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Plane-wave fluorescence tomography with
adaptive finite elements
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We present three-dimensional fluorescence yield tomography of a tissue phantom in a noncontact reflectance
imaging setup. The method employs planar illumination with modulated light and frequency domain fluo-
rescence measurements made on the illumination plane. An adaptive finite-element algorithm is used to
handle the ill-posed and computationally demanding inverse image reconstruction problem. Tomographic
images of fluorescent targets buried at 1–2 cm depths from the illumination surface demonstrate the fea-
sibility of fluorescence tomography from reflectance tomography in clinically relevant tissue volumes.
© 2006 Optical Society of America
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Future advancements in molecular medicine depend
to a great degree on the in vivo detection of molecular
processes that precede disease symptoms. Thus fluo-
rescence optical tomography holds great promise by
virtue of its ability to target contrast in deep subsur-
face tissues by using imaging agents such as biocon-
jugated fluorescent dyes1 or quantum dots.2 Tradi-
tional approaches to fluorescence optical tomography
in clinically relevant volumes have utilized fiber-
optic-based source–detector arrays wherein both the
reflectance and the transmittance measurements are
acquired.3 However, in clinical applications such as
sentinel lymph node mapping for diagnosis and stag-
ing of breast cancer or melanoma, transmittance
measurements of fluorescence photon migration are
not possible. Furthermore, fiber-optic-based source–
detector arrays sample the measurement space only
sparsely, thus increasing the ill-posedness of the im-
age reconstruction problem. On the other hand, area-
illumination and area-detection fluorescence tomog-
raphy schemes allow the acquisition of a dense set of
fluorescence measurements in a noncontact fashion,4

though such schemes involve the additional complex-
ity of characterizing the excitation source pattern5

and the availability of only one projection for image
reconstruction. To circumvent the latter problem,
time-dependent or photon migration measurements
are necessary to obtain three-dimensional recon-
structions of fluorescence distribution from two-
dimensional surface measurements. To reduce com-
putational requirements, adaptive discretizations
can be used to capture the variation of the surface ex-
citation pattern as well as to resolve the fluorescence
yield map; this contrasts with the traditional use of a
priori discretizations of the fluorescence yield map.
Adaptive finite-element approaches have been dem-
onstrated successfully in other fields; in these meth-
ods the meshes are locally and automatically refined

to capture variations of the discretized field. Besides
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affecting the tomographic image resolution, adaptive
discretization approaches enable computationally ef-
ficient and rapid solution of the image reconstruction
problem. Previously we reported a novel tomography
algorithm for reconstructing three-dimensional
fluorescence yield maps from simulated two-
dimensional area-illumination and area-detection
measurements.6 Here we report the results of fluo-
rescence tomography from experimentally obtained
frequency domain fluorescence measurements on a
tissue phantom with buried fluorescent targets at
depths of 1 and 2 cm beneath the illumination sur-
face.

Figure 1 illustrates the tissue phantom with em-
bedded fluorescent targets interrogated by use of a
gain-modulated image-intensified CCD camera
system.3,5 The tissue phantom consisted of a clear
512 cm3 acrylic box filled with 1% Liposyn solution
(v/v water) and held a fluorescent target consisting of
a 0.5 cm diameter glass bulb filled with 1 �M In-
docyanine Green (ICG) dye solution in 1% Liposyn.
The tissue phantom was illuminated on the top sur-
face with an expanded beam from a 785 nm laser di-
ode modulated at 100 MHz. The florescence image of
the surface was isolated from the excitation image
through a 785 nm holographic band-rejection filter
and an 830 nm bandpass filter. The fluorescence am-
plitude and phase images were obtained by using the
homodyne technique.5 Since model-based tomogra-
phic reconstructiion requires accurate excitation
source information, the singly scattered excitation
light was characterized and taken to be representa-
tive of the incident excitation. This singly scattered
excitation component was isolated by using cross
polarizers.5,7

The fluorescence image reconstruction problem
was posed as a constrained optimization problem
wherein an L2 norm-based error functional of the dis-

tance between boundary fluorescence measurements
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and the diffusion model predictions was minimized
with the constraint that the coupled diffusion model
be satisfied. In a function space setting this minimi-
zation problem reads as

Fig. 1. ICCD detection system. 1, CCD camera; 2, image
intensifier; 3, 4, 5, optical filters; 6, 7, linear polarizers; 8,
785 nm laser diode; 9, 80–200 mm zoom lens; 10, tissue
phantom; 11, fluorescent targets; 12, 13, phase-locked
oscillators.

Fig. 2. Reconstructed image (right) and the final fluoresce
the 1 cm deep target. The top 10% of the contour levels of
right-hand image depicts the true target location, and the

Fig. 3. Reconstructed image (right) and the final fluoresce
the 2 cm deep target. The top 10% of the contour levels of

right-hand image depicts the true target location, and the red
min
q,u,v

J�q,v� subject to A�q;�u,v�����,��� = 0. �1�

Here the error functional J�q ,v� incorporates a least-
squares error term over the measurement region �
and a Tikhonov regularization term:

J�q,v� = �1/2��v − �z��
2 + �r�q�, �2�

where �u ,v� represent the excitation and emission
fluences, q=�axf denotes the unknown fluorescence
map, and � is a scaling factor accounting for the un-
known excitation strength. The constraint
A�q ; �u ,v����� ,���=0 is the weak form of the well-
known coupled photon diffusion equations in the fre-
quency domain with partial current boundary condi-
tions and with test functions �� ,���H1���. It is
obtained from the photon diffusion equations by mul-
tiplication by test functions �� ,�� and integration over
the domain �; a more detailed discussion as well as
these equations can be found elsewhere.6 The semi-
linear form so derived is defined as

absorption map laid over the computational grid (left) for
�axf map are depicted. The black wireframe sphere in the
blocks identify the recovered target.
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Here Dx,m denotes the diffusion coefficients at excita-
tion and emission wavelengths; kx,m denotes the at-
tenuation terms, which depend on the absorption due
to endogenous chromophores and absorption due to
exogenous fluorophores; and �xm is the coupling term
for excitation and emission equations. �xm depends
on the fluorophore quantum efficiency, lifetime, and
absorption due to the fluorophore at the excitation
wavelength. The constrained optimization problem
(1) is solved by introducing a Lagrangian functional:

L��u,v�,�	ex,	em,q�� = J�q,v� + A�q;�u,v����	ex,	em��.

�4�
Here 	ex,	em are the Lagrange multipliers corre-
sponding to the excitation and the emission diffusion
equation constraints, respectively. A stationary point
of the Lagrangian is sought by using the Gauss–
Newton method. For actual computations, we dis-
cretized the Gauss–Newton equations with the finite-
element method. State and adjoint variables u, v, 	ex,
and 	em were discretized and solved on a mesh with
continuous finite elements (termed the state mesh),
while the unknown parameter map q is discretized
on a separate mesh with discontinuous finite ele-
ments (termed the parameter mesh).

Whenever Gauss–Newton iterations on these
meshes reduced the error function by a significant
amount, both meshes were refined by using an a pos-
teriori refinement criteria. These criteria compute,
for each finite-element cell, an indicator of the error
associated with this cell. A certain fraction of the cells
with the largest indicator values are then subdivided
into smaller cells for better resolution, while the cells
with the lowest indicators are coarsened.6 The choice
of two separate meshes means that the state mesh
can be fine close to the source, where the excitation
fluence greatly varies, while the parameter mesh will
be fine only close to the fluorescent target and coarse
everywhere else. This scheme was implemented in a
program based on the deal.II library.8

Figures 2 and 3 depict the reconstructed images of
the 1 and 2 cm deep fluorescent targets. The image
reconstruction procedure was initiated with coarse
state (8
8
8=512 cells) and parameter (4
4
4
=64 cells) meshes. Computations were performed on
a 2 GHz Pentium-M notebook computer with
2 Gbytes of memory. Image reconstructions required
12–15 min of computational time, depending on the
target depth. The top 10% of the contour levels of the
reconstructed fluorescence absorption were consid-
ered to constitute the fluorescent heterogeneity. Both
state and parameter meshes were automatically re-
fined during reconstruction. The state mesh was pre-
dominantly refined at the illumination surface to ac-
curately resolve the incident excitation illumination;
the parameter mesh was fine mainly in the region
containing the recovered fluorescent target. Four au-
tomatic mesh refinements were triggered.

These reconstructions are summarized in Table 1.
The minimum mesh size of the final parameter mesh
was 1.25 mm (for a graphical depiction of the meshes,
see Figs. 2 and 3). To obtain the same level of resolu-
tion on a globally refined mesh, 262,144 cells would
be required. On the other hand, with the adaptive re-
finement, this resolution was achieved with only
2584 cells for the 1 cm deep target and 2416 cells for
the 2 cm deep target. The recovered target for the
2 cm target depth was shifted toward the illumina-
tion surface, and the recovered volume was enlarged.
This may be attributed to the lower fluorescence sig-
nal penetrating up to the measurement surface,
which was corrupted to a greater degree by the exci-
tation light leakage through the fluorescence filters
than the fluorescence signal arising from the 1 cm
deep target.9 The slight lateral displacement of the
recovered targets may also be due to the uncertainty
in target positioning as well as to the fact that the ex-
citation source was not laterally symmetric with re-
spect to the position of fluorescent target.

In this Letter we have demonstrated what we be-
lieve to be the first ever adaptive finite-element-
based reconstructions from experimentally obtained
frequency domain fluorescence measurements on a
clinically relevant tissue phantom.
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Table 1. Summary of Reconstructed Images

Image Attributes

Target Depth

1 cm 2 cm

True centroid (cm) 4.0, 4.0, 6.75 4.0, 3.8, 5.75
Recovered centroid (cm) 4.0, 4.0, 6.8 4.2, 3.7, 6.25
True volume �cm3� 0.0654 0.0654
Recovered volume �cm3� 0.0938 0.25


