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ABSTRACT

This contribution describes a novel non-contact fluorescence
optical tomography scheme which utilizes multiple area il-
lumination patterns, to reduce the illposedness of the inverse
problem involved in recovering interior fluorescence yield dis-
tribution in biological tissue from boundary fluorescence mea-
surements. Multiple excitation source illumination patterns
are simulated by gaussian beam sources scanning the simu-
lated tissue phantom surface. Area measurements of fluores-
cence amplitude and phase are collected on the illumination
plane. Multiple measurement data sets generated by scan-
ning the excitation sources are processed simultaneously to
generate the interior fluorescence distribution in tissue by im-
plementing a dual adaptive finite element based fluorescence
tomography algorithm in a parallel framework suitable for
multiprocessor computers. Image reconstructions for multi-
ple fluorescent targets (5mm diameter) embedded in a 512ml
simulated tissue phantom are demonstrated.

1. INTRODUCTION

Fluorescence optical tomography is one of several active ar-
eas in molecular imaging research. The objective of fluo-
rescence optical tomography is to recover the interior fluo-
rescence yield or lifetime distributions in tissue media from
boundary measurements of fluorescence emission generated
by the excitation light delivered to the tissue boundary. The
recovery of the true interior fluorophore distribution is contin-
gent on the information content of the boundary fluorescence
measurements, which can be enhanced by employing a wide
spatial placement of boundary excitation sources and detec-
tors. Typically this is performed by using multiple fiber op-
tics for delivering excitation light via direct contact with tis-
sue or by mechanically raster scanning a focused laser [1, 2],
and taking fluorescence measurements at different locations
on the tissue boundary. However point illumination based to-
mography systems suffer from sparse measurement data sets,
and inadequate amount of excitation light penetration in the
tissue interior, especially for imaging clinically relevant tis-
sue volumes. In the past, researchers at the Photon Migration
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Laboratories have demonstrated area-illumination and area-
detection based fluorescence tomography approaches, wherein
excitation light is delivered to the tissue media by expanding a
laser beam over the tissue surface, and fluorescence measure-
ments are taken on the illumination surface by an intensified
CCD camera system [3]. While area-illumination provides
enhances excitation light penetration, the tomography prob-
lem is hard to solve because of the increased illposedness in-
troduced by the availability of only the reflectance measure-
ments for inversion. The information content in the area mea-
surements can be increased by employing spatially varying or
patterned illumination, and taking multiple reflectance mea-
surements corresponding to different illumination patterns.
This task can be performed by focusing multiple Gaussian
excitation source patterns on different locations on the tis-
sue phantom, resulting in a non-contact analogue of tradi-
tional point illumination based measurements, but with en-
hanced tissue surface coverage per excitation source (Fig-1).
Model based tomography in an area illumination and detec-
tion framework requires accurate numerical solution of the
photon fluence distribution in the tissue created by spatially
patterned illumination sources. In the past, we have demon-
strated an efficient adaptive finite element tomography algo-
rithm to solve plane wave excitation fluorescence tomography
problem [4]. Herein, we extend that approach to handle mul-
tiple spatially patterned illumination sources. Adaptive finite
element based numerical solutions are implemented for mul-
tiple area sources independently of each other on separate fi-
nite element meshes, which adapt to accurately resolve each
excitation source. Information from multiple measurements
is combined to update the unknown interior fluorescence dis-
tribution in tissue. The proposed scheme is optimized for par-
allel cluster computers, as the adaptive finite element solvers
for different source patterns can run on different processors.
The formulation and implementation of the proposed fluores-
cence tomography scheme are detailed in section-2. The im-
age reconstructions from multiple area illumination patterns
are presented in section-3. We conclude this article in section-
4 by detailing the advantages gained by employing multiple
area illumination patterns and the future implications for clin-
ical fluorescence imaging.
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Fig. 1. Tllustration of scanning gaussian source based excita-
tion illumination.

2. METHODS AND FORMULATION

Fluorescence optical tomography is typically performed in a
model-based framework, wherein a photon transport model
is used to generate predicted boundary fluorescence measure-
ments for a given fluorescence absorption map in the tissue
interior. The map of the absorption owing to fluorophore
is then iteratively updated until the predicted boundary flu-
orescence measurements converge to the actual experimen-
tally observed fluorescence measurements. For time depen-
dent photon propagation in large tissue volumes, the follow-
ing set of coupled photon diffusion equations are an accurate
model in frequency space:

=V [De(r)Vu(r,w)] + keu(r,w) = 0, (1)
=V - [Dp(r)Vo(r,w)] + knv(r,w) = Bemu(r,w). (2)
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and subscripts x and m denote the excitation and the emission
light fields, respectively. u, v are the complex-valued photon
fluence fields at excitation and emission wavelengths, respec-
tively; D, p, are the photon diffusion coefficients; f1qz m 1S
the absorption coefficient due to endogenous chromophores;
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laz,my 1S the absorption coefficient due to exogenous fluo-
rophore; i, ,, is the reduced scattering coefficient; w is the
modulation frequency; ¢ is the quantum efficiency of the flu-
orophore, and finally, 7 is the fluorophore lifetime associated
with first order fluorescence decay kinetics. These equations
are complemented by Robin-type boundary conditions on the
boundary 0f) of the domain 2 modeling the NIR excitation
source:

du

2D7n% +7U:0, (3)
on

2D,
on

+yu+S(r) =0,
where n denotes the outward normal to the surface and v is a
constant depending on the optical reflective index mismatch at
the boundary. The complex-valued function S(r) is the exci-
tation boundary source. The goal of fluorescence tomography
is to reconstruct the spatial map of coefficients jiq ¢ (r) and/or
7(r) from measurements of the complex emission fluence v
on the boundary. In this work we will focus on the recovery
of only piaq¢(r). For notational brevity, we set ¢ = fiq5f in
the following paragraphs.

We have previously proposed a novel fluorescence tomog-
raphy algorithm utilizing adaptive finite element methods [4].
In the following, we briefly describe the formulation of the
scheme and its application to image reconstructions from mul-
tiple area illumination sources. M different area excitation
light sources (S*(r),7 = 1, 2..M) are employed to excite the
embedded fluorophore in the phantom. Fluorescence mea-
surements are taken on the illumination plane. The fluores-
cence image reconstruction problem is posed as a constrained
optimization problem wherein an Ly norm based error func-
tional of the distance between boundary fluorescence mea-
surements z = {z%,i = 1,2..m} and the diffusion model
predictions v = {v*,i = 1,2....m} is minimized by varia-
tion of the parameter ¢, with the additional constraint that the
coupled diffusion model corresponding to each illumination
source (A%(q, [u?,v']) = 0) is satisfied. In a function space
setting this minimization problem reads as:

min J(g,v) 4)
q,u,v
subject to 5)

Alg [u', 0D €) =0, i=12.M. (6)
Here, the error functional J(g, v) incorporates a least square
error term over the measurement part I' of the boundary 02
and a Tikhonov regularization term:

i=m
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[ is the Tikhonov regularization parameter. The constraint
A¥(g; [ut, v'])([¢F, €°]) = 0 is the weak or variational form of
the coupled photon diffusion equations in frequency domain
with partial current boundary conditions for the i** excitation



source, and with test functions [¢, ¢] € H(Q):
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The solution of minimization problem (4) is determined as a
stationary point of the Lagrangian [4, 5]

L(x) = J(q,v) + > A'q; [, o' DA AT (®)
i=1

Here, A\{*, A\{™ are the Lagrange multipliers corresponding to
the excitation and emission diffusion equation constraints for
the 4" source, respectively, and we have introduced the ab-
breviation z = {u, v, A**, A*™ ¢} for simplicity. A station-
ary point of L(z) is found using the Gauss-Newton method
wherein the update direction dx, = {dug, vy, AL, SAL™,
dqy } is determined by solving the linear system

where L, (z)) is the Gauss-Newton approximation to the
Hessian matrix of second derivatives of L at point x, and
y denotes the possible test functions. These equations repre-
sent one condition for each variable in 0. Once the search
direction is computed from Eq. (9), the actual update is deter-
mined by calculating a safeguarded step length av:

Tht1 = T + 00Tk (10)

The step-length o, can be computed from one of several meth-
ods, such as the Goldstein-Armijo backtracking line search [6].
The Tikhonov regularization term 5r(q) = ( ||qH§ added to
the minimization functional J (g, v) defined in Eq. (7) is used
to control illposedness of the inverse solution. The Gauss-
Newton equations are discretized by the finite element method.
State and adjoint variables u, v, A", and A\ are discretized
and solved for on a mesh with continuous finite elements,
while the unknown parameter map q is discretized on a sepa-
rate mesh with discontinuous finite elements. Whenever Gauss-
Newton iterations on these meshes have reduced the error
function by a factor of 10~ or the Gauss-Newton step length
returned by the line search algorithm has fallen below 0.15,
both meshes are refined using a posteriori refinement crite-
ria [4]. Traditional optical tomography schemes utilize only
one finite element mesh for the solution of diffusion equa-
tions corresponding to different illumination sources realized
via fiber optics, while finite element simulations for multi-
ple illumination sources in a non-contact area illumination
mode have not been reported in literature till date. Simula-
tion of photon transport via area excitation illumination re-
quires careful finite element mesh design to capture the pho-
ton fluence variation in the tissue media. For multiple area

584

y z = 8cm

8cm

25 P

0 8cm X
2.5 3.5 4.5 5.5

Fig. 2. Scanning gaussian source positions are indicated by
’X’ on the illumination plane z = 8.

illumination sources, optimal meshes can be obtained if the
simulations corresponding to different sources are run on sep-
arate finite element meshes which are tailored to the illumina-
tion source being simulated. This task can be performed effi-
ciently on multiprocessor computers or workstation clusters,
wherein each source can be simulated on a separate compute
node. The parallelization of Gauss-Newton equations is aided
by the fact that measurements and diffusion equations for dif-
ferent area illumination cases are independent of each other
and coupled only by the common set of unknown parameters
q. The computations are implemented in an object oriented
C++ based programming framework developed by Wolfgang
Bangerth [6] with the help of open source deal Il finite ele-
ments library [7].

3. IMAGE RECONSTRUCTION SIMULATIONS

In this section non-contact fluorescence tomography with mul-
tiple excitation sources will be demonstrated. Synthetic mea-
surements were generated on a 512 ml cubical tissue phan-
tom with optical properties of 1% Liposyn. In a right handed
coordinate system with the origin at the vertex of the phan-
tom, z = 8 plane was set as the illumination and detection
plane. Modulated(100M H z) excitation light was delivered
on the illumination plane via 16 gaussian sources scanning
the surface(Fig-2). Three fluorescent targets (5mm diameter
spheres filled with 1M Indocyanine Green solution in 1%
liposyn) were simulated at a depth of 1em.

The additional computation burden introduced by employ-
ing multiple excitation illumination patterns was reduced by
implementing the fluorescence tomography scheme in a par-
allel mode, wherein the forward and adjoint calculations for
individual excitation sources were executed on separate threads,
which were distributed on a linux Beowulf cluster with 32
2.2G H z Opteron 64-bit processors and 4G'B of memory per



Fig. 3. Adaptively refined forward solution meshes: 1%¢, 2"¢ and 16" sources are illustrated
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Fig. 4. Three target reconstructions. Top 10% of the contour
levels of fluorescence absorption are depicted. Black wire-
frames represent the true target locations, while the colored
blocks represent the reconstructed targets

processor. Gauss-Newton iterations were started on coarse
uniform discretizations for both forward and inverse meshes.
Forward mesh consisted of 162 elements, while the initial pa-
rameter mesh was one level coarser with 83 elements. The
forward meshes were adaptively refined to resolve the sharp
gradients in excitation and emission fluence. The excitation
fluence solution on the illumination plane is illustrated in Fig.3
along with the adaptively refined meshes for a set of sources.
Fig.4 depicts the reconstructed image of three 1cm deep flu-
orescent targets. The final parameter mesh was adaptively
refined around the three fluorescent targets and consisted of
4215 elements.

4. CONCLUSION AND FUTURE IMPLICATIONS

We have demonstrated a novel fluorescence optical tomog-
raphy framework for recovering the location of multiple flu-
orescence targets embedded in tissue, from time dependent,
non-contact boundary fluorescence measurements generated
by multiple area excitation illumination sources. Like fiber
optic based point illumination and detection schemes, mul-
tiple area illumination patterns enable wide spatial sampling
of the tissue surface, while enabling the acquisition of dense
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measurement datasets and enhancing excitation light penetra-
tion in the tissue, with the resulting gains in sensitivity to low
volume fluorescent targets. Adaptive mesh refinement based
fluorescence tomography schemes are essential to generate
optimal and efficient finite element meshes for recovering the
fluorescent targets in clinically relevant situations, wherein
large (> 100cm?) tissue surface may need to be sampled, and
no a priori information about the fluorescent target locations
is available.
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