multiplier µ0,k from the above equation by inverting the mass matrix
resulting from the scalar product on the left-hand side. The right-hand side already needs to be
computed anyway as the term F2 in equation (10) and is therefore readily available. Because
the optimality conditions require that µ0 > 0, we may suspect that qk which is already at the
lower bound on a cell wants to move back into the feasible region if µ0 < ε. Consequently,
including again upper bounds as well, we use

A =
⋃ {

K ∈ T
q

k : qk|K = q0 and µ0 � ε, or qk|K = q1 and µ1 � ε
}
.

We note that this scheme to determine A coincides with the usual strategy in active set methods
except that (16) implies that a mass matrix has to be inverted where the standard strategy would
see the identity matrix. The main consequence of this is that multipliers are correctly scaled
as functions, whereas otherwise they would scale with the mesh size and comparisons against
a fixed tolerance ε would become meaningless.

3.4. Mesh refinement

As discussed in section 3.2, we use distinct meshes
{
T

i
k

}W

i=1 in Gauss–Newton step k for state
and adjoint variables of the W different experiments, and T

q

k for the parameter. In this section,
we first explain the algorithm we use to determine whether these meshes shall be refined
between the current and the next Gauss–Newton iteration. Subsequently, we discuss mesh
refinement criteria determining which of the cells shall be refined.

When to refine meshes. In words, our strategy to decide whether meshes should be refined can
be described as follows: we refine if either (a) progress on the current mesh is sufficient, or
(b) iterations on the current mesh are ‘stuck’ and things can be accelerated by moving on to
the next mesh. The actual implementation of these rules is, not surprisingly, largely heuristic
and also has to treat special cases that we would not discuss in detail here. However, let us
illuminate the above two rules in more detail.

Rule (a) essentially means the following: since we only work with discrete
approximations, there is no need to drive the nonlinear iteration to levels where the
discretization error is much larger than the remaining nonlinear error. We therefore monitor the
norm of the nonlinear residual Lx(xk) to track progress (concerning the question of computing
this residual see [7]). If this residual norm has been reduced by a certain factor, say 103

since the first iteration we performed on the currently used mesh, then we consider progress
sufficient and force mesh refinement.

Rule (b) above is in a sense the opposite of the first rule. To this end, we would like to
determine whether iterations on the current mesh are ‘stuck’. This can happen if the current
iterate xk happens to lie in an area of exceptionally large nonlinearity of the Lagrangian L(x).
We characterize this by monitoring the step length chosen by our line search procedure: if it is

11
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below a certain limit, say 0.1, then we force mesh refinement as well. This rule is based on the
practical observation that if we do not do so, iterations may eventually recover speed again,
but only after several very short steps that hardly help to move iterates to greener pastures.
On the other hand, we observe that refining the mesh in this case adds a certain number of
dimensions to the discrete search space along which the problem appears to be less nonlinear,
and the first iteration after mesh refinement almost always has large step lengths around 1.
Enlarging the search space by mesh refinement is therefore a particularly successful strategy
to get iterations ‘unstuck’.

How to refine meshes. In order to adaptively refine a mesh, we have to determine which cells to
refine and which to coarsen. Ideally, one would base this on rigorously derived error estimates
for the current problems. Such estimates can be derived using the dual weighted residual
(DWR) framework [6, 10, 14, 59, 80] or using more traditional residual-based estimates
[33, 34, 55, 56, 42]. In either case, the formulae for the fluorescence-enhanced optical
tomography problem become long and cumbersome to implement.

Although we acknowledge that this is going to lead to suboptimal, though still good,
adaptive meshes, we therefore opt for a simpler alternative. Inspecting the error estimates
derived in the publications referenced above, and using that the residual of the diffusion
equations is related to the second derivatives of the respective solution variables, one realizes
that the traditional error estimates yield refinement criteria for cell K of the state mesh T

i
k of

the form

ηi
K = C1hK

∥∥∇2
hu

i
k

∥∥
K

+ C2hK

∥∥∇2
hv

i
k

∥∥
K
, (17)

where C1, C2 are constants of usually unknown size and size relation, hK is the diameter of
cell K, and ∇2

h is some discrete approximation of the second derivatives of the finite element
solutions ui

k, v
i
k in iteration k, for example the jump of the gradient across cell faces [29]. The

important point to note is that without knowledge of the constants it is impossible to determine
how to weigh the two terms; because v is typically orders of magnitude smaller than u, such
weighting is important, however.

On the other hand, dual weighted residuals typically have a form similar to

ηi
K = C

(
hK

∥∥∇2
hu

i
k

∥∥
K

∥∥∇2
hλ

ex,i
k

∥∥
K

+ hK

∥∥∇2
hv

i
k

∥∥
K

∥∥∇2
hλ

em,i
k

∥∥
K

)
, (18)

see [6, 10]. Such a formula has two advantages: first, it has only one unknown constant
and only the absolute size of refinement indicators is unknown; the relative order of the ηK is
known, however, and consequently we can pick those cells with the largest error. Secondly, the
terms are properly weighted. To this end note that because λex, λem satisfy adjoint equations,
the size relationships between them is of the order λex/λem ≈ v/u. The two terms above are
therefore properly balanced. Finally, these terms ensure that those cells are refined in which
both the forward model as well as the adjoint model are inadequately resolved (i.e. there are
large primal and dual residuals). On the other hand, cells on which, for example, the forward
model is badly resolved (i.e. a large primal residual) but that do not contribute significantly to
the measurement functional (indicated by the fact that the adjoints λex, λem are small) are not
going to be refined. This intuitively immediately leads to more efficient meshes than the use
of the residual-based estimates indicated in (17).

While above criterion is used to refine the forward meshes T
i
k , we need a different criterion

for the parameter mesh T
q

k . Although DWR estimates also provide refinement indicator for
this mesh [6, 10], we typically rather refine using a simple criterion based on the interpolation
estimate ‖f − fh‖ � Ch‖∇f ‖ if fh is a discretized version of f using piecewise constant
elements. Consequently, we use η

q

K = hK‖∇hqk‖∞,K , where K ∈ T
q

k and ∇h is a discrete
approximation of the gradient operator.
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3.5. Regularization

In the definition (5) of the objective function, we have added a regularizer βr(q) to penalize
undesirable components of the solution q that are not or insufficiently constrained by the data,
and thereby making the problem well posed. On the other hand, its addition is not physically
motivated and means that we solve a different problem. Both the choice of the functional
r(q) as well as of the parameter β is therefore important to ensure that the found solution is
practically meaningful.

Choice of r(q). The functional r(q) can be used to penalize components of the solution for
which we do not have enough data [27, 52, 53]. In the optical tomography application under
consideration, we want to suppress unphysically large values deep inside the tissue where
hardly any light reaches potentially present dyes. On the other hand, we want to avoid the
smoothing effect commonly associated with H 1 seminorm or similar regularization terms.
Consequently we choose r(q) = 1

2‖q‖2
L2(�). This choice is in a sense arbitrary: in the real

optical tomography application, we have very little actual prior information on q. In particular
we know that it is a discontinuous function (large inside a tumor or lymph node, for example,
and small outside) and may have natural background variability in the form of oscillations.
Consequently, we consider regularization a band aid to make the problem better posed,
rather than an injection of prior information as advocated in the Bayesian inversion literature
[64, 78] and elsewhere in the literature [35].

We note that r(q) is frequently chosen so that we can show that the resulting problem is well
posed. In three space dimensions, this typically means that we have to choose r(q) = 1

2 |q|2
H 2(�)

[11], a functional that ensures that the solution lies in the function space H 2(�). Because this
introduces strong nonphysical smoothing, we deem such a term unacceptable (and certainly
not justified by any prior information on the parameter to be recovered) and therefore ignore
this motivation. On the other hand, discretization on a finite mesh plus enforcement of bounds
plus L2 regularization together can be thought of as equivalent to H 2 regularization, as can be
seen from inverse norm equivalences. In addition, early truncation of the Schur complement
solver acts as an additional regularization.

Choice of β. Since our main objective is to minimize the misfit, we would like to choose
β as small as possible. On the other hand, only a large β leads to a stable problem and
well-conditioned linear subproblems that are simpler to solve. We therefore choose a heuristic
where we start with a large regularization parameter β0 and decrease it as Newton iterations
proceed once the regularization becomes too large relative to the misfit. In particular, in
iteration k we choose it as

βk = min

{
βk−1, γ

∑W
i=1

1
2

∥∥vi
k−1 − zi

∥∥2
�

r(qk−1)

}
.

This form is chosen to ensure that, based on the previous iteration’s solution vi
k−1, qk−1, the

regularization term never dominates the misfit term in the definition of the objective functional
(5). In other words, we want to achieve that βr(q) � γ

∑W
i=1

1
2

∥∥vi
k−1 − zi

∥∥2
�

. We typically
choose γ = 1

3 .
This algorithm is a heuristic, and better alternatives probably exist [27, 44, 66, 71]. On

the other hand, it has attractive properties: in the presence of noise, the misfit term is not going
to converge to zero, and consequently the strategy above will lead to a finite regularization
parameter as k → ∞. The limit β∞ is adaptively chosen based on how far we can reduce
the misfit. It can therefore be argued that we have a finite regularization β∞ and that we only
temporarily use a larger regularization parameter in earlier iterations to make the problem
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simpler to solve. The result is a rather stable method that leads to reasonable solutions
independent of the initial choice β0, an important aspect in practically useful methods.

4. Numerical results

In this section, we show results based on an implementation of the mathematical algorithms
outlined above for the optical tomography problem. This program is based on the Open Source
deal.II finite element library [8, 9] and provides the base not only for fluorescence optical
tomography but also for some other inverse problems [7].

The particular fluorescence tomography application considered here is motivated by the
need for imaging lymph nodes marked with molecularly targeting fluorescent agents to track
the spread of cancer since lymph nodes are typically the first to be affected by metastases.
Our choice of source terms Si(r) is motivated by the following experimental considerations:
since locations and numbers of lymph nodes are a priori unknown, it is typically insufficient
to only illuminate only a small area of the skin, as the amount of excitation light reaching
a lymph node may be too small to be detected. Consequently, the recovery of the true
interior fluorophore distribution is contingent on the use of boundary excitation sources and
detectors that cover a large area of the skin. Traditionally this is performed by using multiple
optical fibers for delivering excitation light via direct contact with tissue, or by mechanically
raster scanning a focused laser [60, 73], and taking fluorescence measurements at different
locations on the tissue boundary. However, point illumination based tomography systems
suffer from overly sparse measurement data sets, and inadequate amount of excitation light
penetration in the tissue interior, especially for imaging clinically relevant tissue volumes of
about 10 × 10 × 10 cm3.

The task of reaching large tissue areas can be achieved by using widened laser beams
instead of fiber optics to illuminate the skin. The first systems simply widened a laser beam
with a Gaussian profile to a diameter of 4–6 cm. However, even better and complementary
data sets can be produced by scanning a patterned laser source over the surface and measuring
excitation light at each location [46].

Here, we present numerical experiments employing synthetically generated data for image
reconstructions to demonstrate the utility and efficiency of the techniques developed in the
previous sections to practical lymph node imaging. Results for experimentally obtained
measurement data can be found in [47, 51].

We perform experiments in a geometry constructed from a surface geometry scan of
the groin region of a Yorkshire Swine acquired by a photogrammetric camera, see figure 1.
The top surface of a 10.8 × 7.4 × 9.1 cm3 box was projected to the acquired surface to
create the domain for our computations. On this geometry, we generated synthetic frequency
domain fluorescence measurements by simulating the scanning of a 0.2 cm wide and 6 cm
long NIR laser source across the top surface of the domain. Sixteen synthetic measurements
corresponding to sixteen different positions of the scanning line source were generated. We
generate the data using a higher order finite element scheme for the forward than for the
inverse problem to avoid an inverse crime. Figures 1 and 2 show initial forward and parameter
meshes, and forward meshes after several adaptive refinement steps, respectively. The latter
also shows the excitation light intensity resulting from the scanning incident light source
diffusing throughout the tissue. All computations were performed with trilinear Q1 elements
for state and adjoint variables, and piecewise constant discontinuous elements for the parameter
to be reconstructed.

On this geometry, we consider two cases of practical importance: (i) the determination
of location and size of a single target, e.g. a lymph node and (ii) the ability to resolve several,

14



Inverse Problems 24 (2008) 034011 W Bangerth and A Joshi

(a) (b) (c)

Figure 1. The geometry for the synthetic fluorescence tomography experiments: (a) the actual
tissue surface from the groin region of a female Yorkshire swine from which geometry data
was acquired with a photogrammetric camera to generate the volume used for simulations.
(b) Initial forward simulation mesh T

i
0 with 1252 nodes used in the first iteration for all experiments

i = 1, . . . , N . (c) Coarser initial parameter mesh with 288 elements used for T
q

0 .

(a) (b) (c)

Figure 2. Final adaptively refined forward simulation meshes T
i corresponding to sources

1 (left), 8 (center), and 16 (right). The meshes are from the three target reconstruction discussed in
section 4.2.

in our case three, lymph nodes in close proximity. These two cases will be discussed in the
following subsections.

4.1. Single target reconstruction

In this first study, a single spherical fluorescence target with a diameter of 5 mm was positioned
approximately 2 cm deep from the top surface with a center at r = (4, 4, 6). We simulated
100:1 uptake of fluorescent dye indocyanine green (ICG) in the target, i.e. the true value of
the parameter q is 100 times higher inside the target than in the background medium. ICG has
a lifetime of τ = 0.56 ns and a quantum efficiency of φ = 0.016. We used the absorption and
scattering coefficients of 1% liposyn solution [46] for background optical properties, which
are similar to the human breast tissue.

The top row of figure 3 shows the parameter mesh T
q

k in Gauss–Newton iterations
k = 5, 10 and 12 with 288, 1331 and 2787 unknowns, respectively. The mesh was refined
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Figure 3. Evolution of the parameter mesh T
q

k as Gauss–Newton iterations k progress. Top row:
meshes and recovered unknown parameter for the single target reconstruction on the initial mesh,
after two adaptive refinements, and on the final mesh. Bottom row: analogous results for the three
target image reconstruction.

after iterations 5, 8, 10. Local refinement around and identification of the single target can
clearly be seen. In the vicinity of the target, the mesh approximates the suspected lymph
node with a resolution of around 1.5 mm.3 On the other hand, it is obvious that the mesh is
coarse away from the target, in particular at depth where only little information is available
due to the exponential decay of light intensity with depth. If we had not chosen an adaptively
refined mesh, the final mesh would have some 150 000 unknowns, or more than 50 times more
than the adaptively refined one used here. Since the forward meshes have to be at least once
more refined, we would then end up with an overall size of the KKT system (10) of around
1.5 × 108, compared to some 4 × 106 for our adaptive simulation. It is clear that computations
on uniformly refined meshes are not feasible with today’s technology at the same accuracy.

The top row of figure 4 shows a volume rendering of the reconstructed parameter together
with the mesh T

q at the end of computations, as well as a selection of those cells on which
the parameter value is larger than 50% of the maximal parameter value. The right panel also
shows the location and size of the spherical target that was used to generate the synthetic data.
As can be seen, location and size of this target are reconstructed quite well.

Finally, the left panel of figure 5 shows some statistics of computations. The curves show
how refinement between iterations increases the total number of degrees of freedom from
initially some 104 per experiment to around 2.5 × 105 per experiment. At the same time, the
number of parameters discretized on T

q increases from 288 to 2787. In this example, only a
negligible number of unknowns in qk are constrained by bounds.

3 The diffusion length scale for light in the chosen medium is around 2 mm. Any information on scales smaller
than this can therefore not be recovered within the framework of the diffusion approximation (1)–(2). Our mesh is
consequently able to resolve all resolvable features.
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Figure 4. Left column: volume rendering of reconstructed parameters qk at the end of iterations.
Right column: those cells where qk(r) � 50% maxr′∈� qk(r

′) are shown as blocks, whereas the
actual location and size of the targets are drawn as spheres. In addition, the mesh on three cut
planes through the domain is shown. Top row: single target reconstruction. Bottom row: three
target reconstructions.

4.2. Three target reconstruction

In a second experiment, we attempt to reconstruct with synthetic data generated from three
closely spaced targets with centers at r1 = (3, 2, 6), r2 = (4, 5, 6), r3 = (7, 3, 6) and
diameters of again 5 mm. As for the first example, the bottom row of figure 3 shows a
sequence of meshes T

q

k , whereas figure 4 shows a closer look at the reconstructed parameter.
Again, the location of the reconstructed targets is mostly correct, but the two targets closest
together are blurred—a well-known phenomenon in diffusive imaging.

The right panel of figure 5 shows statistics about this computation. Most noteworthy is
that in this example the number of constrained parameter degrees of freedom is much more
significant than in the first one: after the first few iterations, between 40% and 60% of all
parameters are constrained. As mentioned in section 3.2, the bounds do not only help to
stabilize the problem, but also make the solution of the Schur complement simpler since
constrained degrees of freedom are eliminated from the system.

17



Inverse Problems 24 (2008) 034011 W Bangerth and A Joshi

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 2  4  6  8  10  12
Gauss-Newton iteration

Single target reconstruction

Size of KKT system
Number of parameters

Number of constrained parameters

(a)

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 5  10  15  20  25  30
Gauss-Newton iteration

Three target reconstruction

Size of KKT system
Number of parameters

Number of constrained parameters

(b)

Figure 5. Total number of unknowns accumulated over all experiments (i.e. the size of the KKT
matrix (10)), number of unknowns in the parameter mesh T

q

k , and number of parameters that are
actively constrained by bounds q0 � qk � q1 for the single target reconstruction (left) and three
target reconstruction experiments (right).
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Figure 6. Reduction of misfit and regularization terms in the objective functional during Gauss–
Newton iterations, and the effect on adjusting the regularization parameter β.

Figure 6 demonstrates progress in reducing the two parts (misfit and regularization) of
the objective function

∑W
i=1

1
2

∥∥ui
k − zi

∥∥
�

+ βr(qk) during Gauss–Newton iterations, and our
strategy to choose the regularization parameter βk . We start with a regularization parameter
β0 = 10−12, but as the misfit drops it comes close to the regularization term. Consequently,
βk is reduced in the next iteration to avoid that regularization dominates the reconstruction
process.

5. Conclusions and outlook

In this contribution, we have reviewed an adaptive finite element method approach to
fluorescence optical tomography, a recent addition to the arsenal of biomedical imaging
techniques that is currently undergoing first clinical studies. We have explained why uniformly
refined meshes cannot deliver clinically necessary resolutions because they lead to nonlinear
optimization problems that are orders of magnitude too large for today’s hardware to solve
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within clinically acceptable time scales. Our solution to this problem was the introduction of
adaptively refined meshes. They not only are able to focus numerical effort to regions in the
domain where high resolution is actually necessary, but also regularize the inverse problem and
in particular make the initial Gauss–Newton iterations extremely cheap since we can compute
on coarse meshes while we are still far away from the solution.

Using a sequence of meshes that change adaptively as iterations proceed requires
adjusting some of the techniques traditionally known from optimization methods since the
dimensionality of the problem changes between iterations, and continuous and discrete norms
are no longer equivalent under adaptive mesh refinement. For example, nonlinear iterations
and mesh refinement algorithms have to be interconnected to achieve efficient methods, and
active set strategies for inequality constraints need to be modified for locally refined meshes.

We have therefore presented a comprehensive framework for the solution of optical
tomography problems with adaptive finite element methods. The workings and efficiency of
this framework have been demonstrated with two practically relevant numerical examples.

However, although we are able to efficiently solve this inverse problem to practically
necessary resolution, it would be a mistake to believe that there is no need to improve it. In
particular, we believe that further progress is necessary in the following areas:

• Linear solvers: because the Schur complement S defined in (14) is only known through
its action on vectors, it is complicated to derive preconditioners for the reduced system
(15) in which our solvers spend 75% of the compute time on fine meshes. It is therefore
important to think about viable ways to precondition this equation. One approach would
be to use BFGS or LM-BFGS approximations of S−1 (see [65]) as used in [17]. However,
they would have to be integrated with adaptivity since they expect the parameter space to
remain fixed.

• Multigrid: another approach is to use multilevel algorithms for the Schur complement or
the whole KKT system. Methods in this direction have already been explored in [2, 5,
21, 54].

• Systematic characterization of results: for practical usability, numerical methods do not
only have to work in simple situations like the ones shown in section 4, but also in
the presence of significant background heterogeneity, unknown or large noise levels,
systematic measurement bias and other practical constraints. Systematic testing of
reconstructions for statistically sampled scenarios with objective assessment of image
quality (OAIQ) methods [70] will be necessary to achieve clinical use.

• Optimal experimental design techniques should enable us to improve our experimental
setups to make them more sensitive to the quantities we intend to recover. However, they
lead to non-convex optimization problems with the inverse problem as a subproblem, and
therefore to computationally extremely complex problems.

Despite our belief that the algorithms we have presented are powerful tools in making
fluorescence optical tomography a valuable imaging tool of the future, above list indicates that
much research is left in this and related problems.
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