
Non-contact fluorescence optical
tomography with scanning patterned

illumination

Amit Joshi,1 Wolfgang Bangerth,2 and Eva M. Sevick-Muraca1

amitj@bcm.tmc.edu, bangerth@math.tamu.edu, evas@bcm.edu

1Division of Molecular Imaging, Department of Radiology, Baylor College of Medicine,
Houston, TX 77030

2Department of Mathematics, Texas A & M University, College Station, TX 77840

Abstract: This article describes a novel non-contact fluorescence optical
tomography scheme which utilizes multiple area illumination patterns,
to reduce the ill-posedness of the inverse problem involvedin recovering
interior fluorescence yield distributions in biological tissue from boundary
fluorescence measurements. The image reconstruction is posed as an
optimization problem which seeks a tissue optical propertydistribution
minimizing, for all illumination patterns simultaneously, a regularized
difference between the observed boundary measurements of light distribu-
tion, and the boundary measurements predicted from a physical model.
Multiple excitation source illumination patterns are described by line and
Gaussian sources scanning the simulated tissue phantom surface and by
employing diffractive optics-generated patterns. Multiple measurement data
sets generated by scanning excitation sources are processed simultaneously
to generate the interior fluorescence distribution in tissue by implementing
the fluorescence tomography algorithm in a parallel framework suitable for
multiprocessor computers. Image reconstructions for single and multiple
fluorescent targets (5mmdiameter) embedded in a 512ml simulated tissue
phantom are demonstrated, with depths of the fluorescent targets from the
illumination plane between 1cm to 2cm. We show both qualitative and
quantitative improvements of our algorithm over reconstructions from only
a single measurement.
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1. Introduction

Most developing optical tomography techniques, which employ time-dependent measurements
and fluorescent contrast agents, depend upon (i) illuminating a tissue surface with incident
points of light using either fiber optics or lens-focused light beams, and (ii) collecting the prop-
agated light at various points on the tissue surface [1–16].Besides creating practical problems
for clinical implementation particularly when used with a fluorescent contrast agent, point il-
lumination results in a limited tissue volume of interrogation, potentially missing the target
tissue of interest. To avoid this problem, mechanical raster scanning has been proposed in an-
imal studies [17–21]. In a simpler and more practical approach, investigators in our laborato-
ries have experimentally demonstrated 3-D tomographic reconstruction from area measurement
of a single projection of fluorescence resulting from planarillumination of modulated excita-
tion light [13, 22–24]. Area-illumination and detection techniques are promising as the non-
contact nature of data acquisition minimizes patient discomfort and reduces data acquisition
time. While area-illumination provides enhanced volumes ofexcitation light interrogation, the
tomography problem is hard to solve because of the increasedill-posedness introduced by the
availability of fluorescence measurements on only a single projection plane. In potential clini-
cal applications of fluorescence optical tomography involving sentinel lymph node mapping for
imaging micrometastases in the lymph nodes of the axilla, internal mammary nodes, and supr-
aclavicular nodes, one reflectance fluorescence measurement will yield insufficient information
for accurate fluorescence yield map reconstructions. On theother hand, as will be shown in this
contribution, the information content in the area measurements can be increased by employing
spatially varying or patterned illumination, and taking multiple reflectance measurements cor-
responding to different illumination patterns. Spatiallypatterned illumination can be provided
by scanning line sources, Gaussian spots, or patterns generated by diffractive optics compo-
nents on different locations on the tissue phantom. Multiple frequency-domain fluorescence
measurements are then acquired on the illumination surfacecorresponding to different illu-
mination patterns. Fluorescence yield distributions in the imaged tissue volume can then be
recovered by a model based tomography algorithm.

Model based tomography in an area illumination and detection framework requires accurate
numerical solution of the photon fluence distribution in thetissue created by spatially patterned
excitation illumination. In the past, we have proposed an efficient adaptive finite element tomog-
raphy algorithm to solve the plane wave excitation based fluorescence tomography problem [23]
and demonstrated its ability to invert experimental area fluorescence measurements [24]. In this
contribution, we extend the adaptive finite element based tomography approach to handle mul-
tiple spatially patterned illumination sources. Adaptivefinite element solutions are computed
for multiple area sources independently of each other on separate finite element meshes, which
are independently adapted to accurately resolve each illumination pattern. Information from all
measurements is then combined to update the unknown interior fluorescence distribution in tis-
sue on another adaptively refined finite element mesh to better resolve the embedded fluorescent
targets. The proposed scheme is implemented in a parallelized framework, so that all computa-
tions related to different illumination patterns are solved simultaneously on different machines
of a Linux Beowulf cluster computer, and sent back to a masternode for joint reconstruction of
the yield distribution.
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The objective of this contribution is to introduce the approach and image reconstruction al-
gorithm for non-contact spatially patterned excitation based fluorescence tomography. To this
end, we perform a series of numerical experiments with different excitation patterns for recon-
structing multiple fluorescence targets at varying depths from the illumination plane, and to
quantify the advantage of using multiple measurement sets.

The outline of this article is as follows: In Section 2, we detail the formulation and implemen-
tation of the proposed fluorescence tomography scheme. Section 3 discusses the computational
experiments conducted to demonstrate the parallel adaptive fluorescence tomography scheme
for reconstructing multiple fluorescence targets embedded(at constant and varying depths from
the illumination surface) in turbid media. We provide a quantitative assessment in Section 4.
Finally, the results are summarized in Section 5. To the bestof the authors’ knowledge, this
contribution represents the first time that spatially patterned modulated area excitation sources
have been demonstrated in optical tomography to improve fluorescence image reconstructions
from reflectance measurements.

2. Methods and formulation

2.1. The photon transport model

Fluorescence optical tomography is typically performed ina model-based framework, wherein
a photon transport model is used to generate predicted boundary fluorescence measurements
for a given fluorescence absorption map in the tissue interior. The map of the absorption owing
to fluorophore is then iteratively updated until the predicted boundary fluorescence measure-
ments converge to the actual experimentally observed fluorescence measurements. For photon
propagation in large tissue volumes, the following set of coupled photon diffusion equations is
an accurate model:

−∇ · [Dx∇u]+kxu = 0, (1)

−∇ · [Dm∇v]+kmv = βxmu. (2)

Here,

Dx,m =
1

3(µax,mi + µax,m f + µ ′
sx,m)

, kx,m =
iω
c

+ µax,mi + µax,m f, βxm =
φ µax f

1− iωτ
,

and subscriptsx andm denote the excitation and the emission light fields, respectively. u,v are
the complex-valued photon fluence fields at excitation and emission wavelengths, respectively;
Dx,m are the photon diffusion coefficients;µax,mi is the absorption coefficient due to endoge-
nous chromophores;µax,m f is the absorption coefficient due to exogenous fluorophore;µ ′

sx,m
is the reduced scattering coefficient;ω is the modulation frequency;φ is the quantum effi-
ciency of the fluorophore, and finally,τ is the fluorophore lifetime associated with first order
fluorescence decay kinetics. All these coefficients, and in particular the fluencesu,v and the
absorption/scattering coefficients are spatially variable.

Above equations are complemented by Robin-type boundary conditions on the boundary∂Ω
of the domainΩ modeling the NIR excitation source:

2Dx
∂u
∂n

+ γu+S= 0, 2Dm
∂v
∂n

+ γv = 0, (3)

wheren denotes the outward normal to the surface andγ is a constant depending on the optical
refractive index mismatch at the boundary. The complex-valued functionS= S(r) is the spa-
tially variable excitation boundary source. There is no source term for the emission boundary
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condition. The goal of fluorescence tomography is to reconstruct the spatial map of coefficients
µax f(r) and/orτ(r) from measurements of the complex emission fluencev(r) on the boundary.
In this work we will focus on the recovery of onlyµax f(r), while all other coefficients are con-
sidered known a priori. For notational brevity, and to indicate the special role of this coefficient
as the main unknown of the problem, we setq = µax f in the following paragraphs.

2.2. The inverse problem for multiple illumination patterns

We have previously proposed a novel fluorescence tomographyalgorithm utilizing adaptive
finite element methods [23]. In the following, we briefly describe the formulation of the scheme
and its extension to image reconstructions from multiple area illumination sources. To this
end, assume that we employW different area excitation light patternsSi(r), i = 1,2, . . . ,W, to
excite the embedded fluorophore in the phantom. For each of these experiments, we can predict
fluencesui ,vi satisfying (1)–(3) withSi(r) as source terms if we assume knowledge of the yield
mapq. In addition, we take fluorescence measurements on the measurement boundaryΓ for
each of these experiments that we will denote byzi . The fluorescence image reconstruction
problem is then posed as a constrained optimization problemwherein anL2 norm based error
functional of the distance between fluorescence measurements z = {zi , i = 1,2, . . . ,W} and the
diffusion model predictionsv = {vi , i = 1,2, . . . ,W} is minimized by variation of the parameter
q; the diffusion model for each fluence predictionvi is a constraint to this optimization problem.
In a function space setting, the mathematical formulation of this minimization problem reads
as follows:

min
q,u,v

J(q,v) subject to Ai(q; [ui ,vi ])([ζ i ,ξ i ]) = 0, i = 1,2, . . . ,W. (4)

Here, the error functionalJ(q,v) incorporates a least squares error term over the measurement
partΓ of the boundary∂Ω and a Tikhonov regularization term:

J(q,v) =
W

∑
i=1

1
2

∥

∥vi −zi
∥

∥

2
Γ +β r(q), (5)

whereβ is the Tikhonov regularization parameter. The Tikhonov regularization termβ r(q)
is added to the minimization functional to control undesirable components in the mapq(r)
that result from a lack of resolvability. The constraintAi(q; [ui ,vi ])([ζ i ,ξ i ]) = 0 is the weak
or variational form of the coupled photon diffusion Eq.s (1)–(3) with partial current boundary
conditions for theith excitation source, and with test functions[ζ ,ξ ] ∈ H1(Ω):

Ai(q; [ui ,vi ])([ζ i ,ξ i ]) = (Dx∇ui ,∇ζ i)Ω +(kxu
i ,ζ i)Ω +

γ
2
(ui ,ζ i)∂Ω +

1
2
(Si ,ζ i)∂Ω

+(Dm∇vi ,∇ξ i)Ω +(kmvi ,ξ i)Ω +
γ
2
(vi ,ξ i)∂Ω − (βxmui ,ξ i)Ω. (6)

The solution of minimization problem (4) is then a stationary point of the combined La-
grangian [25]

L(x) = J(q,v)+
W

∑
i=1

Ai(q; [ui ,vi ])([λ ex
i ,λ em

i ]). (7)

Here,λ ex
i ,λ em

i are the Lagrange multipliers corresponding to the excitation and emission diffu-
sion equation constraints for theith source, respectively, and we have introduced the abbrevia-
tion x = {u,v,λ ex

,λ em
,q} for simplicity; u = {ui , i = 1,2, . . . ,W} andv = {vi , i = 1,2, . . . ,W}

are excitation and emission fluences for theW excitation sources;λ ex = {λ ex
i , i = 1,2, . . . ,W}
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andλ em= {λ em
i , i = 1,2, . . . ,W} denote the Lagrange multipliers corresponding to the excita-

tion and emission equation constraints for theW excitation sources.
In contrast with the output least squares based optical tomography techniques, we do not

directly enforce the dependence of the state variablesu andv on the parameterq by solving
diffusion equations for a given parameter map and substiuting the solution in place ofv in the
error functional. Rather this dependence is implicitly enforced by treatingu,v,q as independent
variables and including diffusion equations as a constraint on the the error functional.

2.3. Solving the inverse problem

A stationary point ofL(x), and therefore a solution of the constrained minimization prob-
lem (4), is found using the Gauss-Newton method wherein the update directionδxk =
{δuk,δvk,δλ ex

k ,δλ em
k ,δqk} is determined by solving the linear system

Lxx(xk)(δxk,y) = −Lx(xk)(y) ∀y, (8)

whereLxx(xk) is the Gauss-Newton approximation to the Hessian matrix of second derivatives
of L at pointxk, andy denotes possible test functions. These equations represent one condition
for each variable inδxk, i.e. they form a coupled system of equations for the 4W +1 variables
involved: allW excitation and emission fluences, excitation and emission Lagrange multipliers,
and the yield mapq. Once the search direction is computed from Eq. (8), the actual update is
determined by calculating a safeguarded step lengthαk:

xk+1 = xk +αkδxk. (9)

The step-lengthαk can be computed from one of several methods, such as the Goldstein-Armijo
backtracking line search [26, 27]. The Gauss-Newton equations are discretized by the finite
element method. State and adjoint variablesu,v,λ ex, andλ em are discretized and solved for
on meshes with continuous finite elements, while the unknownparameter mapq is discretized
on a separate mesh with discontinuous finite elements. Whenever Gauss-Newton iterations on
these meshes have reduced the error function by a factor of 10−3 or the Gauss-Newton step
length returned by the line search algorithm has fallen below 0.15, the meshes are refined using
a posteriorirefinement criteria. The advantage of function space Lagrangian framework lies in
its ability to provide a mathematically cohesive view of themultiple experiment tomography
problem. As the inverse iterations are derived in a discretization independent manner, it makes it
easier to implement optimal finite element meshes corresponding to different excitation sources.

The discretized version of the Gauss-Newton system (8) leads to a matrix equation for the
unknowns of our discrete finite element updateδxk. It has the following form:





M 0 PT

0 R CT

P C 0









δ pk

δqk

δdk



 =





F1

F2

F3



 , (10)

where the updates for the primal and dual (Lagrange multiplier) variables are abbreviated as
δ pk = [δuk,δvk]

T , δdk = [δλ ex
k ,δλ em

k ]T . Since each of these 4W + 1 variables is discretized
with several ten or hundred thousand unknowns on our finite element meshes, the matrix on
the left hand side can easily have a dimension of several million to over 10 million. At first
glance, it therefore seems infeasible or at least very expensive to solve such a system. In the
past, this has led researchers to the following approach: use one experiment alone to solve for
the fluorescence map, then use the result as the starting value for inverting the next data set
and so on; one or several loops over all data sets may be performed. While this approach often
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M1 PT
1

M2 PT
2

. . .
. . .

MW PW

R CT
1 CT

2 · · · CT
1

P1 C1

P2 C2

. . .
...

PW CW

Fig. 1. Block structure for the (square) Gauss-Newton matrix (10) formultiple excitation
sources. Indices denote the number of the experiment a matrix corresponds to.W is the total
number of experiments (excitation illumination patterns or multiple imaging modalities)
used. Blocks not shown correspond to matrices with all-zero entries.

works for problems that are only moderately ill-posed, it isinappropriate for problems with
the severe ill-posedness of the one at hand. The reason is that if we scan the source over the
surface, we will only be able to identify the yield map in the vicinity of the illuminated area. Far
away from it, we have virtually no information on the map. We will therefore reconstruct invalid
information away from the source, erasing all prior information we have already obtained there.

Consequently, it is mandatory that we use all available informationat the same time, in a
joint inversion scheme. Fortunately, we can make use of the structure of the problem: because
experiments are independent of each other, the joint Gauss-Newton matrix is virtually empty,
and in particular has no couplings between the entries corresponding to primal and dual vari-
ables of different illumination experiments. The only thing that keeps the matrix fully coupled
is the presence of the yield mapq on which all experiments depend.

This structure is manifested in the fact thatM, the second derivative of the measurement
error function with respect to state variablesui ,vi for all the excitation sources, is a block
diagonal matrix{M1,M2, . . . ,MW}. LikewiseP = blockdiag{P1,P2, . . . ,PW} is the representa-
tion of the discrete forward diffusion model for all the excitation sources. Finally, the matrix
C = blockdiag{C1,C2, . . . ,CW} is obtained by differentiating the semi-linear formAi in Eq. (6)
with respect to the parameterq. For reasons explained below, we choose different meshes for in-
dividual measurements. Consequently the individual blocksMi ,Pi ,Ci all differ from each other.
Finally, the right hand sideF denotes the discretized form of−Lx(xk)(y). The detailed formu-
lation of the individual blocksMi ,Pi ,Ci and the right hand sideF is provided in Ref. [23] for
the single excitation source based fluorescence measurements.

Given these considerations, the block structure of the Gauss-Newton KKT matrix (10) is
shown in Fig. 1. Using this structure, we can form the Schur complement of this system with
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respect to theRblock that reflects the independence of experiments:

{R+
W

∑
i=1

CT
i P−T

i MiP
−1
i Ci} δqk = F2−

W

∑
i=1

CT
i P−T

i (F i
1−MiP

−1
i F i

3), (11)

Pi δ pi
k = F i

3−
W

∑
i=1

Ci δqk, (12)

PT
i δdi

k = F i
1−

W

∑
i=1

Mi δ pi
k. (13)

Here, we first have to solve for the yield map updatesδqk, and then for updates of state and
adjoint variables for all the experiments individually andindependently, a task that is obviously
simpler than solving for the one big and coupled matrix in (10). Note in particular that the Schur
complement matrix

S= R+
W

∑
i=1

CT
i P−T

i MiP
−1
i Ci (14)

is symmetric and positive definite. We can therefore use the Conjugate Gradient (CG) method
to invert it.

In the CG algorithm, solving forδqk is done iteratively; in each iteration, one multiplication
betweenSand a vector is required. Given the structure of the matrix, this can be implemented
on separate computers or separate processors on a multiprocessor system, each of which is re-
sponsible for one or several of the experiments (and corresponding matricesCi ,Pi ,Mi). Since
multiplication of a vector with the matricesCT

i P−T
i MiP

−1
i Ci is completely independent, a work-

station cluster withW nodes is able to perform the image reconstruction task within approxi-
mately the same time as a single machine requires for inverting a single excitation source. For
the examples shown in Section 3, reconstructions took between 10 and 20 minutes on a cluster
of Opteron machines, independently of the number of experimentsW.

Using this approach, Eq.s (11)–(13) are iteratively solvedto convergence in order to obtain
the unknown fluorescence mapq. The results shown below are created using a program im-
plementing this algorithm developed by Bangerth [27] with the help of the open source deal.II
finite elements library [28]. Further implementation details including the line search procedure
and the incorporation of bounds on the unknown parameters were described previously [23].

2.4. Choice of meshes

To date, finite element simulations for multiple illumination sources in a non-contact area illu-
mination mode have not been reported in the literature. However, traditionally, optical tomog-
raphy schemes for fiber illumination setups have utilized only one finite element mesh for the
solution of diffusion equations corresponding to different illumination sources. If one does that,
one ends up with a simpler matrix in (10) where all the block matricesMi are equal, and simi-
larly for the matrices andPi . (The blocksCi are still different since their elements are computed
using the forward solutionsui ,vi .)

However, such a scheme is neither efficient nor accurate. Simulation of photon transport via
area excitation illumination requires careful finite element mesh design to capture the photon
fluence variation in the tissue media. A well-adapted, locally refined mesh tailored the illumi-
nation by a single source pattern would be fine only in the vicinity of illumination, and coarse
far away from it. Such a mesh would therefore be unsuitable for illumination by a different
source at a different position. Conversely, a uniform mesh would have to be prohibitively fine
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Fig. 2. Schematic of the multiple excitation illumination tomography algorithm. Theim-
plementation either runs on a single machine, or on a Linux Beowulf cluster where each
node is responsible for one or several measurements.
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Fig. 3. Source patterns employed for multiple experiment fluorescenceoptical tomogra-
phy: scanning lines (left column), scanning Gaussians (center column), diffractive optics
patterns (right column)

everywhere to accurately predict fluences for all possible illumination scenarios.
Consequently, efficient and accurate computations can onlybe performed if different meshes

are chosen for each illumination pattern. Our code uses separate meshes for each experiment
adapted to the illumination pattern employed (Fig. 4). Details of the refinement criteria are given
in Ref. [29]. Such an algorithm runs efficiently on multiprocessor computers or workstation
clusters wherein each source or a small number of sources canbe simulated on a separate
compute node. The flow of this algorithm for parallel computations is schematically shown in
Fig. 2.
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3. Image reconstruction simulations

In this section, non-contact fluorescence tomography with multiple excitation sources will be
demonstrated. Synthetic measurements were generated on a 512ml cubical tissue phantom with
optical properties of 1% Liposyn by running a highly accurate finite element forward simula-
tor with a yield map that is assumed to be known. For the simulated background absorption
coefficient, we choseµaxi = 0.023cm−1 andµami = 0.0289cm−1 [30]. The absorption coeffi-
cient due to fluorophore at the excitation wavelength was setto µax f = 0.23cm−1 in the target.
The associated emission wavelength absorption coefficientwasµam f = 0.023cm−1 in the tar-
get. The lifetime of the fluorophore was taken to beτ = 0.56ns and the quantum efficiency
wasφ = 0.016 to match the corresponding properties of Indocyanine Green (ICG) dye used in
experiments. The excitation wavelength for ICG is 785nm and the emission data is collected
at 830nm. The reduced scattering coefficient was taken asµ ′

s = 9.84cm−1 in both the target
and the background, and for this study was taken to be the sameat excitation and emission
wavelengths.

The setup of these simulations is as follows: In a right handed coordinate system, our phan-
tom occupies the volume[0,8cm]3. The top surface atz = 8cm was used as the illumination
and detection plane. We assumed a detector with an infinite number of pixels, by providing
synthetic measurements at all the quadrature points when numerically evaluating integrals over
the measurement surface. Excitation light modulated at 100MHz was delivered to the illumi-
nation plane via one of the following schemes: (i) four line sources, (ii) four Gaussian sources,
or (iii) a combination of diffractive optics patterns. Figure 3 shows these patterns. With these
assumed patterns used as sourcesSi(r), we computed fluorescence amplitude and phase across
the domain containing fluorescent targets of 5mmdiameter spheres filled with 1µM Indocya-
nine Green solution in 1% Liposyn. The phantom background was assumed to be devoid of
fluorophore. As mentioned above, we use different meshes to compute fluences for different
illumination patterns; Fig. 4 demonstrates how meshes are generated through adaptive mesh
refinement for a single one of each of the three kinds of sources. It is clear that for resolving
complex source patterns generated by diffractive optics, adaptive mesh refinement is a neces-
sity since the incident excitation source is poorly resolved during the first couple of refinement
stages, and at least 4 adaptive refinements are required. Resorting toa priori global mesh re-
finement would incur an exorbitant computational burden in the simulation of scanning and
patterned area incident illumination.

All of the following computations were performed on a Beowulf cluster with 16 compute
nodes. Each node consisted of dual Opteron 2.2 GHz 64 bit processors and 8GB of memory.

3.1. Single target reconstruction

For the first computational experiment, we position a singlesimulated fluorescent target at a
depth of 1cm from the center of the illumination plane. We then run our image reconstruction
algorithm using synthetic data generated for this situation.

Figure 5 depicts the reconstructed images obtained for source patterns (i)–(iii). All three illu-
mination patterns are able to recover the embedded fluorescent target. However for the multiple
Gaussian source patterns, the recovered target is shifted towards the illumination plane. The
upwards shift of the reconstructed target may be attributedto the fact that the target is farthest
from the excitation sources (none of the sources illuminates the area immediately above the tar-
get, see Fig. 3). Hence, less excitation light reaches the fluorophore, resulting in a lower signal
for image reconstruction.

If the target is identified as the volume in which the yield mapbelongs to the top 10% of the
recovered range, then the recovered target size varies withthe type of the incident illumination
patterns used (see Fig. 5).

(C) 2006 OSA 10 July 2006 / Vol. 14,  No. 14 / OPTICS EXPRESS  6526
#70247 - $15.00 USD Received 25 April 2006; revised 29 June 2006; accepted 3 July 2006



Fig. 4. State mesh evolution: 5 automatic mesh refinements are depicted forthe first illumi-
nation source employed in scanning lines (left), scanning Gaussians (center) and diffractive
optics patterns (right). Colors indicate arbitrary units of excitation light fluence.
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Fig. 5. Single target reconstructions for scanning lines (left), scanningGaussians (center),
and diffractive optics patterns (right). Black wire-frames representthe true target location
and size, while the colored blocks depict the reconstructed target. Top 10% of the recon-
structed contour levels of fluorescence absorption are shown.

(a) (b)

(c) (d)

Fig. 6. Three target reconstructions for targets at the same depth of 1cmfrom the illumina-
tion plane: (a) a single Gaussian source, (b) scanning line sources, (c) scanning Gaussian
sources, (d) diffractive optics patterns. Black wire-frames represent the true target locations
and sizes, while the colored blocks depict reconstructed targets. Top 50% of the contour
levels of fluorescence absorption are shown.

3.2. Multiple target reconstructions

Figure 6 depicts the image reconstruction of three 1cmdeep fluorescent targets, performed with
synthetic data generated from (a) a single Gaussian excitation source with half a width of 4cm
centered on the illumination plane [23], (b) four line sources scanning the illumination plane of
the phantom in equidistant steps, (c) four Gaussian excitation sources with half widths of 1cm
focused on different parts of the surface, and (d) the four diffractive optics patterns.

The advantage gained by multiple area illumination patterns over a single Gaussian is obvi-
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ous, as the latter lacks the information content to recover all three embedded fluorescent targets.
This consequently shows that multiple area illumination are a necessity for unambiguous im-
age reconstruction when the tissue contains either multiple fluorescent targets, or a distributed
fluorescence source.

The performance of multiple source patterns can be further differentiated by placing the three
fluorescent targets at different depths. We choose the same targets, but now place them at depths
of 1cm, 1.5cm, and 2.0cm. Figure 7 shows the reconstructed images for the three multiple source
patterns. The reconstructed parameter contour level cutoff needed to be reduced to 80% of the
maximum level for resolving the three targets. Since excitation light penetration descreases
exponentially with depth, the deeper targets do not fluoresce as much as the shallower targets
resulting in a nonuniformity in the reconstructed fluorescence absorption in the three targets.
The scanning Gaussian source doesn’t resolve the 1.5cm and 2cm deep targets clearly, while
the scanning line source illumination results in the detection of only the 1cmand 1.5cmdeep
targets. Diffractive optical pattern based illumination provides the best image reconstructions
as all the targets can be identified and there is no overlap.

Figure 7 also shows the mesh used in the discretization of theunknown parameterq, for the
three different illumination situations. Since the recovered parameter should be the same in all
three situations, it is not surprising that the parameter meshes are similar although the illumi-
nation scenarios are very different. Note that the parameter mesh is refined only near the recon-
structed fluorescent targets and remains coarse elsewhere,including close to the illumination
and measurement surface, yielding an optimal distributionof unknowns for the reconstruction
of the targets. Fluorescence optical tomography is an illposed inverse problem. In the numerical
studies reported in the paper, the ill-posedness is furtherexacerbated by availability of only the
reflectance plane measurements. An adaptive refinement based technique successfully recovers
the location of embedded fluorescence targets but fluorescence absorption magnitudes are not
uniquely quantified resulting in a variation in the reconstructed fluorescence absorption maps
depending on the simulation configuration. Hence, for the ease of visualization of results differ-
ent contour level cutoffs were used for the single target andthree target image reconstructions.

The performance of patterned area illumination schemes canbe contrasted with the tradi-
tional fiber optic based point illumination schemes. In order to assess the comparative perfor-
mance of patterned illumination with point illumination, four point sources placed symmetri-
cally over the illumination surface were used to generate synthetic measurements correspond-
ing to the three fluorescent target simulations. Target positions and sizes were identical to that
reported in the preceeding paragraphs. The software framework detailed in section-2 can be
used to model point-illumination schemes by using a suitable mathematical function describ-
ing point illumination. Point sources were simulated by employing Gaussian source profiles
with a narrow 1.5mmwidth. Figure 8(a) depicts the source positions. Figure 8(b) depicts the
adaptively refined forward simulation mesh for the first source. The image reconstructions cor-
responding to the three fluorescent targets placed at the same and varying depths are reported
in Fig. 8(c) and Fig. 8(d) respectively. The contour level cutoffs employed are identical to the
patterned illumination based image reconstructions. The image reconstruction corresponding
to the fluorescent targets at the same depth depicts significant image artifacts in the center of
the imaged field of view, while the image reconstruction fromthe measurements generated for
the three fluorescent targets at varying depths completely fails to accurately reconstruct the lo-
cation and sizes of all the three fluorescent targets. The reason for the failure of point sources
in locating three fluorescent targets is primarily because of insufficient excitation light pene-
tration and consequently weaker fluorescence emission. This suggests the inadequacy of point
illumination schemes for reconstructing fluorescence distributions in large tissue volumes with
multiple targets, especially when only a limited number of sources can be employed to limit
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(a)

(b)

(c)

Fig. 7. Three target reconstructions for targets at varying depths from the illumination
plane: (a) scanning line sources, (b) scanning Gaussian sources, (c) diffractive optics pat-
terns. Left column: Meshes for the reconstruction of the parameter. Right column: Black
wire-frames represent the true target locations and sizes, while the colored blocks depict
reconstructed targets. Top 80% of the contour levels of fluorescence absorption are shown.

data acquisition time.

4. Quantitative assessment

In the previous section, we have discussed qualitative measures for comparing different exci-
tation patterns. In this section, we demonstrate quantitatively the advantages of using multiple
area excitation sources by a series of computational experiments. Simulation studies have a long
history in optical tomograpy (see, for example, Ref. [35]) and are ideally suited to determine
optimal experimental setups before their implementation in hardware.

We focus on the scanning line setup: The phantom surface is scanned by up toW lines and
we quantitate the advantages in image reconstruction with the increments in the number of
line sources employed (W). The line sources are positioned symmetrically with respect to the
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(a) (b)

(c) (d)

Fig. 8. Three target reconstructions with point illumination (a) point sources employed
are numbered, (b) final adaptively refined forward mesh for source 1, (c) reconstructed
fluorescence absorption map for the three targets placed at the depth of1cmwith a contour
level cutoff at 50% of maximum , (d) reconstructed fluorescence absorption map for the
three targets placed at depths of 1cm, 1.5cm, and 2cmwith a contour level cutoff at 80%
of maximum. Black wire-frames represent the true target locations andsizes, while the
colored blocks depict reconstructed targets.

center of the measurement surface (see Fig. 3). In the image reconstruction procedure detailed
in the preceding sections, a linear problem defined by Eq. (11) is solved within each non-linear
iteration to determine the update to the unknown parameter mapq. We note that the once the
solution has converged to within noise level, the right handside of Eq. (11) only consists of
contributions due to measurement noise, and further updates δqk will only produce changes
within the range of uncertainty. The matrixS defined in Eq. (14) determines this parameter
updateδq. Since it is symmetric and positive definite we can find a complete set of (normalized)
eigenvectorsvℓ and singular valuesσℓ such thatS= ∑ℓ σℓvℓvT

ℓ . By convention the singular
valuesσℓ are arranged in decreasing order. We can then determine the update to be

δqk = ∑
ℓ

1
σℓ

tℓvℓ,

wheretℓ = vT
ℓ

[

F2−∑W
i=1CT

i P−T
i (F1−MiP

−1
i F3)

]

. Since we want small random updatesδqk,
it is important that the singular valuesσℓ be as large as possible.

Most large singular values of the resolution matrixScorrespond to image modesvℓ that de-
scribe features in the solution close to the measurement surface, about which measurements
provide enough information. On the other hand, small singular values correspond to high-
frequency oscillations and deep objects that are badly constrained by the available measure-
ments. Hence the decay profile of the singular value spectrumof the Gauss-Newton matrix
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Fig. 9. Singular value spectra of the Gauss-Newton matrixS defined in Eq. (14) with in-
creasing number of lines.

provides a measure of the ill-conditioning of the inverse image reconstruction problem. Similar
analyses have been performed by other researchers to optimize source-detector geometries in
both diffuse optical tomography [31–33] and fluorescence molecular tomography [34] for point
source based illumination.

In order to test our hypothesis that more measurements reduce ill-posedness, the matrices
S for a varying numberW of scanning line sources were computed for the case of a uniform
fluorophore distribution (q = 0.01cm−1). To remove the effect of adaptive mesh refinement on
the singular value spectrum, only one iteration on uniform globally refined state and parameter
meshes was computed. All the state/forward meshes consisted of 2.5mmcubical voxels, while
the parameter mesh consisted of 1cmcubical voxels.

Figure 9 depicts the effect of increasing the number of measurements on the singular value
spectrum of the matrixW. The larger the number of measurements the larger the numberof
singular valuesσℓ of Swith significant magnitude, where the latter is determined by the fact that
only singular values greater than the regularization parameterβ (typically β = 10−10) impact
image formation. Figure 10 shows this result in a different manner by plotting the number of
singular values beyond the typical regularization parameter. From both these plots we conclude
that by adding additional measurements, we can increase thenumber of resolvable modes by
a factor of 4–5. If these modes were isotropically distributed in the domain, this result would
imply that 16 measurements will yield a resolution that is a factor of 3

√
4– 3

√
5 better than when a

single measurement is used. In addition, we see that the absolute value of the largest eigenvalue
also increases by a factor of at least 10 with the number of measurements, meaning that the
uncertainty on the resolvable image modesvℓ is reduced by a factor of

√
10.

Figure 10 indicates that even a further increase in the number of measurements will not in-
crease the number of significant singular values appreciably beyond around 70. This should not
surprise: the amount of information that can be extracted from a system is bounded by physical
considerations (for example, no features smaller than the scattering length scale can be recov-
ered assuming the validity of the diffusion equation). Evenoptimally designed experiments will
therefore not be able to increase the number of significant singular values beyond limit. On the
other hand, it is conceivable that a set of experiments different from the ones considered here
may extract more information from the system than shown in Figs. 9 and 10.
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Fig. 10. Increase of useful singular valuesσℓ > 10−10 for resolving the reconstructed fluo-
rophore image with increasing numberW of lines.

5. Conclusion and future implications

In this contribution, we have demonstrated a novel fluorescence optical tomography frame-
work for recovering the location of single and multiple fluorescent targets embedded in tissue,
from time dependent, non-contact boundary fluorescence measurements generated by multiple
area excitation illumination sources. As with fiber optic based point illumination and detec-
tion schemes, multiple area illumination patterns enable wide spatial sampling of the tissue
surface, but unlike fiber optic sources and detectors, multiple area illumination techniques gen-
erate dense measurement datasets and enhance excitation light penetration in the tissue. As a
consequence, we obtain an increase in sensitivity from the patterned modulated illumination.

Multiple area illumination sources can be generated by scanning a simple source geometry,
such as a line or a Gaussian, across the illumination plane orby utilizing complex patterns
generated by diffractive optical components. The proposedmultiple experiment fluorescence
tomography scheme implements an algorithm in which each of these measurements is repre-
sented by an adaptively refined mesh. Contributions from each experiment are assembled in the
nonlinear scheme using a parallel framework that results inimage reconstruction times that are
equivalent to single excitation source computations on a single machine.

As we have shown both qualitatively and quantitatively, multiple area illumination has dis-
tinct advantages over single illumination schemes in the image reconstruction of multiple fluo-
rescent targets.

Adaptive mesh refinement tomography schemes are essential to generate optimal and effi-
cient finite element meshes in clinically relevant situations, wherein large (> 100cm2) tissue
surfaces may need to be sampled, and noa priori information about the fluorescent target loca-
tions is available. Different illumination patterns perform differently in the challenging image
reconstruction problems involving multiple fluorescent targets placed at varying depths. Hence,
excitation source patterns need to be optimized for covering large tissue surfaces and simulta-
neously handling fluorescent target distributions varyingboth in lateral and vertical directions.
Since the numerical computations corresponding to multiple sources are distributed to separate
compute nodes of a cluster, the proposed tomography scheme enables us to optimize excita-
tion sources as the number of patterns which can be employed is only limited by the amount
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of computational resources available. The optimal source patterns for fluorescence optically
tomography can be determined by an exhaustive search procedure over the illumination sur-
face pixels by maximizing a suitable measure of the conditioning of the Gauss-Newton hessian
matrix S with respect to the variation of illumination patterns. Finally, numerical studies such
as those presented in this contribution are significantly faster than the comparable tests using
actual measurements in the laboratory, and may therefore accelerate the development and de-
ployment of optimal measurement schemes for fluorescence optical tomography in clinic.
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