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Abstract:  This article describes a novel non-contact fluorescendeadpt
tomography scheme which utilizes multiple area illumioatipatterns,
to reduce the ill-posedness of the inverse problem involweakcovering
interior fluorescence yield distributions in biologicague from boundary
fluorescence measurements. The image reconstruction isdpas an
optimization problem which seeks a tissue optical propeiigtribution
minimizing, for all illumination patterns simultaneouslg regularized
difference between the observed boundary measuremernighofiistribu-
tion, and the boundary measurements predicted from a p@iysiodel.
Multiple excitation source illumination patterns are désed by line and
Gaussian sources scanning the simulated tissue phantdateswand by
employing diffractive optics-generated patterns. Mldtimeasurement data
sets generated by scanning excitation sources are prdcgssataneously
to generate the interior fluorescence distribution in gsisy implementing
the fluorescence tomography algorithm in a parallel franmkwsaitable for
multiprocessor computers. Image reconstructions forlsiagd multiple
fluorescent targets (Bmdiameter) embedded in a 5hP simulated tissue
phantom are demonstrated, with depths of the fluorescegattafrom the
illumination plane betweencin to 2cm We show both qualitative and
guantitative improvements of our algorithm over recongtamns from only
a single measurement.
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1. Introduction

Most developing optical tomography techniques, which ewmfime-dependent measurements
and fluorescent contrast agents, depend upon (i) illunmigadi tissue surface with incident
points of light using either fiber optics or lens-focusedhtigeams, and (ii) collecting the prop-
agated light at various points on the tissue surface [1-B€gides creating practical problems
for clinical implementation particularly when used with adtescent contrast agent, point il-
lumination results in a limited tissue volume of interrdgat potentially missing the target
tissue of interest. To avoid this problem, mechanical ragtanning has been proposed in an-
imal studies [17-21]. In a simpler and more practical apghp@vestigators in our laborato-
ries have experimentally demonstrated 3-D tomographmnstcuction from area measurement
of a single projection of fluorescence resulting from platiamination of modulated excita-
tion light [13, 22—24]. Area-illumination and detectiorckamiques are promising as the non-
contact nature of data acquisition minimizes patient digfoot and reduces data acquisition
time. While area-illumination provides enhanced volumesxaitation light interrogation, the
tomography problem is hard to solve because of the incredigemsedness introduced by the
availability of fluorescence measurements on only a singdgption plane. In potential clini-
cal applications of fluorescence optical tomography invg\sentinel lymph node mapping for
imaging micrometastases in the lymph nodes of the axiltariral mammary nodes, and supr-
aclavicular nodes, one reflectance fluorescence measuraiitigmeld insufficient information
for accurate fluorescence yield map reconstructions. Oattiexr hand, as will be shown in this
contribution, the information content in the area mease@mmcan be increased by employing
spatially varying or patterned illumination, and takingltiple reflectance measurements cor-
responding to different illumination patterns. Spatigibtterned illumination can be provided
by scanning line sources, Gaussian spots, or patternsajeddy diffractive optics compo-
nents on different locations on the tissue phantom. Mdtfipbquency-domain fluorescence
measurements are then acquired on the illumination sudagesponding to different illu-
mination patterns. Fluorescence yield distributions i ithaged tissue volume can then be
recovered by a model based tomography algorithm.

Model based tomography in an area illumination and detedtemmework requires accurate
numerical solution of the photon fluence distribution intissue created by spatially patterned
excitation illumination. In the past, we have proposed &niefit adaptive finite element tomog-
raphy algorithm to solve the plane wave excitation baseddkaence tomography problem [23]
and demonstrated its ability to invert experimental arearfiscence measurements [24]. In this
contribution, we extend the adaptive finite element basewgpaphy approach to handle mul-
tiple spatially patterned illumination sources. Adaptiiéte element solutions are computed
for multiple area sources independently of each other caragpfinite element meshes, which
are independently adapted to accurately resolve eachiilation pattern. Information from all
measurements is then combined to update the unknown infierdmescence distribution in tis-
sue on another adaptively refined finite element mesh torbbetelve the embedded fluorescent
targets. The proposed scheme is implemented in a parefidiamework, so that all computa-
tions related to different illumination patterns are sdigmultaneously on different machines
of a Linux Beowulf cluster computer, and sent back to a maside for joint reconstruction of
the yield distribution.
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The objective of this contribution is to introduce the agmio and image reconstruction al-
gorithm for non-contact spatially patterned excitatiosdzhfluorescence tomography. To this
end, we perform a series of numerical experiments with idiffeexcitation patterns for recon-
structing multiple fluorescence targets at varying deptbmfthe illumination plane, and to
guantify the advantage of using multiple measurement sets.

The outline of this article is as follows: In Section 2, wealkthe formulation and implemen-
tation of the proposed fluorescence tomography schemeaoB&atliscusses the computational
experiments conducted to demonstrate the parallel adafitiorescence tomography scheme
for reconstructing multiple fluorescence targets embedalsrbnstant and varying depths from
the illumination surface) in turbid media. We provide a diitative assessment in Section 4.
Finally, the results are summarized in Section 5. To the bk#te authors’ knowledge, this
contribution represents the first time that spatially pattd modulated area excitation sources
have been demonstrated in optical tomography to improvedteence image reconstructions
from reflectance measurements.

2. Methods and formulation

2.1. The photon transport model

Fluorescence optical tomography is typically performed model-based framework, wherein
a photon transport model is used to generate predicted boyfidorescence measurements
for a given fluorescence absorption map in the tissue intélfie map of the absorption owing
to fluorophore is then iteratively updated until the pregticboundary fluorescence measure-
ments converge to the actual experimentally observed geree measurements. For photon
propagation in large tissue volumes, the following set afted photon diffusion equations is
an accurate model:

—0- [DmOV] 4 kmv = Bxmu. 2)
Here,
1 i PUaxf
D = k = — i = " 5
o 3(Ha)gmi+“a>9mf+l~léxm), M  Haxmi + Haxm,  fxm l-ior

and subscriptg andm denote the excitation and the emission light fields, redgsygtu, v are
the complex-valued photon fluence fields at excitation andgon wavelengths, respectively;
Dxm are the photon diffusion coefficientgaxmi is the absorption coefficient due to endoge-
nous chromophoregiaxms is the absorption coefficient due to exogenous fluorophafg;,
is the reduced scattering coefficient;is the modulation frequencyyp is the quantum effi-
ciency of the fluorophore, and finally,is the fluorophore lifetime associated with first order
fluorescence decay kinetics. All these coefficients, andanmtiqular the fluences,v and the
absorption/scattering coefficients are spatially vagabl

Above equations are complemented by Robin-type boundamgittons on the boundagQ
of the domairQQ modeling the NIR excitation source:

du ov
2Dxﬁ+yu+8f 0, 2Dm%+wf07 (©)]
wheren denotes the outward normal to the surface gisla constant depending on the optical
refractive index mismatch at the boundary. The complexgedifunctionS= S(r) is the spa-
tially variable excitation boundary source. There is noreederm for the emission boundary
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condition. The goal of fluorescence tomography is to recansthe spatial map of coefficients
Haxt(r) and/ort(r) from measurements of the complex emission fluericgon the boundary.
In this work we will focus on the recovery of onjyax¢(r ), while all other coefficients are con-
sidered known a priori. For notational brevity, and to irmdéthe special role of this coefficient
as the main unknown of the problem, we get L+ in the following paragraphs.

2.2. The inverse problem for multiple illumination pattern

We have previously proposed a novel fluorescence tomogralgoyithm utilizing adaptive
finite element methods [23]. In the following, we briefly deke the formulation of the scheme
and its extension to image reconstructions from multipaatiumination sources. To this
end, assume that we empldy different area excitation light patten$r),i = 1,2,...,W, to
excite the embedded fluorophore in the phantom. For eaclesétéxperiments, we can predict
fluenceal , v satisfying (1)—(3) wittS (r) as source terms if we assume knowledge of the yield
mapg. In addition, we take fluorescence measurements on the ne@asat boundary for
each of these experiments that we will denotezbyThe fluorescence image reconstruction
problem is then posed as a constrained optimization proltbarein anL, norm based error
functional of the distance between fluorescence measutemen{z‘,i =1,2,...,W} and the
diffusion model predictions = {V',i =1,2,...,W} is minimized by variation of the parameter
q; the diffusion model for each fluence predictidris a constraint to this optimization problem.
In a function space setting, the mathematical formulatibthis minimization problem reads
as follows:

min J(q,v) subjectto A'(q;[u . V])([¢',€]) =0, i=12.. W. @)

Here, the error functional(g,v) incorporates a least squares error term over the measuremen
partl” of the boundaryQ and a Tikhonov regularization term:

w S
Yav =3 IV -2 +6r(a. ©)

where 3 is the Tikhonov regularization parameter. The Tikhonowitegzation termgr(q)
is added to the minimization functional to control unddsieacomponents in the magyr)
that result from a lack of resolvability. The constraitq; [u',V'])([¢',&']) = 0 is the weak
or variational form of the coupled photon diffusion Eq.s{B) with partial current boundary
conditions for theé'" excitation source, and with test functiofds £] € H(Q):

A V(€)= (00U, 080 + (kad, ¢+ (U ¢)an + 5(S.an
+ (D, 08 o + (k' &)a + L (V. &)aa — (Burtd E)a. (6)

The solution of minimization problem (4) is then a statign@oint of the combined La-
grangian [25]

wooo
L(x) =J(a,v) + _;A' (0 [u, V) (A ACT). ()

Here A AfMare the Lagrange multipliers corresponding to the exoitetind emission diffu-
sion equation constraints for tif8 source, respectively, and we have introduced the abbrevia-
tion x = {u,v,A®* A®™ q} for simplicity; u = {u',i=1,2,.... W} andv={V,i=12... W}

are excitation and emission fluences for Wieexcitation sources) ™ = {A&i =1,2,... W}
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andA®"= {AfMi=1,2,...,W} denote the Lagrange multipliers corresponding to the axcit
tion and emission equation constraints for tieexcitation sources.

In contrast with the output least squares based optical goaphy techniques, we do not
directly enforce the dependence of the state variablasdv on the parameteq by solving
diffusion equations for a given parameter map and subsgjutie solution in place of in the
error functional. Rather this dependence is implicitlyanéd by treatingl, v,q as independent
variables and including diffusion equations as a constrairthe the error functional.

2.3. Solving the inverse problem

A stationary point ofL(x), and therefore a solution of the constrained minimizatioobp
lem (4), is found using the Gauss-Newton method wherein theéate directiondxx =
{dUy, vk, OAY O, &0k} is determined by solving the linear system

Lx(Xi) (0%, Y) = —Lx(Xi) (Y) vy, (8)

whereLyy(X«) is the Gauss-Newton approximation to the Hessian matrieobsd derivatives
of L at pointx, andy denotes possible test functions. These equations rep@semondition
for each variable ixy, i.e. they form a coupled system of equations for ti-41 variables
involved: allW excitation and emission fluences, excitation and emissagrdnge multipliers,
and the yield mapj. Once the search direction is computed from Eq. (8), theahcfodate is
determined by calculating a safeguarded step leogth

X1 = X+ O OX. )

The step-lengtl, can be computed from one of several methods, such as thet€oldgmijo
backtracking line search [26, 27]. The Gauss-Newton equstare discretized by the finite
element method. State and adjoint variahleg, A®*, andA®™ are discretized and solved for
on meshes with continuous finite elements, while the unkngarameter map is discretized
on a separate mesh with discontinuous finite elements. Whe@auss-Newton iterations on
these meshes have reduced the error function by a factor 6f dilthe Gauss-Newton step
length returned by the line search algorithm has fallenve@€ld 5, the meshes are refined using
a posteriorirefinement criteria. The advantage of function space Lagaarframework lies in
its ability to provide a mathematically cohesive view of theltiple experiment tomography
problem. As the inverse iterations are derived in a diszatitin independent manner, it makes it
easier to implement optimal finite element meshes corrafipgito different excitation sources.

The discretized version of the Gauss-Newton system (8klémd matrix equation for the
unknowns of our discrete finite element updaig. It has the following form:

M 0 P'] [dp« F
0 R C'| |o| = |R|, (10)
P C 0] |ddg =

where the updates for the primal and dual (Lagrange mudtipliariables are abbreviated as
Spk = [Ouk, Ovk] T, 8dk = [SAL 8AE™T. Since each of thesaM+ 1 variables is discretized
with several ten or hundred thousand unknowns on our fingmeht meshes, the matrix on
the left hand side can easily have a dimension of severalomitb over 10 million. At first
glance, it therefore seems infeasible or at least very estpeno solve such a system. In the
past, this has led researchers to the following approaehons experiment alone to solve for
the fluorescence map, then use the result as the starting f@linverting the next data set
and so on; one or several loops over all data sets may be pexfioiWhile this approach often

#70247 - $15.00 USD Received 25 April 2006; revised 29 June 2006; accepted 3 July 2006
(C) 2006 OSA 10 July 2006/ Vol. 14, No. 14/ OPTICS EXPRESS 6521



My Pl
Ma Py
Mw Ry
R|c d o
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Fig. 1. Block structure for the (square) Gauss-Newton matrix (10jrfaltiple excitation
sources. Indices denote the number of the experiment a matrix gon@stoW is the total
number of experiments (excitation illumination patterns or multiple imaging fitesd.
used. Blocks not shown correspond to matrices with all-zero entries.

works for problems that are only moderately ill-posed, itnigppropriate for problems with
the severe ill-posedness of the one at hand. The reasort i ¥ scan the source over the
surface, we will only be able to identify the yield map in theinity of the illuminated area. Far
away from it, we have virtually no information on the map. Wé therefore reconstruct invalid
information away from the source, erasing all prior infotimawe have already obtained there.

Consequently, it is mandatory that we use all availablermfdionat the same timein a
joint inversion scheme. Fortunately, we can make use ofttinetsire of the problem: because
experiments are independent of each other, the joint Gdagsden matrix is virtually empty,
and in particular has no couplings between the entries sporaling to primal and dual vari-
ables of different illumination experiments. The only thithat keeps the matrix fully coupled
is the presence of the yield mgmn which all experiments depend.

This structure is manifested in the fact th\{ the second derivative of the measurement
error function with respect to state variabldsv' for all the excitation sources, is a block
diagonal matrix{My,Ma, ..., Mw}. Likewise P = blockdiag P1,P,,...,Ry} is the representa-
tion of the discrete forward diffusion model for all the emtion sources. Finally, the matrix
C = blockdiag/C1,C,, . ..,Gy} is obtained by differentiating the semi-linear foAhin Eq. (6)
with respect to the parametgrFor reasons explained below, we choose different meshas fo
dividual measurements. Consequently the individual lddék PR, C; all differ from each other.
Finally, the right hand sidé denotes the discretized form efLy(x)(y). The detailed formu-
lation of the individual blockd;, B,C; and the right hand side is provided in Ref. [23] for
the single excitation source based fluorescence measutemen

Given these considerations, the block structure of the &alesvton KKT matrix (10) is
shown in Fig. 1. Using this structure, we can form the Schunglement of this system with

#70247 - $15.00 USD Received 25 April 2006; revised 29 June 2006; accepted 3 July 2006
(C) 2006 OSA 10 July 2006/ VVol. 14, No. 14/ OPTICS EXPRESS 6522



respect to th& block that reflects the independence of experiments:

w W
{R+ _ZQT R TMP'Ci} ook = F2— _ZCiT R (Fi—MP 1 F)), (11)

1= 1=
R op=F;— ZlG Ok, (12)

1=

W _

PT &d, = F| — ZMi 5pk. (13)

1=

Here, we first have to solve for the yield map updaleg, and then for updates of state and
adjoint variables for all the experiments individually andependently, a task that is obviously
simpler than solving for the one big and coupled matrix in (Nbte in particular that the Schur
complement matrix

w
S=R+ ZciT P TMPIC (14)
i=

is symmetric and positive definite. We can therefore use thgu@ate Gradient (CG) method
to invert it.

In the CG algorithm, solving fodgy is done iteratively; in each iteration, one multiplication
betweenSand a vector is required. Given the structure of the mathis, ¢an be implemented
on separate computers or separate processors on a muspovsystem, each of which is re-
sponsible for one or several of the experiments (and casreipg matrice<;, B, M;). Since
multiplication of a vector with the matric&’ Pi‘T Mi Pi—lq is completely independent, a work-
station cluster wittW nodes is able to perform the image reconstruction task mvipiproxi-
mately the same time as a single machine requires for imgeatisingle excitation source. For
the examples shown in Section 3, reconstructions took le#ti® and 20 minutes on a cluster
of Opteron machines, independently of the number of expariaw.

Using this approach, Eq.s (11)-(13) are iteratively soledonvergence in order to obtain
the unknown fluorescence map The results shown below are created using a program im-
plementing this algorithm developed by Bangerth [27] with help of the open source deal.ll
finite elements library [28]. Further implementation dist&icluding the line search procedure
and the incorporation of bounds on the unknown parametens described previously [23].

2.4. Choice of meshes

To date, finite element simulations for multiple illumiratisources in a non-contact area illu-
mination mode have not been reported in the literature. Meweraditionally, optical tomog-
raphy schemes for fiber illumination setups have utilizely one finite element mesh for the
solution of diffusion equations corresponding to différdlnmination sources. If one does that,
one ends up with a simpler matrix in (10) where all the blockrivasM; are equal, and simi-
larly for the matrices ané}. (The block<C; are still different since their elements are computed
using the forward solutions,v'.)

However, such a scheme is neither efficient nor accurateul&iimn of photon transport via
area excitation illumination requires careful finite elemesh design to capture the photon
fluence variation in the tissue media. A well-adapted, lyaafined mesh tailored the illumi-
nation by a single source pattern would be fine only in thenitigiof illumination, and coarse
far away from it. Such a mesh would therefore be unsuitahiéllitanination by a different
source at a different position. Conversely, a uniform meshld have to be prohibitively fine
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Experimental Beowulf Cluster
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Fig. 2. Schematic of the multiple excitation illumination tomography algorithm. ifike
plementation either runs on a single machine, or on a Linux Beowulf clusterereach
node is responsible for one or several measurements.
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Fig. 3. Source patterns employed for multiple experiment fluorescepiteal tomogra-
phy: scanning lines (left column), scanning Gaussians (center c|ulfiinactive optics
patterns (right column)

everywhere to accurately predict fluences for all posslhleination scenarios.

Consequently, efficient and accurate computations cant@nperformed if different meshes
are chosen for each illumination pattern. Our code usega&paeshes for each experiment
adapted to the illumination pattern employed (Fig. 4). Detd the refinement criteria are given
in Ref. [29]. Such an algorithm runs efficiently on multipessor computers or workstation
clusters wherein each source or a small number of sourcebeamulated on a separate
compute node. The flow of this algorithm for parallel compiotas is schematically shown in
Fig. 2.
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3. Image reconstruction simulations

In this section, non-contact fluorescence tomography witltiple excitation sources will be
demonstrated. Synthetic measurements were generatedl@md &ubical tissue phantom with
optical properties of 1% Liposyn by running a highly accarfiite element forward simula-
tor with a yield map that is assumed to be known. For the sitadla@ackground absorption
coefficient, we chosg@lay = 0.023m 1 and pami = 0.028%m 1 [30]. The absorption coeffi-
cient due to fluorophore at the excitation wavelength wasosgsys = 0.23cm 1 in the target.
The associated emission wavelength absorption coeffigiagiams = 0.02%m ! in the tar-
get. The lifetime of the fluorophore was taken to be- 0.56ns and the quantum efficiency
was@ = 0.016 to match the corresponding properties of IndocyanireeG(ICG) dye used in
experiments. The excitation wavelength for ICG is @8Eand the emission data is collected
at 830m The reduced scattering coefficient was takeruas: 9.84cm ! in both the target
and the background, and for this study was taken to be the samecitation and emission
wavelengths.

The setup of these simulations is as follows: In a right hdrardinate system, our phan-
tom occupies the volum®,8cm®. The top surface at = 8cmwas used as the illumination
and detection plane. We assumed a detector with an infinitgbau of pixels, by providing
synthetic measurements at all the quadrature points whaericeally evaluating integrals over
the measurement surface. Excitation light modulated aMtd®was delivered to the illumi-
nation plane via one of the following schemes: (i) four lioeises, (ii) four Gaussian sources,
or (iii) a combination of diffractive optics patterns. Figu3 shows these patterns. With these
assumed patterns used as souEé:(as), we computed fluorescence amplitude and phase across
the domain containing fluorescent targets ofrbdiameter spheres filled withuMM Indocya-
nine Green solution in 1% Liposyn. The phantom backgrounsd assumed to be devoid of
fluorophore. As mentioned above, we use different mesheertgpuate fluences for different
illumination patterns; Fig. 4 demonstrates how meshes anergted through adaptive mesh
refinement for a single one of each of the three kinds of ssuiltés clear that for resolving
complex source patterns generated by diffractive optidaptive mesh refinement is a neces-
sity since the incident excitation source is poorly resdlgiaring the first couple of refinement
stages, and at least 4 adaptive refinements are requiredrtiRggo a priori global mesh re-
finement would incur an exorbitant computational burderhim simulation of scanning and
patterned area incident illumination.

All of the following computations were performed on a Beofaluster with 16 compute
nodes. Each node consisted of dual Opteron 2.2 GHz 64 biepsocs and 8GB of memory.

3.1. Single target reconstruction

For the first computational experiment, we position a sirgjteulated fluorescent target at a
depth of Tmfrom the center of the illumination plane. We then run ourg@aeconstruction
algorithm using synthetic data generated for this situmatio

Figure 5 depicts the reconstructed images obtained focsqatterns (i)—(iii). All three illu-
mination patterns are able to recover the embedded fluaretsacget. However for the multiple
Gaussian source patterns, the recovered target is shiftetds the illumination plane. The
upwards shift of the reconstructed target may be attribtdgdte fact that the target is farthest
from the excitation sources (none of the sources illummtte area immediately above the tar-
get, see Fig. 3). Hence, less excitation light reaches tbedjilnore, resulting in a lower signal
for image reconstruction.

If the target is identified as the volume in which the yield nbafongs to the top 10% of the
recovered range, then the recovered target size varieshettype of the incident illumination
patterns used (see Fig. 5).
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Fig. 5. Single target reconstructions for scanning lines (left), scar®agsians (center),
and diffractive optics patterns (right). Black wire-frames repretiemtrue target location
and size, while the colored blocks depict the reconstructed target. Popolthe recon-
structed contour levels of fluorescence absorption are shown.
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Fig. 6. Three target reconstructions for targets at the same deptimdfdm the illumina-
tion plane: (a) a single Gaussian source, (b) scanning line souriegafming Gaussian
sources, (d) diffractive optics patterns. Black wire-frames repethie true target locations
and sizes, while the colored blocks depict reconstructed targets. Popo5€he contour
levels of fluorescence absorption are shown.

3.2. Multiple target reconstructions

Figure 6 depicts the image reconstruction of thremdeep fluorescent targets, performed with
synthetic data generated from (a) a single Gaussian drcitsburce with half a width ofem
centered on the illumination plane [23], (b) four line sagscanning the illumination plane of
the phantom in equidistant steps, (c) four Gaussian eimitaburces with half widths ofcin
focused on different parts of the surface, and (d) the foffiraditive optics patterns.

The advantage gained by multiple area illumination past@wer a single Gaussian is obvi-
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ous, as the latter lacks the information content to recoVéir@e embedded fluorescent targets.
This consequently shows that multiple area illuminatiom amecessity for unambiguous im-
age reconstruction when the tissue contains either melifipbrescent targets, or a distributed
fluorescence source.

The performance of multiple source patterns can be furtiffereintiated by placing the three
fluorescent targets at different depths. We choose the saget$, but now place them at depths
of 1cm 1.5cm, and 20cm Figure 7 shows the reconstructed images for the threepreuttource
patterns. The reconstructed parameter contour levelfautetied to be reduced to 80% of the
maximum level for resolving the three targets. Since ekoitalight penetration descreases
exponentially with depth, the deeper targets do not flueescmuch as the shallower targets
resulting in a nonuniformity in the reconstructed fluoresmeabsorption in the three targets.
The scanning Gaussian source doesn't resolve arland Zm deep targets clearly, while
the scanning line source illumination results in the débecof only the Tmand 15cmdeep
targets. Diffractive optical pattern based illuminatiaioyides the best image reconstructions
as all the targets can be identified and there is no overlap.

Figure 7 also shows the mesh used in the discretization afrtkrown parametet, for the
three different illumination situations. Since the rea@eeparameter should be the same in all
three situations, it is not surprising that the parameteshe are similar although the illumi-
nation scenarios are very different. Note that the parame¢sh is refined only near the recon-
structed fluorescent targets and remains coarse elsevihergling close to the illumination
and measurement surface, yielding an optimal distributiocumknowns for the reconstruction
of the targets. Fluorescence optical tomography is anséiganverse problem. In the numerical
studies reported in the paper, the ill-posedness is fugka&cerbated by availability of only the
reflectance plane measurements. An adaptive refinemert tedmique successfully recovers
the location of embedded fluorescence targets but fluoresa@rsorption magnitudes are not
uniquely quantified resulting in a variation in the recounsted fluorescence absorption maps
depending on the simulation configuration. Hence, for tlse @d visualization of results differ-
ent contour level cutoffs were used for the single targetthrek target image reconstructions.

The performance of patterned area illumination schemedearontrasted with the tradi-
tional fiber optic based point illumination schemes. In ortdeassess the comparative perfor-
mance of patterned illumination with point illuminatiomur point sources placed symmetri-
cally over the illumination surface were used to generatdéh®tic measurements correspond-
ing to the three fluorescent target simulations. Targettiposi and sizes were identical to that
reported in the preceeding paragraphs. The software frankegletailed in section-2 can be
used to model point-illumination schemes by using a sietahthematical function describ-
ing point illumination. Point sources were simulated by é&wmg Gaussian source profiles
with a narrow 15mmuwidth. Figure 8(a) depicts the source positions. Figurg 8fépicts the
adaptively refined forward simulation mesh for the first seuirhe image reconstructions cor-
responding to the three fluorescent targets placed at the aathvarying depths are reported
in Fig. 8(c) and Fig. 8(d) respectively. The contour levetofis employed are identical to the
patterned illumination based image reconstructions. Tiege reconstruction corresponding
to the fluorescent targets at the same depth depicts sigriifibage artifacts in the center of
the imaged field of view, while the image reconstruction frihv® measurements generated for
the three fluorescent targets at varying depths completé$/tb accurately reconstruct the lo-
cation and sizes of all the three fluorescent targets. Treorefor the failure of point sources
in locating three fluorescent targets is primarily becaufsesufficient excitation light pene-
tration and consequently weaker fluorescence emissios.sligigests the inadequacy of point
illumination schemes for reconstructing fluorescenceiiigions in large tissue volumes with
multiple targets, especially when only a limited number afirges can be employed to limit
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Fig. 7. Three target reconstructions for targets at varying depttms fhe illumination
plane: (a) scanning line sources, (b) scanning Gaussian sow}dfractive optics pat-
terns. Left column: Meshes for the reconstruction of the parameigint Rolumn: Black
wire-frames represent the true target locations and sizes, while theeddocks depict
reconstructed targets. Top 80% of the contour levels of fluorescéscemion are shown.

data acquisition time.

4. Quantitative assessment

In the previous section, we have discussed qualitative nneagor comparing different exci-
tation patterns. In this section, we demonstrate quaintigtthe advantages of using multiple
area excitation sources by a series of computational exgets. Simulation studies have a long
history in optical tomograpy (see, for example, Ref. [35]§lare ideally suited to determine
optimal experimental setups before their implementationardware.

We focus on the scanning line setup: The phantom surfaceaised by up ta&V lines and
we guantitate the advantages in image reconstruction Wéhricrements in the number of
line sources employed\(). The line sources are positioned symmetrically with respethe
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Fig. 8. Three target reconstructions with point illumination (a) point sesiemployed
are numbered, (b) final adaptively refined forward mesh for@odr, (c) reconstructed
fluorescence absorption map for the three targets placed at the ddgthwith a contour

level cutoff at 50% of maximum , (d) reconstructed fluorescenceratisn map for the

three targets placed at depths afrl 1.5cm and Zmwith a contour level cutoff at 80%
of maximum. Black wire-frames represent the true target locationssemed, while the

colored blocks depict reconstructed targets.

center of the measurement surface (see Fig. 3). In the inemg@struction procedure detailed
in the preceding sections, a linear problem defined by Eq.i§ldolved within each non-linear
iteration to determine the update to the unknown parametgrgnWe note that the once the
solution has converged to within noise level, the right haité of Eq. (11) only consists of
contributions due to measurement noise, and further updagjewill only produce changes
within the range of uncertainty. The matr&defined in Eqg. (14) determines this parameter
updatedq. Since it is symmetric and positive definite we can find a catgset of (normalized)
eigenvectors/, and singular values; such thatS= 3, agv/;v}. By convention the singular
valuesoy are arranged in decreasing order. We can then determingtiaeaito be

1
S=S —t
Ok ; o Ve,

wheret, = V] [F— 3V ,CTP T (FL —MP! F3)]. Since we want small random updatd,
it is important that the singular values be as large as possible.

Most large singular values of the resolution ma@igorrespond to image modesthat de-
scribe features in the solution close to the measuremefacgyrabout which measurements
provide enough information. On the other hand, small simgublues correspond to high-
frequency oscillations and deep objects that are badlyt@ned by the available measure-
ments. Hence the decay profile of the singular value spectiuthe Gauss-Newton matrix
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Fig. 9. Singular value spectra of the Gauss-Newton m&iiefined in Eq. (14) with in-
creasing number of lines.

provides a measure of the ill-conditioning of the inversagmmreconstruction problem. Similar
analyses have been performed by other researchers to pptamiirce-detector geometries in
both diffuse optical tomography [31-33] and fluorescenctemdar tomography [34] for point
source based illumination.

In order to test our hypothesis that more measurements eatiyppsedness, the matrices
Sfor a varying numbeWV of scanning line sources were computed for the case of aramifo
fluorophore distributiond = 0.01cn1). To remove the effect of adaptive mesh refinement on
the singular value spectrum, only one iteration on unifotabglly refined state and parameter
meshes was computed. All the state/forward meshes camsis5mmcubical voxels, while
the parameter mesh consisted ofricubical voxels.

Figure 9 depicts the effect of increasing the number of measents on the singular value
spectrum of the matridV. The larger the number of measurements the larger the nuofiber
singular valuew; of Swith significant magnitude, where the latter is determingthle fact that
only singular values greater than the regularization patang (typically B = 10~1%) impact
image formation. Figure 10 shows this result in a differeanmer by plotting the number of
singular values beyond the typical regularization par@m&rom both these plots we conclude
that by adding additional measurements, we can increaseutn®er of resolvable modes by
a factor of 4-5. If these modes were isotropically distiéoliin the domain, this result would
imply that 16 measurements will yield a resolution that iaetdr of/4—/5 better than when a
single measurement is used. In addition, we see that théutdsalue of the largest eigenvalue
also increases by a factor of at least 10 with the number osaoreanents, meaning that the
uncertainty on the resolvable image modess reduced by a factor of/10.

Figure 10 indicates that even a further increase in the nuwib@easurements will not in-
crease the number of significant singular values apprascisylond around 70. This should not
surprise: the amount of information that can be extractewh fa system is bounded by physical
considerations (for example, no features smaller thandhgesing length scale can be recov-
ered assuming the validity of the diffusion equation). Egptimally designed experiments will
therefore not be able to increase the number of significagusar values beyond limit. On the
other hand, it is conceivable that a set of experimentsréiffefrom the ones considered here
may extract more information from the system than shown gsF and 10.
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Fig. 10. Increase of useful singular valugs> 10~1° for resolving the reconstructed fluo-
rophore image with increasing numb&frof lines.

5. Conclusion and future implications

In this contribution, we have demonstrated a novel fluomeseeptical tomography frame-
work for recovering the location of single and multiple flascent targets embedded in tissue,
from time dependent, non-contact boundary fluorescenceumeaents generated by multiple
area excitation illumination sources. As with fiber opticséd point illumination and detec-
tion schemes, multiple area illumination patterns enalilevgpatial sampling of the tissue
surface, but unlike fiber optic sources and detectors, pieltirea illumination techniques gen-
erate dense measurement datasets and enhance excigttiopelnetration in the tissue. As a
consequence, we obtain an increase in sensitivity fromatteqmed modulated illumination.

Multiple area illumination sources can be generated byrsogra simple source geometry,
such as a line or a Gaussian, across the illumination plar®s attilizing complex patterns
generated by diffractive optical components. The propasatiiple experiment fluorescence
tomography scheme implements an algorithm in which eacheda measurements is repre-
sented by an adaptively refined mesh. Contributions frorh eaperiment are assembled in the
nonlinear scheme using a parallel framework that resultm@ge reconstruction times that are
equivalent to single excitation source computations omglsimachine.

As we have shown both qualitatively and quantitatively, tiplé area illumination has dis-
tinct advantages over single illumination schemes in theg@reconstruction of multiple fluo-
rescent targets.

Adaptive mesh refinement tomography schemes are essengjaherate optimal and effi-
cient finite element meshes in clinically relevant situasiowherein large> 100cn®) tissue
surfaces may need to be sampled, and poiori information about the fluorescent target loca-
tions is available. Different illumination patterns parfodifferently in the challenging image
reconstruction problems involving multiple fluorescemgj&ds placed at varying depths. Hence,
excitation source patterns need to be optimized for cogdarge tissue surfaces and simulta-
neously handling fluorescent target distributions varyinth in lateral and vertical directions.
Since the numerical computations corresponding to melgplrces are distributed to separate
compute nodes of a cluster, the proposed tomography scheales us to optimize excita-
tion sources as the number of patterns which can be emplsyewly limited by the amount

#70247 - $15.00 USD Received 25 April 2006; revised 29 June 2006; accepted 3 July 2006
(C) 2006 OSA 10 July 2006/ VVol. 14, No. 14/ OPTICS EXPRESS 6533



of computational resources available. The optimal souateems for fluorescence optically
tomography can be determined by an exhaustive search pneceder the illumination sur-
face pixels by maximizing a suitable measure of the condiitig of the Gauss-Newton hessian
matrix S with respect to the variation of illumination patte. Finally, numerical studies such
as those presented in this contribution are significantijefathan the comparable tests using
actual measurements in the laboratory, and may therefoedeaate the development and de-
ployment of optimal measurement schemes for fluorescentebmmography in clinic.
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