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Using an area-illumination and area-detection scheme, we acquire fluorescence frequency domain
measurements from a tissue phantom with an embedded fluorescent target and obtain tomographic
reconstructions of the interior fluorescence absorption map with an adaptive finite element based
scheme. The tissue phantom consisted of a clear acrylic cubic box �512 ml� filled with 1% Liposyn
solution, while the fluorescent targets were 5 mm diameter glass bulbs filled with 1 �M Indocya-
nine Green dye solution in 1% Liposyn. Frequency domain area illumination and detection em-
ployed a planar excitation source using an expanded intensity modulated �100 MHz� 785 nm diode
laser light and a gain modulated image intensified charge coupled device camera, respectively. The
excitation pattern was characterized by isolating the singly scattered component with cross polar-
izers and was input into a dual adaptive finite element-based scheme for three dimensional recon-
structions of fluorescent targets embedded beneath the phantom surface. Adaptive mesh refinement
techniques allowed efficient simulation of the incident excitation light and the reconstruction of
fluorescent targets buried at the depths of 1 and 2 cm. The results demonstrate the first clinically
relevant noncontact fluorescence tomography with adaptive finite element methods. © 2006

American Association of Physicists in Medicine. �DOI: 10.1118/1.2190330�
I. INTRODUCTION

Fluorescence enhanced optical tomography is one active area
in molecular imaging research. In the past, fluorescence to-
mography schemes have been proposed for preclinical small
animal imaging applications1 as well as for the clinical im-
aging of large tissue volumes.2–15 Typical fluorescence opti-
cal tomography schemes employ iterative image reconstruc-
tion techniques to determine the fluorescence yield or
lifetime map in the tissue from boundary fluorescence mea-
surements. A successful clinically relevant fluorescence to-
mography system will have the following attributes: �i� rapid
data acquisition to minimize patient movement and discom-
fort, �ii� accurate and computationally efficient modeling of
light propagation in large tissue volumes, and �iii� a robust
image reconstruction strategy to handle the ill posedness in-
troduced by the diffuse propagation of photons in tissue and
the scarcity of data.

Early fluorescence tomography schemes employed point-
illumination and point-detection strategies with fiber
optics.13,16 While these strategies can sample the tissue vol-
ume from multiple sides, the acquired data sets are sparse
owing to the limited number of fiber optics and the slow data
acquisition rates. Ntziachristos et al.17 and Godavarty et al.15

employed a hybrid strategy to improve the data acquisition

rate of the point illumination and collection schemes by im-
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aging multiple detector fibers with a charge coupled device
�CCD� camera. Even with these improvements point illumi-
nation and detection schemes might fail in large tissue vol-
umes if sufficient excitation light is not delivered to the tar-
get fluorophore, which can happen if the fiber optic sources
do not sample the tissue boundary in a sufficiently dense
manner. In contrast, area illumination can deliver excitation
light over large tissue volumes and thus acquire a dense set
of fluorescence measurements rapidly. Further, area illumina-
tion and area detection fluorescence measurements do not
require physical contact with the imaged entity, making them
attractive for clinical applications such as sentinel lymph
node imaging to track breast cancer and melanoma as well as
for intraoperative use. On the other hand, the challenges in
fluorescence tomography with area-illumination and area-
detection measurements include: �i� developing measurement
schemes to acquire high silicon based negative resist fluores-
cence measurements rapidly over a large area, �ii� modeling
the propagation of light in the tissue that results from a non-
uniformly expanded excitation light source incident on the
tissue surface, and �iii� managing the ill posedness of the
tomography problem stemming from the fact that only a
single reflectance measurement is available for image recon-

struction.
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Recently, Roy and co-workers14 demonstrated fluores-
cence yield reconstructions from frequency domain area il-
lumination and detection measurements made on a tissue
phantom with an embedded fluorescence target. Their ap-
proach required a carefully designed finite element scheme
to model the expanded laser excitation source to recover a
1 cm3 fluorescence target at 1 cm depth. The image recon-
struction problem was solved with over 30 000 unknowns,
requiring advanced optimization and regularization tech-
niques to maintain stability and accuracy of the solution.

In contrast, the scheme we describe in this article signifi-
cantly reduces the computational complexity by using auto-
matically adapted meshes. We previously reported this novel
fluorescence tomography algorithm employing dual adaptive
finite element meshes for area-illumination and area-
detection measurement schemes,18 wherein separate finite el-
ement meshes were employed for modeling light propagation
in tissue and for describing the unknown fluorescence yield
map. Both meshes are adapted independently and automati-
cally. Hence, the spatial distribution of incident excitation
light can be modeled accurately and high resolution fluores-
cence images can be obtained with minimum computational
expenditure. As described here, we are able to reduce the
total number of unknowns by at least one order of magnitude
through this approach. This not only benefits the computa-
tional efforts, but at the same time allows for higher resolu-
tion in areas where there is variation �e.g., in the vicinity of
targets� while keeping the mesh coarse everywhere else. The
use of adaptive meshes therefore also reduces the ill condi-
tioning of the problem and helps in finding stable and accu-
rate reconstructions.

In this work we present an integrated fluorescence tomog-
raphy system wherein frequency domain fluorescence mea-
surements made on a phantom in area-illumination and area-
detection mode were used as inputs to an adaptive finite
element-based tomography algorithm to produce three di-
mensional images of fluorescent targets buried at depths of
1–2 cm from the illumination surface. The increased resolu-
tion of our algorithm in conjunction with lower computa-
tional costs, as well as the application of reconstruction al-
gorithms to actual measurement data are the main novel
points of this paper.

The outline of this article is as follows: in Sec. II, we
describe the tissue phantom along with the instrumentation
used for acquiring fluorescence emission and excitation
source light measurements and the adaptive tomography
method used for image reconstruction. Section III details the
tomography results obtained for varying depths of fluores-
cent targets. The impact of adaptivity on the accurate mod-
eling of photon propagation in tissue is illustrated. Finally,
Sec. IV details the implications of adaptivity and planar illu-
mination and detection schemes for clinical fluorescence to-
mography.

II. MATERIALS AND METHODS

Within this section, we describe: �i� the tissue phantom

and fluorescent targets used for conducting measurements of
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fluorescent and excitation light, �ii� the gain modulated im-
age intensified CCD camera system and optical assembly,
�iii� the data acquisition procedure for excitation and emis-
sion measurements, and �iv� the inverse image reconstruction
scheme.

A. Tissue phantom

The phantom model consisted of an 8�8�8 cm3 clear
acrylic box filled with 1% Liposyn solution. The fluorescent
targets used for this work were blown glass bulbs with an
approximate outside diameter of 5 mm and internal diam-
eters of 3–4 mm. The fluorescent targets were filled with
1 �M Indocyanine Green �ICG� solution in 1% Liposyn
which was stabilized with the addition of sodium polyaspar-
tate. The excitation and emission wavelengths of ICG were
785 and 830 nm, respectively. The tissue phantom was illu-
minated at the top surface over a region of approximately
2.5 cm diameter. The targets were fixed on the end of a
1 mm fiber optic attached to the bottom of the box, and
positioned at depths of 1 or 2 cm beneath the illumination
surface. Figure 1 illustrates the tissue phantom geometry.

In Ref. 18, it was shown that reconstructions from syn-
thetically generated data are also possible for depths slightly
larger than 2 cm. Generally, reconstructions are limited by
the signal-to-noise ratio that decreases exponentially with
depth. We limit our attention to targets no more than 2 cm
deep, since this seems to be as far as we can comfortably
obtain stable reconstructions with our present experimental
setup. Presently ongoing work investigates targets at depths
greater than that.

B. Instrumentation

Figure 2 illustrates the homodyne gain modulated image
intensified CCD camera system used to acquire frequency
domain optical measurements. The tissue phantom was illu-
minated by a 785 nm laser beam produced by a 70 mW laser
diode �Thorlabs, HPD 1105-9mm-D-78505� expanded over

2

FIG. 1. Tissue phantom with fluorescent target.
an area of approximately 5 cm . Measurements were ac-
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quired by a 1024�1024 pixel 16-bit frame transfer CCD
camera �Photometrics Ltd., series AT200, model SI512B,
Tucson, AZ� which was coupled to an image intensifier �ITT
Industries Night Vision, model FS9910C, Roanoke, VA�. The
fluorescence measurements were isolated from the reflected
light using a 785 nm holographic band rejection filter �Kaiser
Optical Systems Inc., Ann Arbor, MI, model HNPF-75.0-2.0�
and an 830 nm interference bandpass filter �Image Quality,
Andover Corp., Salem, NH, model 830.0-2.0�. Optical filters
were contained in a filter box assembly attached to the inten-
sified CCD camera. Sliding trays carried the filters in and out
of the light path to enable measuring excitation and fluores-
cence emission light separately. A 80–200 mm Nikon zoom
lens focused the top surface of the phantom onto the image
intensifier. The field of view on the phantom surface was a
4 cm diameter circle, with area illumination contained to this
region. The pixels on the CCD camera image are treated as
individual photon detector locations and excitation and fluo-
rescence emission measurement data are collected by raster
scanning across the CCD array.

Frequency domain data were acquired by using the homo-
dyne procedure, wherein the laser diode and the image inten-
sifier are both modulated at 100 MHz by two phase-locked
oscillators with a constant phase offset. A PTS-310 fre-
quency synthesizer �Programmed Test Sources Inc., Little-

FIG. 2. Instrumentation for acquiring frequency domain fluorescence mea-
surements in a homodyne mode. Numbered components include: 1: neutral
density filter �OD-3�, 2: 785 nm holographic band rejection filter, 3: 830 nm
interference bandpass filter, 4: linear polarizer, 5: image intensifier, and 6:
linear polarizer. Optical filters can be moved in and out of the filter box
assembly to acquire measurements at excitation and emission wavelengths.
Phantom surface image on the CCD camera is expanded to depict measure-
ment data acquisition by raster scanning the CCD pixels.
ton, MA, model 310M201GYX-53� modulated the photo-
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cathode of the image intensifier, and a Marconi signal
generator �Marconi Instruments Ltd., Hertfordshire, England,
model 2022D� modulated the laser diode. The oscillators
were phase locked with a 10 MHz reference signal. In the
homodyne mode of data acquisition, the phase of the image
intensifier modulation was offset relative to the phase of the
laser diode modulation in 32 steps to cover the full 2� cycle,
and phase five images were acquired for every phase offset.
For each pixel, a sine curve was fitted to these 32�5 data
points with a fast Fourier transform and amplitude and phase
signal were extracted. See Reynolds et al.19 for a more de-
tailed description of the multipixel frequency domain data
acquisition instrumentation.

C. Data acquisition procedure

The instrumentation described in the previous section was
used to obtain the frequency domain measurements at exci-
tation and emission wavelengths by changing the optical fil-
ters and varying the parameters governing the CCD camera
and image intensifier operation.

1. Excitation source characterization

The excitation source was produced by expanding the
beam from the laser diode, resulting in a spatially varying
distribution of amplitude and phase of the incident excitation
light on the phantom surface. This source distribution needs
to be determined for successful reconstruction in the inverse
imaging algorithm. For excitation measurements, the aper-
ture of the focusing Nikon lens was minimized and the gain
on the image intensifier was reduced to avoid saturating the
CCD camera. A neutral density filter �OD 3� was also used to
further reduce the intensity of excitation light. The integra-
tion time was kept at 40 ms. The singly scattered, polariza-
tion conserving excitation light signal from the phantom sur-
face was considered to be representative of the incident light.
This component was isolated by utilizing two high efficiency
�extinction ratio 10 000:1� cross polarizers �Newport Corp.,
model 05P109AR.16, Irvine, CA�. The polarizers were posi-
tioned at the laser diode output and image intensifier input.
Multiple scattering causes the polarization to be randomized.
One set of 32 phase dependent images was acquired with
polarizers oriented in parallel. This set of images consisted
primarily of the singly scattered component, with a small
contribution from multiply scattered light. By subtracting the
images acquired by orienting the polarizers in perpendicular
direction from those acquired in the parallel direction, the
singly scattered component was isolated. The incident exci-
tation source amplitude and phase was determined by per-
forming the fast Fourier transform on the difference images.
For more details on the excitation source characterization,
see Thompson et al.20,21

2. Fluorescence emission measurements

For acquiring the fluorescence emission measurements,
the signal intensity was increased by maximizing the aper-

ture of the Nikon lens focusing the image of the phantom
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surface onto the image intensifier and increasing the gain
voltage of the microchannel plate of the image intensifier.
The CCD camera images were binned down to 128�128
pixel and the image integration time was kept at 1200 ms.
The fluorescence amplitude and phase at each pixel was then
computed by the homodyne data processing procedure de-
tailed in the previous section. These measurements were per-
formed for fluorescent target depths of 1 and 2 cm.

D. Inverse imaging scheme

Fluorescence optical tomography is typically performed
in a model-based framework wherein a photon transport
model in tissue is used to generate predicted boundary fluo-
rescence measurements for a given fluorescence absorption
map. The map of the absorption owing to fluorophore is then
iteratively updated until the predicted boundary fluorescence
measurements converge to the actual experimentally ob-
served fluorescence measurements. For photon propagation
in large tissue volumes, the following set of coupled photon
diffusion equations are an accurate model

− � · �Dx�r��u�r,��� + kxu�r,�� = 0, �1�

− � · �Dm�r��v�r,��� + kmv�r,�� = bxmu�r,�� . �2�

Here,

Dx,m =
1

3��ax,mi + �ax,mf + �sx,m� �
,

kx,m =
i�

c
+ �ax,mi�r� + �ax,mf�r� ,

bxm =
��axf

1 − i���r�
,

and subscripts x and m denote the excitation and the emis-
sion light fields, respectively. u, v are the complex-valued
photon fluence fields at excitation and emission wavelengths,
respectively; Dx,m are the photon diffusion coefficients;
�ax,mi is the absorption coefficient due to endogenous chro-
mophores; �ax,mf is the absorption coefficient due to exog-
enous fluorophore; �sx,m� is the reduced scattering coefficient;
� is the modulation frequency; � is the quantum efficiency
of the fluorophore; and finally, � is the fluorophore lifetime
associated with first order fluorescence decay kinetics. These
equations are complemented by Robin-type boundary condi-
tions on the boundary �� of the domain � modeling the
near-infrared excitation source

2Dx
�u

�n
+ �u + S�r� = 0,

�3�

2Dm
�v
�n

+ �v = 0,

where n denotes the outward normal to the surface and � is a
constant depending on the optical reflective index mismatch

22
at the boundary. The complex-valued function S�r� is the
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excitation boundary source. There is no source term for the
emission boundary condition. The goal of fluorescence to-
mography is to reconstruct the spatial map of coefficients
�axf�r� and/or ��r� from measurements of the complex emis-
sion fluence v on the boundary. In this work, we will focus
on the recovery of only �axf�r�. For notational brevity, we set
q=�axf in the following paragraphs.

We have previously proposed a novel fluorescence tomog-
raphy algorithm utilizing adaptive finite element methods.18

In the following, we briefly describe the formulation of the
scheme and its application to image reconstructions from
experimentally obtained fluorescent measurements on the tis-
sue phantom.

The fluorescence image reconstruction problem is posed
as a constrained optimization problem wherein an L2 norm
based error functional of the distance between boundary
fluorescence measurements z and the diffusion model predic-
tions v is minimized by variation of the parameter q, with the
additional constraint that the coupled diffusion model is sat-
isfied. In a function space setting this minimization problem
reads as

min
q,u,v

J�q,v� subject to A�q;�u,v����	,
�� = 0. �4�

Here, the error functional J�q ,v� incorporates a least square
error term over the measurement part � of the boundary ��
and a Tikhonov regularization term

J�q,v� = 1
2 �v − �z��

2 + 
r�q� , �5�

where �u ,v� represent the excitation and emission fluence;
q=�axf denotes the unknown fluorescence map; and � is a
scaling factor accounting for the unknown excitation source
amplitude magnitude. For our instrumentation setup, � was
empirically determined to be 10−7. 
 is the Tikhonov regu-
larization parameter. The constraint A�q ; �u ,v����	 ,
��=0 is
the weak or variational form of the coupled photon diffusion
equations in frequency domain with partial current boundary
conditions. We obtain it by multiplying the two equations
�1�–�2� with the complex conjugate of test functions 	, 

�H1���, integrating over the entire domain �, and integrat-
ing second derivatives by parts

A�q;�u,v����	,
�� = �Dx � u,�	�� + �kxu,	�� +
�

2
�u,	���

+ 1
2 �S,	��� + �Dm � v,�
��

+ �kmv,
�� +
�

2
�v,
��� − �bxmu,
��.

�6�

Here, the inner product is defined as �f ,g��=��f�x�g�x�dx,
where a bar denotes the complex conjugate. The surface
product �f ,g��� is similarly defined. This weak form is the
basis for our finite element approach23 to the numerical so-
lution of this equation.

As is well known from optimization theory,24 a solution
of minimization problem �4� can be determined as the sta-

tionary point of the Lagrangian



1303 Joshi et al.: Adaptive fluorescence optical tomography from noncontact-time-dependent measurements 1303
L�x� = J�q,v� + A�q;�u,v�����ex,�em�� . �7�

Here, �ex, �em are the Lagrange multipliers corresponding to
the excitation and emission diffusion equation constraints,
respectively, and we have introduced the abbreviation x
= �u ,v ,�ex ,�em,q� for simplicity. �If the optimization prob-
lem has multiple local minima, each of them will correspond
to a stationary point of the Lagrangian. Our algorithms are
not able to deal with this situation and will converge to one
of the local minima close to the starting point. However, our
use of a regularization functional and the fact that we choose

 fairly large in the initial steps reduces the chance of getting
trapped in a local minimum.�

The stationary point of L�x� is found using the Gauss-
Newton method wherein the update direction �xk

= ��uk ,�vk ,��k
ex ,��k

em,�qk� is determined by solving the lin-
ear system

Lxx�xk���xk,y� = − Lx�xk��y� " y , �8�

where Lxx�xk� is the Gauss-Newton approximation to the
Hessian matrix of second derivatives of L at point xk, and y
denotes the possible test functions. These equations represent
one condition for each variable in �xk. Once the search di-
rection is computed from Eq. �8�, the actual update is deter-
mined by calculating a safeguarded step length �k:

xk+1 = xk + �k�xk. �9�

The step-length �k can be computed from one of several
methods, such as the Goldstein-Armijo backtracking line
search.25,26

The Tikhonov regularization term 
r�q� added to the
minimization functional J�q ,v� defined in Eq. �5� is used to
control undesirable components in the map q�r� that result
from a lack of resolvability. In this contribution, we use the
L2 norm r�q�=1/2 �q�2 to penalize large values that would
typically occur far from the illumination surface if no regu-
larization was used, since the values of q in these parts of the
domain do not significantly affect the predicted fluence v.
Other possible choices for r�q� would penalize the variation
�q instead of the magnitude q of the map to enforce smooth-
ness of the reconstruction. However, since we are looking for
a localized target, this would lead to a washed-out recon-
struction.

The regularization parameter 
 is initially set to 10−12 and
is reduced whenever the misfit 1 /2 �v−�z�2 comes to within

2

FIG. 3. Excitation source fluence: real �left image� and imaginary �right
image� components.
a factor of 3 of 
 /2 �q� . Using this strategy, the regulariza-
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tion term is always present, but never dominates the misfit.
Iterations can therefore be considered to reduce the misfit
under the constraint that the regularization term stays
bounded, rather than attempting to merely reducing the regu-
larization term when the misfit is already small. Note that the
form of misfit and regularization terms involving integrals
ensures that the values of these functionals do not depend on
the chosen discretization, and are robust against mesh refine-
ment that increases the number of unknowns.

FIG. 4. Forward mesh evolution on the illumination surface. Meshes after
�a� 0, �b� 2, �c� 4, and �d� 5 adaptive refinements are depicted.

FIG. 5. Raster scanning of the CCD camera pixels is performed to extract
the fluorescence measurements on the detection plane. Field of view of the
camera system is 4 cm. Pixels in the field of view are numbered and treated

as individual detector locations.
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For carrying out actual computations, we discretize the
Gauss-Newton equations with the finite element method.
State and adjoint variables u ,v ,�ex, and �em are discretized
and solved for on a mesh with continuous finite elements,
while the unknown parameter map q is discretized on a sepa-

FIG. 6. Experimentally observed and simulated real and imaginary compo
against CCD detector points for �a� and �b� target depths of 1 cm, and �c� a
adaptively refined meshes used for solution of coupled diffusion equations,
rate mesh with discontinuous finite elements. At the end of
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each Gauss-Newton iteration, we compute a criterion that
indicates how far away from the solution we still are. Since
we know that at the stationary point is characterized by
Lx�x�=0, we use the norm of the residual, �Lx�xk��, for this
criterion. The computation of this norm is somewhat in-

of fluorescence fluence Re�v� , Im�v� at the measurement surface, plotted
� 2 cm. In �e� and �f� we plot the RMSE defined in �10� for a sequence of
rget depths of 1 and 2 cm.
nents
nd �d
volved, and we refer the reader to Ref. 26 for more details.
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Whenever iterations on this set of meshes have reduced
the norm of the residual by a factor of 10−3 or the Gauss-
Newton step length returned by the line search algorithm has
fallen below 0.15, both meshes are refined using a posteriori
refinement criteria. In this work, the state and adjoint mesh is
refined using a variation of the refinement criterion first de-
rived by Kelly et al.27 The mesh for q is refined by comput-
ing, for each cell, a discrete approximation to the gradient of
q, weighted by the local mesh width26 and refining the cells
with maximum variation in gradient. For both meshes, each
cell is refined or coarsened at most once per iteration.

The choice of two separate meshes means that the first
mesh can be fine close to the source where the excitation
fluence greatly varies, while the second mesh will only be
fine close to the fluorescent target and coarse everywhere
else. The mesh refinement criteria and actual implementation
of the reconstruction algorithm are described in Refs. 18 and
28. The algorithm described above was implemented in a
program based on the Open Source deal.II finite element
library.29

III. RESULTS AND DISCUSSION

A. Excitation source extraction and forward
simulation

Conventional optical tomography schemes usually em-
ploy fiber optic based source, which are easily simulated in
finite element codes as point sources. In the only previous
work reported on area-illumination,14 the expanded area
source was modeled as a distribution of point sources. To
accurately simulate the expanded source with a collection of
point source, Roy et al. constructed a finite element mesh
which matched with resolution of the CCD pixel array
�128�128 nodes� on the top surface of the phantom and had
a coarse resolution elsewhere in the phantom. However, this
kind of approach is problem dependent and a change in ex-
citation source, will require the manual generation of a new
finite element mesh. In contrast, adaptive mesh refinement
generates suitable finite element meshes for arbitrary excita-
tion sources from an initial uniform coarse mesh. Figure 3
illustrates the real and imaginary parts of the complex exci-
tation source isolated by utilizing cross polarizers. Since we
have to estimate the exact source strength anyway using the
factor � in Eq. �5�, we normalize the excitation source to a
maximum amplitude of 1. This source is used as input S�r�
to the finite element simulation of the coupled diffusion
equations for forward and inverse modeling of fluorescence
light propagation and generation in the tissue phantom. Fig-
ure 4 shows the mesh evolution at the illuminated phantom
surface in subsequent refinement steps, demonstrating the
way our mesh generation algorithm aids in obtaining finite
element discretizations that are extremely well adapted to the
requirements of this problem. The simulation is started with
coarse cells of 1 cm length, and after five adaptive refine-
ments steps the mesh reflects the structure of expanded laser

source.
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B. Measurements and model match

As described in Secs. II B and II C, complex fluorescence
measurements were acquired for fluorescent targets placed at
depths of 1 and 2 cm from the illumination surface. The
simulated measurements should agree with experimentally
observed fluorescence measurements to a reasonable degree
for model based tomography approaches to work. Hence, to
validate the experimental measurements, simulated fluores-
cence predictions were obtained from an adaptive finite ele-
ment solution of the coupled diffusion equations �1� and �2�
for the experimental tissue phantom and fluorescent target
geometry. The simulated and observed fluorescence fluence
is plotted against the detector points resulting from a raster
scan across CCD camera pixels mapping the measurement
region. The raster scanning of CCD pixels is illustrated in
Fig. 5. Approximately 2600 detector points are obtained
within the CCD camera field of view. To account for the
different orders of magnitudes of the observed and simulated
measurements, the real and imaginary components of the
fluorescence measurements were referenced with the detec-
tion point with maximum simulated fluorescence value. Fig-
ures 6�a�–6�d� show a comparison of real and imaginary
parts between experimentally observed and simulated fluo-
rescence v at the measurement surface for target depths of 1
and 2 cm. As can be seen, observed and simulated fluores-
cence follow the same general trend; the differences in their
profiles are mainly attributed to three reasons: �i� for the
purposes of simulation, fluorescent targets were treated as
spheres with radius 2.5 mm, however, the actual fluorescent
targets were made in a glass blowing workshop and had el-
lipsoidal shape with varying glass wall thickness; �ii� the
image intensifier employed for making measurements had
variations in sensitivity across its surface which results in a
positive bias for points towards the center of the measure-
ment region; and �iii� measurement data is also corrupted by
arbitrary thermal and electronic noise in the gain modulated
homodyne instrumentation.

The accuracy of forward simulation of coupled diffusion
equations also affects the model mismatch error between the
simulated and predicted measurements. To estimate this ef-
fect, we computed the root mean squared model mismatch
error �RMSE� across the surface area � on which we can
measure fluences for a sequence of adaptively refined finite
element meshes used for forward simulation. We define the
RMSE as

RMSE =	

d=1

M

�vd
meas − vd

sim�2, �10�

where vd
meas and vd

sim are the measured and simulated com-
plex fluence v=vre+ ivim at the detection point d, respec-
tively. From Figs. 6�e� and 6�f� it can be seen that the RMSE
decreases rapidly during the first couple of iterations of adap-
tive mesh refinements and then converged to a constant
value. This suggest that the numerical error becomes irrel-
evant after three adaptive mesh refinements, and that on finer

meshes the errors in the model, source, and target description
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are the dominant factors in mismatch between numerical pre-
diction and actual measurement.

C. Image reconstructions

The adaptive tomography algorithm described in Sec. II D
was used to reconstruct the three dimensional images of fluo-
rescence absorption distribution in the tissue phantom from
experimentally observed fluorescence measurements. The
image reconstruction procedure was initiated with coarse
state �8�8�8=512 cells� and parameter �4�4�4=64
cells� meshes. Computations were performed on a 2 GHz
Pentium-M notebook computer with 2 GB of memory. Im-
age reconstructions required 12–15 min of computational
time depending upon the target depth. Figure 7 depicts the
true and reconstructed fluorescent targets for target depths of
1 and 2 cm, where we consider those cells with the top 10%
of the contour levels of the reconstructed fluorescence ab-
sorption as a fluorescent heterogeneity. Both the state and
parameter meshes were automatically refined during the re-
construction process. As shown in Fig. 4, the state mesh was
primarily refined at the illumination surface to resolve the
expanded laser source, while the parameter mesh was fine
mostly in the region containing the recovered fluorescent tar-
get �see Fig. 8�. Figure 8 also depicts the evolution of the
parameter mesh with the Gauss-Newton iterations. The re-
covered target volume was over-predicted for both 1 and

FIG. 7. Reconstructed and true images for 1 and 2 cm deep fluorescent
targets are presented. True targets are depicted by the black wireframe, while
the reconstructed targets are represented by colored blocks. The top 10% of
the contour levels of reconstructed fluorophore distribution are depicted.
�a�,�b� True and recovered targets �x-y plane view�; �c�,�d� true and recov-
ered target �x-z plane view�. Left column depicts the 1 cm deep target case,
while the right column represents the 2 cm deep target.
2 cm deep targets. However, the definition of recovered tar-

Medical Physics, Vol. 33, No. 5, May 2006
get volume depended on the arbitrary definition of recovered
fluorescent target as the top 10% of contour levels. For the
2 cm deep case, the recovered target was lifted towards the
illumination surface. This can be attributed to the lower fluo-
rescence signal penetrating up to the measurement surface,
and its greater corruption by excitation light leakage through
the fluorescence filters30,31 than in the case of a 1 cm deep
target. The lateral displacement of the recovered targets com-
pared to the true position also occurs due to the uncertainty
in positioning of the fluorescent target in the tissue phantom.

Figures 9�a� and 9�b� depict the change in the objective
function J�q ,v�, defined in Eq. �5�, with Gauss-Newton it-
erations. Traditional optical tomography schemes usually
show a monotonous decrease in model misfit with the
progress of iterations. In contrast, the constrained scheme
explained above allows for a violation of the partial differ-
ential constraint in favor of a reduction in the objective func-
tion, and only exactly satisfies the PDE in the limit of itera-
tions going to infinity; the result is that in our
reconstructions, the objective function initially drops very
sharply, but may then increase again as the PDE is satisfied
better and better. Although the objective function gets mini-
mized in the initial few iterations, Fig. 8 suggests that images
continue to improve with succeeding Gauss-Newton itera-
tions on finer meshes.

A better measure of progress is to look at the residual of
the optimality conditions Lx�xk�. This residual has two com-
ponents: the gradient of the objective function �tangential to
the solution manifold� and the violations of the diffusion
equation and its adjoint; at the solution of the inverse prob-
lem, each of these parts should be zero. Unfortunately, math-
ematically speaking, the residual is an H−1 function, and its
norm cannot be computed exactly. However, on a given
mesh, we can approximate it �for details, see Ref. 26�, using
the present finite element space. In our algorithm, we choose
the step length �k such that this approximate norm of the
residual decreases in each step. The result is shown in Figs.
9�c� and 9�d�, where it can be seen that on each mesh, the
approximate norm of the residual decreases in each step,
even though it seems as if the objective function does not
change at all. In these cases, the computed fluences simply
moved so that they satisfy the diffusion equation better. The
figure also shows how mesh refinement is triggered when-
ever the residual has been reduced sufficiently, or when a
stall is detected. Note that due to the way we compute the
approximate norm, no comparison is possible between the
residuals on different meshes, and the shown increases upon
mesh refinement do not indicate a deterioration of the solu-
tion.

Finally, iterations were terminated when the number of
Gauss-Newton iterations exceeded 40 or when the algorithm
stopped further progress without triggering mesh refinements
leading to computer memory saturation. The image recon-
struction details are summarized in Table I. The maximum
contour level in the reconstructed images of absorption due
to fluorophore ��axf

R � is reported in Table I. The recovered

fluorescence absorption coefficient q��axf in both the 1 and
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FIG. 8. Parameter mesh adaptation for: 1 cm deep fluorescent target ��a� �c� �e��, �b� 2 cm deep target ��b� �d� �f��. Top row ��a� �b�� depicts the solutions
obtained on the initial coarse mesh; middle row ��c� �d�� depicts the solutions obtained on the mesh after one adaptive refinement; bottom row ��e� �f�� depicts

the solutions obtained on the final �5th� adaptively refined mesh.

Medical Physics, Vol. 33, No. 5, May 2006
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2 cm targets is underpredicted compared to the actual value
of 0.2 cm−1. This effect is common in diffuse optical tomog-
raphy and results from the nonlinearity of the inverse prob-
lem and smoothing effect caused by Tikhonov regularization.

IV. CONCLUSIONS

We have demonstrated a novel and clinically relevant,
noncontact fluorescent optical tomography system. Area illu-
mination and area detection frequency domain fluorescence
measurements were performed on a 512 ml tissue phantom
with a gain modulated image intensified CCD camera oper-

FIG. 9. Top row: Reduction of the objective function J�q ,v� with Gauss-Ne
of iterations. Parts �a� and �c� correspond to the 1 cm deep fluorescent targe
refinement occurs between two iterations.

TABLE I. Summary of the reconstructed images for
denotes the number of Gauss-Newton iterations; 1 /2
observation z; �x ,y ,z�true and �x ,y ,z�recovered indicate
number of parameter unknowns in the final parame
coefficient in the targets.

Depth
�cm�

No. iterat
ions 1/2�v-�z�2

� �x ,y

1.0 24 7.831�10−14 �4.0,4
2.0 14 1.124�10−15 �4.0,4
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ated in a homodyne mode. Fluorescent targets buried at
depths of 1 and 2 cm were identified and located success-
fully by employing a dual mesh adaptive finite element based
tomography algorithm. Independent finite element meshes
were used for modeling the light propagation in tissue and
for iteratively updating the unknown fluorescence absorption
map. This allowed for both the efficient numerical simulation
of light propagation in tissue as well as the efficient discreti-
zation of the fluorescent yield map. In particular, we note
that the adaptation of meshes was entirely guided by the
results of previous iterations �through the use of a posteriori

iterations. Bottom row: Behavior of the norm of the residual as a function
ts �b� and �d� to the 2 cm deep target. The lines are broken whenever mesh

and 2 cm deep fluorescent targets. “No. iterations”
z��

2 the final misfit between prediction v and scaled
entroids of the true and recovered targets; Nq is the
esh; �axf

R is the recovered fluorescence absorption

e �x ,y ,z�recovered Nq �axf
R �cm−1�

75� �4.2,3.75,6.75� 2584 0.0282
75� �4.25,3.75,6.5� 2416 0.00184
wton
t, par
the 1
�v−�
the c
ter m

,z�tru

.0,6.

.0,5.
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error indicators�, instead of a priori information as employed
in other dual mesh schemes used in optical tomography
where data such as from ultrasound imaging32 are used to
generate finite element meshes for unknown optical param-
eters. Our scheme therefore allows the generation of excel-
lent finite element meshes, which accurately capture the
variation in optical properties of tissue, independently of the
availability of prior knowledge about the tissue composition.
In the examples shown above, the final number of unknown
parameters was 2584 and 2416 for the two cases with 1 and
2 cm deep targets. These numbers are an order of magnitude
less than the number of unknowns needed by conventional
fluorescence tomography schemes14 for identifying the fluo-
rescence absorption map in the 512 ml tissue phantom, even
though the adaptive scheme allowed a finer mesh in the vi-
cinity of the target. The mesh employed by Roy et al.14 for
identifying a 1 cm3 target at a depth of 1 cm had 33 431
unknowns. The reduced number of unknowns in the adaptive
scheme, does not only accelerate the solution process, but
also acts as a type of additional regularization and allows
stable reconstructions in the presence of measurement noise.
Further, as Roy et al. used only one finite element mesh for
solving both the forward and inverse problems, they were
forced to construct a specialized finite element to model the
area excitation source.

In its present form, the proposed tomography system was
limited by two factors: �i� A limited field of view of diameter
4 cm and �ii� low sensitivity of the image intensifier to the
large dynamic range of fluorescence intensities over the tis-
sue surface. These limitations affected the accuracy of the
recovered location and size of 2 cm deep fluorescent target
and prevented the exploration of target depths greater than
2 cm. Improvements in optical design and image intensifica-
tion should enable fluorescence measurement acquisition
over the entire tissue phantom surface, enhance the sensitiv-
ity of the fluorescence measurements from targets deeper
than 2 cm, and these will be the focus of future work. In Ref.
18, we demonstrated image reconstructions for two fluores-
cent targets separated by upto 0.16 cm. Attaining comparable
resolution in experimental fluorescence optical tomography
will depend upon improvements in signal to noise, and better
excitation light rejection by fluorescence bandpass and holo-
graphic filters.31 The phantom employed in the current study
was composed of a homogeneous liposyn solution. In clini-
cally relevant situations, tissue heterogeneity needs to be
taken into account. In a recent manuscript, researchers at
PML have reported the robustness of fluorescence tomogra-
phy to perturbations in endogenous tissue absorption and
scattering.33 Future work will involve the application of tis-
sue heterogeneity models to better mimic the clinically rel-
evant imaging situations. The study reported in this article
was concerned with a perfect uptake of fluorescence contrast
agent in the target region. Our work is relevant to sentinel
lymph node imaging applications in breast cancer patients,
especially when the contrast agents are directly injected into

lymphatics. Recent experimental results on fluorescence con-
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trast agent based lymph node mapping in animal models by
Frangioni et al.34 augur well for the future applications of the
proposed tomography technique.

A further obstacle to clinical application are the curved
surfaces of realistic bodies. While we have already shown in
Ref. 28 that this does not pose a problem in the numerical
algorithm, it is an instrumentation challenge since the camera
cannot be focused on a curved surface in its entirety. Mul-
tiple cameras might be necessary to achieve this. Optical
markers can then be used to characterize the exact shape of
the surface, as well as to mitigate the effects of patient move-
ments, see, for example, Ref. 35. Such techniques will obvi-
ously also have to be part of future work to make the tech-
nology available for clinical settings.

ACKNOWLEDGMENTS

The authors acknowledge the reviewers’ careful and
knowledge reading of the manuscript. Their comments and
suggestions have significantly helped to improve this article.
The funding for this research was provided by NIH Grant
No. CA R01 112679.

a�Electronic mail: amitj@bcm.edu
1E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submilli-
meter resolution fluorescence molecular imaging system for small animal
imaging,” Med. Phys. 30, 901–911 �2003�.

2E. M. Sevick-Muraca and C. L. Burch, “The origin of phosphorescent and
fluorescent signals in tissues,” Opt. Lett. 19, 1928–1930 �1994�.

3E. M. Sevick-Muraca, G. Lopez, T. L. Troy, J. S. Reynolds, and C. L.
Hutchinson, “Fluorescence and absorption contrast mechanisms for bio-
medical optical imaging using frequency-domain techniques,” Photo-
chem. Photobiol. 66, 55–64 �1997�.

4X. D. Li, M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh,
“Fluorescent diffuse photon density waves in homogenous and heteroge-
neous turbid media: Analytic solutions and applications,” Appl. Opt. 35,
3746–3758 �1996�.

5X. D. Li, B. Chance, and A. G. Yodh, “Fluorescent heterogeneities in
turbid media: limits for detection, characterization, and comparison with
absorption,” Appl. Opt. 37, 6833–6844 �1998�.

6M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Reradiation and
imaging of diffuse photon density waves using fluorescent inhomogene-
ities,” J. Lumin. 60, 281–286 �1994�.

7M. A. O’Leary, D. A. Boas, B. Chance, and A. G. Yodh, “Fluorescence
lifetime imaging in turbid media,” Opt. Lett. 20, 426–428 �1996�.

8J. C. Schotland, “Continuous wave diffusion imaging,” J. Opt. Soc. Am.
A 14, 275–279 �1997�.

9V. Chernomordik, D. Hattery, I. Gannot, and A. H. Gandjbakhche, “In-
verse method 3-D reconstruction of localized in vivo fluorescence-
application to Sjøgren syndrome,” IEEE J. Sel. Top. Quantum Electron.
54, 930–935 �1999�.

10J. Wu, Y. Wang, L. Perleman, I. Itzkan, R. R. Desai, and M. S. Feld,
“Time resolved multichannel imaging of fluorescent objects embedded in
turbid media,” Opt. Lett. 20, 489–491 �1995�.

11E. L. Hull, M. G. Nichols, and T. H. Foster, “Localization of luminescent
inhomogeneities in turbid media with spatially resolved measurements of
CW diffuse luminescence emittance,” Appl. Opt. 37, 2755–2765 �1998�.

12A. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. Boas, and R.
P. Milane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42,
3061–3094 �2003�.

13M. J. Eppstein, D. J. Hawrysz, A. Godavarty, and E. M. Sevick-Muraca,
“Three dimensional near infrared fluorescence tomography with Bayesian
methodologies for image reconstruction from sparse and noisy data sets,”
Proc. Natl. Acad. Sci. U.S.A. 99, 9619–9624 �2002�.

14R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, “To-
mographic fluorescence imaging in tissue phantoms: A novel reconstruc-
tion algorithm and imaging geometry,” IEEE Trans. Med. Imaging 24,

137–154 �2005�.



1310 Joshi et al.: Adaptive fluorescence optical tomography from noncontact-time-dependent measurements 1310
15A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M.
Gurfinkel, and E. M. Sevick-Muraca, “Fluorescence-enhanced optical im-
aging in large tissue volumes using a gain-modulated ICCD camera,”
Phys. Med. Biol. 48, 1701–1720 �2003�.

16J. Lee and E. M. Sevick-Muraca, “Three-dimensional fluorescence en-
hanced optical tomography using referenced frequency-domain photon
migration measurements at emission and excitation wavelengths,” J. Opt.
Soc. Am. A 19, 759–771 �2002�.

17V. Ntziachristos and R. Weissleder, “Ccd-based scanner for tomography
of fluorescent near-infrared probes in turbid media,” Med. Phys. 29, 803–
809 �2002�.

18A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite ele-
ment modeling of optical fluorescence-enhanced tomography,” Opt. Ex-
press 12, 5402–5417 �2004�.

19J. S. Reynolds, T. L. Troy, and E. M. Sevick-Muraca, “Multi-pixel tech-
niques for frequency-domain photon migration imaging,” Biotechnol.
Prog. 13, 669–680 �1997�.

20A. B. Thompson and E. M. Sevick-Muraca, “NIR fluorescence contrast
enhanced imaging with ICCD homodyne detection: Measurement preci-
sion and accuracy,” J. Biomed. Opt. 8, 111–120 �2002�.

21S. L. Jacques, J. R. Roman, and K. Lee, “Imaging superficial tissues with
polarized light,” Lasers Surg. Med. 26, 119–129 �2000�.

22A. Godavarty, D. J. Hawrysz, R. Roy, E. M. Sevick-Muraca, and M. J.
Eppstein, “Influence of the refractive index-mismatch at the boundaries
measured in fluorescence enhanced frequency-domain photon migration
imaging,” Opt. Express 10, 650–653 �2002�.

23S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Ele-
ment Methods �Springer, Berlin, 2002�.

24J. Nocedal and S. J. Wright, Numerical Optimization �Springer, New
York, 1999�.

25R. Roy and E. M. Sevick-Muraca, “Truncated Newton’s optimization
schemes for absorption and fluorescence optical tomography: Part�1�
theory and formulation,” Opt. Express 4, 353–371 �1999�.

26W. Bangerth, “Adaptive finite element methods for the identification of
Medical Physics, Vol. 33, No. 5, May 2006
distributed coefficients in partial differential equations,” Ph.D. thesis,
University of Heidelberg, 2002.

27D. W. Kelly, J. P. de, S. R. Gago, O. C. Zienkiewicz, and I. Babuška, “A
posteriori error analysis and adaptive processes in the finite element
method: Part I—Error analysis,” Int. J. Numer. Methods Eng. 19, 1593–
1619 �1983�.

28W. Bangerth, A. Joshi, and E. M. Sevick-Muraca, “Adaptive finite ele-
ment methods for increased resolution in fluorescence optical tomogra-
phy,” Progr. Biomed. Optics Imag. 6, 318–329 �2005�.

29W. Bangerth, R. Hartmann, and G. Kanschat, deal. II Differential
Equations Analysis Library, Technical Reference, 2006. http://
www.dealii.org/.

30J. P. Houston, A. B. Thompson, M. Gurfinkel, and E. M. Sevick-Muraca,
“Sensitivity and penetration depth of NIR fluorescence contrast enhanced
diagnostic imaging,” Photochem. Photobiol. 77, 77–103 �2003�.

31K. Hwang, J. Houston, J. Rasmussen, A. Joshi, S. Ke, C. Li, and E. M.
Sevick-Muraca, “Improved excitation light rejection enhances small ani-
mal fluorescent optical imaging,” J. Mol. Imaging 4�3�, 194–204 �2005�

32M. Huang and Q. Zhu, “Dual-mesh optical tomography reconstruction
method with a depth correction that uses a priori ultrasound information,”
Appl. Opt. 43, 1654–1662 �2004�.

33A. Sahu, R. Roy, A. Joshi, and E. M. Sevick-Muraca, “Evaluation of
anatomical structure and non-uniform distribution of imaging agent in
near-infrared fluorescence-enhanced optical tomography,” Opt. Express
13, 10182–10199 �2005�.

34S. Kim, Y. T. Lim, E. G. Soltesz, J. Lee, A. M. DeGrand, A. Nakayama,
J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G.
Bawendi, and J. V. Frangioni, “Near-infrared fluorescent type II quantum
dots for sentinel lymph node mapping,” Nat. Biotechnol. 22, 93–97
�2004�.

35M. Schneberger, T. Liebler, and W. Schlegel, “High precision 3d acqui-
sition: Video-based patient positioning and optical tracking,” in Proceed-
ings of the 2nd European Medical and Biological Engineering Confer-
ence, Vienna, Austria, 2002.


