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Finite element methods approximate solutions of partifieintial equations by restricting the problem to a
finite dimensional function space. hp adaptive finite element methods, one defines these disgates by
choosing different polynomial degrees for the shape fonstidefined on a locally refined mesh.

Although this basic idea is quite simple, its implementatio algorithms and data structures is challenging.
It has apparently not been documented in the literatures imé@st general form. Rather, most existing implemen-
tations appear to be for special combinations of finite elgmer for discontinuous Galerkin methods.

In this paper, we discuss generic data structures and gigwiused in the implementation kp methods for
arbitrary elements, and the complications and pitfalls @meounters. As a consequence, we list the information
a description of a finite element has to provide to the geragorithms for it to be used in alp context. We
support our claim that our reference implementation is iefitcusing numerical examples in 2d and 3d, and
demonstrate that thiep specific parts of the program do not dominate the total comguime. This reference
implementation is also made available as part of the Openc8aleal.ll finite element library.

Categories and Subject Descriptors: GMlathematical Software]: Finite element software-data structures
hp finite element method&.1.8 Numerical Analysis]: Partial Differential Equations-finite element method.

General Terms: Algorithms, Design
Additional Key Words and Phrases: object-orientationfvgarfe design

1. INTRODUCTION

The hp finite element method was proposed more than two decadesya@abuska and
Guo [Babuska 1981; Guo and Babuska 1986a; 1986b] as anatite to either (i) mesh
refinement (i.e. decreasing the mesh paranietes finite element computation) or (ii) in-
creasing the polynomial degrgaised for shape functions. It is based on the observation
that increasing the polynomial degree of the shape funstieduces the approximation
error if the solution is sufficiently smooth. On the other tait is well known [Ciarlet
1978; Gilbarg and Trudinger 1983] that even for the gengvedill-behaved class of elliptic
problems, higher degrees of regularity can not be guardrinede vicinity of boundaries,
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2 : W. Bangerth and O. Kayser-Herold

corners, or where coefficients are discontinuous; consglythe approximation can not
be improved in these areas by increasing the polynomiakdegout only by refining the
mesh, i.e. by reducing the mesh size These differing means to reduce the error have
led to the notion ofp finite elements, where the approximating finite elementspace
adapted to have a high polynomial deggeeherever the solution is sufficiently smooth,
while the mesh width is reduced at places wherever the solution lacks reguldrityas
already realized in the first papers on this method ipdtnite elements can be a powerful
tool that can guarantee that the error is reduced not only satme negative power of the
number of degrees of freedom, but in fact exponentially.

Since then, some 25 years have passed and whifenite element methods are subject
of many investigations in the mathematical literatureythee hardly ever used outside
academia, and only rarely even in academic investigatiarfsde element methods such
as on error estimates, discretization schemes, or solMeisa common perception that
this can be attributed to two major factors: (i) There is mopge and widely accepted a
posteriori indicator applicable to an already computedtsmh that would tell us whether
we should refine any given cell of a finite element mesh or exedhe polynomial degree
of the shape functions defined on it. This is at least true émtiouous elements, though
there are certainly ideas for discontinuous elements, ldeadton et al. 2008; Houston
et al. 2007; Ainsworth and Senior 1997] and in particular jiston and Suli 2005] and
the references cited therein. The major obstacle here itheastimation of the error on
this cell; rather, it is to decide whethksrefinement op-refinement is preferable. (ii) The
hp finite element method is hard to implement. In fact, a commdard myth in the
field holds that it is “orders of magnitude harder to impletfigiman simpleh adaptivity.
This factor, in conjunction with the fact that most softwased in mathematical research
is homegrown, rarely passed on between generations ofrggjadad therefore of limited
complexity, has certainly contributed to the slow adoptiéthis method.

In order to improve the situation regarding the second petiive, we have undertaken
the task of thoroughly implementing support foy finite element methods in the freely
available and widely used Open Source finite element libdagf.1l [Bangerth et al. 2008;
2007] and to thereby making it available as a simple to useareb tool to the wider
scientific community. deal.ll is a library that supports adevivariety of finite element
types in 1d, 2d (on quadrilaterals) and 3d (on hexahedrelydimg the usual Lagrange
elements, various discontinuous elements, Raviart-Tlsoshements [Brezzi and Fortin
1991], Nedelec elements [Nedelec 1980], and combinatibtieese for coupled problems
with several solution variables.

There are currently not many implementations of ipdfinite element method that are
accessible to others in some form. Of these, the codes beké&zmkowicz [Demkowicz
2006] and Concepts [Frauenfelder and Lage 2002] may be athergest known and in
addition to most other libraries also include fully anisgtic refinement. Others, such as
for example libMesh [Kirk et al. 2006] and hpGEM [Pesch e8l07] claim to be in the
process of implementing the method, but the current stateeafsoftware appears unclear.
More importantly, most of these libraries seem to focus oplé@menting the method for
one particular family of elements, most frequently eithierdrchical Lagrange elements
(for continuous ansatz spaces) or for the much simpler dagis@ntinuous spaces.

In contrast, we wanted to implemehy support as general as possible, so that it can be
applied to all the elements supported by deal.ll, i.e. iditlg continuous and discontinuous
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ones, without having to change again the parts of the liltteatare agnostic to what finite
element is currently being used. For example, the mainesissdeal.ll only require to
know how many degrees of freedom a finite element has on eatgxyedge, face, or cell,
to allocate the necessary data. Consequently, the aim oftody was to find out what
additional data finite element classes have to provide twathe element-independent
code to deal with thép situation.

This led to a certaiour-de-forcein which we had to learn the many corner cases that
one can find when implementirigp elements in 2d and 3d, using constraints to enforce
the continuity requirements of any given finite element spdte current paper therefore
collects what we found are the requirements the implemientaf ~p methods imposes
on code that describes a particular finite element spacé.lldezIf already has a library
of such finite element space descriptions, but there are stifevare libraries whose sole
goal is to completely describe all aspects of finite elempatss (see, e.g., [Castillo et al.
2005]). The current contribution then essentially liststybieces of information an imple-
mentor of a finite element class would have to provide to thdetging implementation
in deal.ll, and show how this information is used in the math#cal description. We also
comment on algorithmic and data structure questions mémgato the necessity to imple-
menthp algorithms in an efficient way, and will support our claimsefficiency using a
set of numerical experiments solving the Laplace equati@diand 3d and measuring the
time our implementation spends in the various parts of tleallsolution scheme.

We believe that our observations are by no means specificaidid®©ther implemen-
tations of thehp method will choose different interfaces between finite eatyspecific
and general classes, but they will require the same infoomaFurthermore, although all
our examples will deal with quadrilaterals and hexahetiasame issues will clearly arise
when using triangles and tetrahedra. (For lack of compfewie will not discuss the 1d
case, although of course our implementation supports ispeeial case.) The algorithms
and conclusions described here, as well as the results aflouerical experiments, are
therefore immediately applicable to other implementegias well.

The rest of the paper is structured as follows: In Sectioneédmwil discuss general strate-
gies forh, p, andhp-adaptivity and explain our choice to enforce conformitydafcrete
spaces through hanging nodes. In Section 3, we introduogeetffidata structures to store
and address global degree of freedom information on thetsiral objects from which a
triangulation is composed, whereas Section 4 containsahieal part of the paper, namely
what information finite element classes have to provideltmetor hp finite element im-
plementations. Section 5 then deals with the efficient hagdif constraints. Section 6
shows practical results, and Section 7 concludes the paper.

2. HP-ADAPTIVE DISCRETIZATION STRATEGIES

Adaptive finite element methods are used to improve theioeldtetween accuracy and
the computational effort involved in solving partial diféatial equations. They compare
favorably with the more traditional approach of using umnifity refined meshes with a
fixed polynomial degree by exploiting one or both of the faling observations:

—for most problems the solution is not uniformly complexahghout the domain, i.e. it
may have singularities or be “rough” in some parts of the dama

—the solution does not always need to be known very accyravelrywhere if, for exam-
ple, only certain local features of the solution such astpgitues, boundary fluxes, etc,
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Fig. 1. Refinement of a mesh consisting of four triangles. Left: i@aignesh. Center: Mesh with rightmost cell
refined. Right: The center cell has been converted to a ttianstell.

are of interest.

In either case, computations can be made more accurate stedl fy choosing finer
meshes or higher polynomial degrees of shape functionsrits pdthe domain where
an “error indicator” suggests that this is necessary, wadgethe mesh is kept coarse and
lower degree shape functions are used in the rest of the domai

A number of different and (at least faradaptivity) well-known approaches have been
developed in the past to implement schemes that employ igitapin the following sub-
sections, we briefly review these strategies and explaintieave will follow in this paper
as well as in the implementation of our ideas in the deal.ildialement library.

2.1 h-adaptivity

In the course of an adaptive finite element procedure, am estonator indicates at which
cells of the spatial discretization the error in the solutfeeld is highest. These cells
are then usually flagged to be refined and, in kheersion of adaptivity, a new mesh is
generated that is finer in the area of the flagged cells (he.ntesh size functioh(z) is
adapted to the error structure). This could be achieved bgm¢ing a completely new
mesh using a mesh generation program that honors prescriltieddensities. However, it
is more efficient to create the new mesh out of the old one biacem the flagged cells
with smaller ones, since it is then simpler to use the sabutio the previous mesh as a
starting guess for the solution on the new one.

This process of mesh refinement is most easily explainedjwsimesh consisting of
triangles! see Fig. 1: If the error is largest on the rightmost cell, tianrefine it by
replacing the original cell by the four cells that arise byecting the vertices and edge
midpoints of the original cell, as is shown in the middle of figure.

In the finite element method shape functions are associatidtie elements from
which triangulations are composed. Taking the lowestHofdespace as an example, one
would have shape functions associated with the verticeswdsh. As can be seen in the
central mesh of Fig. 1, mesh refinement results in an unbatbwvertex at the center of the
face separating a refined and an unrefined cell, a so-calkrtgthg node”. There are two
widely used strategies to deal with this situation: speoéatment of the degree of freedom
associated with this vertex through introduction of comistts [Rheinboldt and Mesztenyi
1980; Carey 19975olin et al. 2008Solin et al. 2003], and converting the center cell to

IFor simplicity, we illustrate mesh refinement concepts tusiag triangles. However, the rest of the paper will
deal with quadrilaterals and hexahedra because this is eramplementation supports. On the other hand,
triangular and tetrahedral meshes pose very similar pmobbnd the techniques developed here are applicable to
them as well.
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Fig. 2. Degrees of freedom o+ and p-adaptive meshes. Left: Dots indicate degrees of freedorf?fglinear)
elements on a mesh with a hanging node. Center: Resolutidtheohanging node through introduction of
transition cells. Right: A mixture aP; and P; elements on the original mesh.

a transition cell using strategies suchrad-green refinemerCarey 1997], as shown in
the right panel of the figure. (An alternative strategy is $e Rivara’s algorithm [Rivara
1984].) The left and center panel of Fig. 2 show the locatimindegrees of freedom for
these two cases for the comm&n element with linear shape functions.

For pureh-refinement, both approaches have their merits, though wesehthe first. If
we use piecewise linear shape functions in the depictedtsity continuity of the finite
element functions requires that the value associated Wélhanging node is equal to the
average of the value at the two adjacent vertices along thefinad side of the interface.
We will explain this in more detail in Section 4.4.

2.2 p-adaptivity

Inthep version of adaptivity, we keep the mesh constant but chdregedlynomial degrees
of shape functions associated with each cell. The rightlpafrieig. 2 shows this for the
situation that the rightmost cell of the original mesh isoassted with aP; (cubic) element,
whereas the other elements still use linear elements.

As is seen from the figure, we again have two “hanging nodeg#tierform of the two
P5 degrees of freedom associated with the edge separatingitheetls. There are again
two widely used strategies to deal with this situation: adtrction of constraints for the
hanging nodes (explained in more detail in Section 4.3),adding or removing degrees
of freedom from one of the two adjacent cells. In the lattese¢@ne would, for example,
not use the fullP; space on the rightmost cell, but use a reduced space thassingithe
two shape functions associated with the line, and uses reddifiape functions for the
degrees of freedom associated with the vertices of the confase. Alternatively, one
could use the fullP; space on the rightmost cell, and augment the finite elemertespf
the middle cell by the twd’; shape functions defined on the common face.

2.3 hp-adaptivity

The hp version of adaptivity combines both of the approaches dsedi in the previous
subsections. One quickly realizes that the use of tramsitiements is not usually possible
to avoid hanging nodes in this case, and that the only optiesagain, constraints or
enriched/reduced finite element spaces on the adjacest cell

As above, in our approach we opt to use constraints to delalhsibging nodes. This is
not to say that the alternative is not possible: it has in ffi@&tn successfully implemented
in numerical codes, see for example [Demkowicz 2006]. Hawev is our feeling that
our approach is simpler in many ways: finite element codesstmlways do operations
such as integrating stiffness matrices and right hand sédéovs on a cell-by-cell basis.
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It is therefore advantageous if there is a simple descriptibthe finite element space
associated with each cell. When using constraints, it isjuivecally clear that a cell is, for
example, associated withRa , P, or P; finite element space and there is typically a fairly
small number (for example less than 10) of possible spacegh©other hand, there is a
proliferation of spaces when enriching or reducing finiengtnt spaces to avoid hanging
nodes. This is especially true in 3-d, where each of the feigtbors of a tetrahedron may
or may not be refined, may or may not have a different spaceciassd with it, etc. To
make things worse, in 3-d not only the space associated wighbor cells has to be taken
into account, but also the spaces associated with any obtieatially large number of cells
that only share a single edge with the present cell. If oneidens the case of problems
with several solution variables, one may want to use sp&gex Pr, X --- x Py, with
different indicesk; for each solution variable, and vary the indiéggrom cell to cell. In
that case, the number of different enriched or reduced sga@somes truly astronomical
and may easily lead to inefficient and/or unmaintainableecod

Given this reasoning, we opt to use constraints to deal vatighng nodes. The follow-
ing sections will discuss algorithms and data structurestdoe, generate, and use these
constraints efficiently. Despite the relative simplicitiytbis approach, it should be noted
already at this place that the generation of constraint®isalways straightforward and
that certain pathological cases exist, in particular in 3tdwever, we will enumerate and
present solutions to all the cases we could find in our extensse and testing of our
implementation.

3. STORING GLOBAL INDICES OF DEGREES OF FREEDOM

In order to keep our implementation as general as can bevathigthout unduly sacrific-
ing performance, we have chosen to separate the conceaffldandl er from that of

a triangulation and a finite element class in deal.ll (see{@ath et al. 2007] for more de-
tails about this). ADoFHandl er is a class that takes a triangulation and annotates it with
global indices of the degrees of freedom associated with eathe cells, faces, edges
and vertices of the triangulation. BoFHandl er object is therefore independent of a
triangulation object, and sever@bFHandl er objects can be associated with the same
triangulation, for example to allow programs that use défe discretizations on the same
mesh.

On the other hand,BoFHandl er objectis also independent of the concept of a global
finite element space, since it doesn’t know anything aboapstiunctions. It does, how-
ever, draw information from one or several finite elementeoty (that implement shape
functions) in that it needs to know how many degrees of freetloere are per vertex,
line, etc. ADoFHandl er is therefore associated with a triangulation and a finitenelet
object and sets up a global enumeration of all degrees adidreeon the triangulation as
called for by the finite element object.

The deal.ll library has several implementation®ofFHandl er classes. The simplest,
deal i i : : DoFHandl er allocates degrees of freedom on a triangulation for the ttede
all cells use the same finite element; on the contrary,dthal i i : : MGDoFHandl er
class allocates degrees of freedom for a multilevel hibradd finite element spaces. In
the context of this paper, we are interested in the datatstes necessary to implement
hp finite element spaces, i.e. we have to deal with the situgtiaindifferent cells might be
associated with different (local) finite element spacess Thncept is implemented in the
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Fig. 3. Left: A mesh consisting of two cells with a numbering of thioes, lines, and quadrilaterals of this
mesh. Right: A possible enumeration of degrees of freed@rewie polynomial space on the left cell represents
a Q2 element and that on the right cell@y element. Bottom: Linked lists of degrees of freedom on efitteo
objects of which the triangulation consists.

classdeal i i : : hp: : DoFHandl er .2

Clearly, each cell is only associated with a single finitaredat, and only a single set
of degrees of freedom has to be stored for each cell. How#verlower-dimensional
objects (vertices, lines, and faces) that encircle a cell b associated with multiple
sets of degrees of freedom. For example, consider theisitusthown in Fig. 3. There,
a quadratia)s, element is associated with the left cell, whereas a qu&tielement is
associated with the one on the right. Here, the vertices dlvdras well as the line I5 are
all associated with both local finite element spaces. Weethez have to store the global
indices of the degrees of freedom associated with both sgacéhese objects.

Furthermore, it is clear that vertices in 2-d, and lines i, 3ray be associated with as
many finite element spaces as there are cells that meet aetiéx or line. This leads to
our first requirement on implementations:

REQUIREMENT ON IMPLEMENTATIONS 1. Animplementation needs to store the global
indices of degrees of freedom associated with each objedidgs, lines, etc.) of a trian-
gulation. This storage scheme must be efficient both in tefmsemory and in terms of
fast access.

Note that we only store the indices of degrees of freedomgdatat associated with it.
However, the indices can be used to look up data values ilmreahd matrices.

In deal.ll, we implement above requirement in ting: : DoFHandl er class using a
sort of linked list that is attached to each object of a tridagion. This list consists of
one record for each finite element associated with this ¢bjetere a record consists of
the number of the finite element as well as the global indibes belong to it. This is
illustrated in Fig. 4 where we show these linked lists forreatthe objects found in the
triangulation depicted in Fig. 3. The caption also contdimther explanations about the
data format.

While other implementations are clearly possible, note thia storage scheme mini-
mizes memory fragmentation. Furthermore, because in tsierwajority of cases only a
single element is associated with an object, access is algofast since the linked list
contains only one record.

2To avoid redundancy, we will drop the namespace praééial i i : : from here on.
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Fig. 4. Lists of degrees of freedom associated with each of the tshijgentified in Fig. 3. For vertices and lines,
there may be more than one finite element associated withadgeht, and we have to store a linked list of pairs
off e_i ndex (printed in italics, zero indicates @2 element, one indicates@y element) and the corresponding
global numbers of degrees of freedom for this index; thedisérminated by an invalid index, here represented
by x. For quadrilaterals (i.e. cells in 2-d), only a single setdsgrees of freedom can be active per object, and
there is no need to store more than one data set of ar ndex that would identify the data set. Note that at
this stage, each degree of freedom appears exactly once. aftsingement is later modified by the algorithm
described in Section 4.2.

4. REQUIREMENTS ON FINITE ELEMENT CLASSES
4.1 Higher order shape functions

Most importantly, finite element classes of course have ter gupport for higher order
shape functions to allow the use kp finite element methods. This entails that we have
an efficient way to generate them automatically for arhigrdmigh polynomial degrees as
well as for all relevant space dimensions. This is imporsimte early versions of most
finite element codes often implement only the lowest-orddyqomials by hard-coding
these functions. For example, in 2-d, the four shape funstior the; element are

wo(x) = (1 —z1)(1 — x2), p1(X) = (1 — x1)x2,
p2(X) = 21 (1 — 22), p3(X) = T120.

These shape functions and their derivatives are obvioirslyis to implement directly.

On the other hand, this approach becomes rather awkwarddgbethorder elements
and in particular in 3d, for several reasons. First, thesetfans and their derivatives can
only reliably be generated using automated code generédoexample by computing the
Lagrange polynomials symbolically in Maple or Mathemati@ad then generating corre-
sponding code in the target programming language. Whitel#sds to correct results, it
is not efficient with respect to both compile and run timegsigode generators are fre-
guently not able to find efficient and stable product repregEms of these functions, such
as for example a Horner scheme representation. Consegubattode for these functions
becomes very long, increasing both compile and run timeifségntly, while at the same
time reducing numerical stability of the result. Seconthg approach is not extensible at
run time: only those polynomial degrees are available foictvithe corresponding code
has been generated and compiled before.

In our experience with the deal.ll library, composing sh&pections from an under-
lying representation of the polynomial space addressdhede problems. For example,
we implement the shape functioaé”) of the Lagrange polynomial spac€s, as tensor
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products of one-dimensional polynomials:

= I ¢, (a) (1)

0<d<dim

wherew§”)(-) are one-dimensional basis functions gi¢i) maps thedim-dimensional
indices of the basis functions to one-dimensional onesxXample, a lexicographic order-
ing in 2-d would be represented biy(i) = |i/p] andji(i) = ¢ mod p. The polynomials
1/);”)(-) can be computed on the fly from the polynomial degreesing the interpolation

property

p+1

and are efficiently and stably encoded using the coefficigfittsee Horner scheme to com-
pute polynomials. Using (1), it is also simple to obtain thadientV+ ®) (x) and higher
derivatives without much additional code. The introductid this representation in deal.ll
allowed us not only to trivially add Lagrange elements ofasrdigher than 4 in 2-d and
higher than 2 in 3-d, it also allowed us to delete approximg&®,000 lines of mostly ma-
chine generated code in addition to speeding up computatioasis functions severalfold.

Basing the computation of shape functions on simple reptatiens of the function
space is even more important for more complicated functpacss like those involved
in the construction of Raviart-Thomas or Nedelec elemehts. example, on the refer-
ence cell, the Raviart-Thomas space on quadrilateralgiarisotropic polynomial space
Qry1.k X Qrpr1 10 2-d, aNdQr4 1,k X Qrkt1,6 X Qrkk+1 N 3-d (See, e.9., [Brezzi
and Fortin 1991]), where indices indicate the polynomidlesiin each space direction in-
dividually. From such a representation, it is easy to wrasib functions of this space for
arbitrarily high degrees as a tensor product of one-dinoerasipolynomials, completely
avoiding the need to implement any of them “by hand”. Simikrhniques as outlined
above for quadrilaterals and hexahedra are likely alsogytmrbe available for triangles
and tetrahedra, see for exampBol[in et al. 2003].

wﬁf’)( a )—&W-, 0<n<p+l,

REQUIREMENT ON IMPLEMENTATIONS 2. Finite element classes need to have an ef-
ficient way to generate shape functions of arbitrary ordeavoid automatic code gener-
ation of high order polynomials that is usually accompartigdan explosion of code size
and run time.

4.2 Description of identities of degrees of freedom

As mentioned in Section 3, we store global indices for eagfateof freedom on vertices,
lines, quadrilaterals, etc, for each of the cells adjacetti¢se objects. For example, Fig. 3
showed this for the case of adjacent cells withand(@, elements, respectively.

If one knows that for Lagrange elements, degrees of free@pmesentaluesof shape
functions, then it is immediately clear that for a finite ebrhfieldu(x) = >, u;pi(X) to
be continuous, one needs the constraints= ug, us = u11, anduy = usg, in addition
to conditions linkingu19 andus; to uy, u3, andu; (these latter conditions are discussed
in Section 4.3 below). In other words, for Lagrange elemealisdegrees of freedom
associated with the same vertex must have the same valuth@sdme holds for certain
degrees of freedom on lines (or on quadrilaterals in 3-d)s Worth noting that this is
a property of the finite element, not of degrees of freedonh@mtselves: one could, for
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example, think of2! conforming elements having four degrees of freedom on eaxby
representing the value, first derivatives, and the mixedrsgderivative of the field in the
coordinate system of theference cellt this location; unless the adjacent cells have a
particular orientation to each other, only the values atvéirgex will coincide, while the
derivatives will only be related but not necessarily be tiethin value.

Constraints such as; = ug, us = w11, andu; = usy could be dealt with in the same
way as hanging node constraints, by adding these cond#i®esplicit constraints to the
linear system of equations. However, that would be ineffiicié needlessly increases the
number of unknowns of a linear system, costing memory andcoatime.

Rather, the implementation of ting: : DoFHandl er in deal.ll requires finite element
classes to provide information adentitiesof degrees of freedom. After degrees of free-
dom have been distributed on each cell individually, pracigidor example the layout
referenced in Fig.s 3 and 4, the: : DoFHand| er goes over all objects (vertices, lines,
etc.) again and tries to identify identical degrees of foredf multiple sets of degrees of
freedom are stored on this object.

To this end, thénp: : DoFHandl er would perform a call similar to the one shown in
Listing 1. This code first queries whether there is more thanfmite element associated
with a vertex; this would be true for verticed andv4 in Fig. 3, for example. If so, it then
asks all pairs of finite elements active on this vertex torretists of identical degrees of
freedom. In the present case, the Lagrange finite elemess wlauld return a list of length
1 consisting of a single pair of zeros: the zeroth (and ondgrdes of freedom associated
with either of the two elements are identical. The code waldeth go on and set the global
index of the degree of freedom associated with the second f@ment to the same index
as that of the first. Note that for the hypotheti€dl element above, the returned list would
also consist of a single pair of zeros, indicating that ohéyalues, not the derivatives at a
vertex must coincide; on the other hand, if théelement implemented its shape functions
so that the later shape functions indicate derivativesergtbbal coordinate systenthen
all four degrees of freedom must be the same and the finiteegieshould return a list
{{0,0},{1,1},{2,2}, {3,3}}.

After this process, for the example given in Fig.s 3 and 4relegof freedom 9 and 11
have been removed, and the linked lists for verticesaandv4 now read as follows:

vi||O|1(|1]1]| x
va || 03| 1]3| x

A similar process is then repeated for lines. In this casdjrmanl 5, we call a func-
tionfe[f]. hpline_dof_identities(fe[g]) which, for the paiQ, andQ, el-
ements, would return the li§t{0, 1}}. This indicates that the first (and only) degree of
freedom of the), element is identical to the second degree of freedom of thele-
ment since they represent shape functions correspondidgmtical interpolation points.
A code similar to the one shown in Listing 1 would then yiel@ following list for this
line:

[GJoJ7]1]19 7 21] x|

Note that we need not perform any such algorithm on cellgesihey can only have a
single set of degrees of freedom associated with them. Oattiex hand, it is necessary
to do so for quadrilaterals in 3-d. At the end of all these apiens and after eliminating
degrees of freedom 9, 11, and 20, we renumber all degreeseafdm to use a consecutive
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if (v->n_active_fe_indices() > 1)
for (unsigned int f=0; f<v->n_active_fe_indices(); ++f)
for (unsigned int g=f+1; g<v->n_active_fe_indices(); ++Qg)
{
unsigned int fe_indexl
fe_ index2

v->nth_active_fe (f),
v->nth_active_fe (9);

std::vector<std::pair<unsigned int, unsigned int> >
dof identities
= fe[fe_indexl].hp_vertex_dof _identities(fe[fe_index2]);

for (unsigned int i=0; i<dof_identities.size(); ++i)
v->set _dof _i ndex (g,
dof _identities.second[i],
v->get _dof _i ndex (f,
dof _identities.first[i]));

Listing 1. ldentifying degrees of freedom on a vertex

rangeo, ..., 30.

Using this identification of degrees of freedom, we can imiatedly reduce the total size
of linear systems by a significant fraction: in the 2d tesecawwn in Section 6, some 6%
of degrees of freedom can be eliminated right away; in 3dfridetion can be as high as
10-15%. This not only keeps matrices and vectors small, Isatsagnificantly reduces the
number of degrees of freedom on which we later have to appigihg node elimination
as explained in the following section.

Unfortunately, a straight-forward adaptation to 3-d of ttmcepts discussed here is
not possible, though the general idea and the basic algor¢émains the same. We will
therefore come back to identifying degrees of freedom déckht finite elements in Sec-
tion 4.6. This notwithstanding, we need finite element impatations to provide us with
the following information:

REQUIREMENT ON IMPLEMENTATIONS 3. Finite element classes need to be able to
communicate to thép: : DoFHandl er which degrees of freedom located on vertices,
edges, and faces of cells are identical even though theypbétdfinite elements of different
polynomial orders or even different kinds.

4.3 Interpolation on common faces between cells with different finite elements

The discrete functions which are represented by the finémenht discretization have to
satisfy certain continuity requirements across the eléméges in most cases. For exam-
ple, after the unification of degrees of freedom 1 and 9, 3 dndtd 7 and 20 in Fig. 3
as discussed in the previous section, finite element fumetim the left and right sides of
the edge separating the two cells will only be continuouspfarticular values of degrees
of freedom 19 and 21. In this section, we will derive the ctinds on these degrees of
freedom for the case that only the polynomial degreéthe ansatz spaces changes across
an edge in our mesh, as well as how such constraints are efficimplemented. The
case that two neighboring cells also have differenefinement levels is treated in the
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next sections. In the presentation of these techniquesphosvfto some degree the algo-
rithms shown in [Ainsworth and Senior 1997; 1999]; howewear,go beyond the material
presented there in that we allow for the case of local refimemdere thecoarsercell
has a higher polynomial degree, and in that we discuss somplmations specific to the
three-dimensional case.

It is worth noting that continuity requirements do not alwa@nforce that a function has
to be continuous across element edges. For example, distrbspaces of (div) only
require continuity of the normal component along the faagw/ben cells (c.f. [Brezzi and
Fortin 1991]). For the sake of simplicity, let us here onlyisinler continuity of functions
across element edges; it shall be understood that the samieerments and assumptions
also hold when the normal or tangential component has to héntmus along element
edges.

Let us first consider the simplest case of such constraietshie one corresponding to
the situation of Fig. 3. If we forget for a moment that we halready identified certain
degrees of freedom, then the continuity constraint reguirat

U1P1 (X) + uzps (X) + U7<p7(X)
= U9y (X) + w1111 (X) + w19919(X) + u209p20(X) + u21921(X) (2)

for all x on the linel 5. It is apparent in the present case that we need to restect th
degrees of freedom on the element with the higher polynodegiee, in order to enforce
this equality. We identify this situation by saying that {je elementdominateshe Q4
element on a shared face. This leads us to the following reopgnt:

REQUIREMENT ON IMPLEMENTATIONS 4. An implementation needs to be able to de-
termine which of two finite elements that share a face dommitte other, or if neither
does.

We will comment on the last case at the end of this section hénpresent situation,
and given the quadratic polynomials representinges, w7 and the quartic polynomials
V9, P11, P19, P20, P21, it is readily checked that equality (2) implies

Ug = Uy, Uyl = ug, U20 = Ur,
Uty = g1 — %Ug + 747 U1 = — 2l + s + Zur
Note that the first three constraints have already been tadkenof through identification
of the corresponding degrees of freedom as described inrdvéops section.
Above conditions can be written in a more compact way as¥ig|dinking the degrees
of freedom of the side of the face with the higher polynomegicte to those on the side

with the lower degree:

Ug 1 0 0
U111 0 1 0 Uq
) . _ _ 3 1 3 __ rface o
U|dominated sidedf5 = | 19 | = | 5§ —35 1 us | = Q4HQ2U|dommat|ng side of 5-
U20 0 0 1 (Vird
1 3 3
21 75 8 4

(3)

For Lagrange interpolation polynomials, the matfjjiiQk/ that appears in this rela-
tion is simple to compute by evaluating the 5 basis functairibe Q4 element on the right
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at the interpolation points of the 3 basis functions of ¢heelement on the left. However,
these matrices are more complicated to compute for elemérdse the degrees of free-
dom are moments on faces or where values and not only gradiéshape functions are
transformed by the mapping from reference to real cell; bindise cases apply to elements
such as the Raviart-Thomas elementbdiv).

REQUIREMENT ON IMPLEMENTATIONS 5. Finite element classes need to be able to
generate the constraint matricg&°® as in (3) that enforce continuity requirements be-
tween cells associated with different finite element spatkese matrices must be avail-
able for all possible pairs of spaces appearing in a triarggidn.

We remark that an important requirement for this approadesthe functions appear-
ing on one side of (2) must be able to exactly represent thetifums on the other side.
For the chosen pair of spaces, this is obvious: the restmicif ), onto a line is the space
of quartic polynomials that is of course able to represeatghadratic polynomials that
result from restricting- to this line, i.e. we say that th@, elementdominateshe Q4
element. However, it is not always the case that one elemanirchtes the other. For
example, consider the hypothetical situation of a meshaioiny an edge where elements
meet that havé€), andR; » (the space of rational expressions with quadratic dendwmina
and enumerator) elements: neither of the two is able to septahe restriction of the other
one on a common edge, i.e. neither element dominates the éthether, more practical
example, would be that one cell is home tQa x @, vector-valued element, whereas its
neighbor is associated with@y, x @2 element.

The solution to this case is to first identify a common subspat the first example
this could be the spad@, of quadratic polynomials on this face, whereas in the second
we would choosé&); x @;. The second step would then be to enforce constraints that
restrict finite element functions on both sides of the fadegavithin this subspace, and in
addition to be equal along the face. In order to not restnietglobal finite element space
more than necessary, we should attempt to find the largesssithie subspace along the
face. However, since this is a case that doesn’'t appear wrhach application in practical
finite element cases, we won't dwell on it in more detail, bilt @ome back to a closely
related case in Section 4.4.3.

4.4 Interpolation on refined faces between cells

The next case to consider is thatefefinement. Fig. 5 shows the two cases that can appear
in this situation: the left panel corresponds to the “simpkese where the element on the
large side of the face (here@,) dominates the one on the right (her&)a). This also
includes the puré-refinement case where both sides use the same element. ttastpn
the right panel shows the “complex” case where the domigatiement sits on the refined
side of a face. We will discuss these two cases separatdhg ifotlowing.

4.4.1 The simple caseThe “simple” case of-refinement is where the dominating
element is located on the unrefined side of the face, as shotie ileft part of Fig. 5. In
the situation shown, to guarantee continuity at the sub-{ttte shared part of the face),
we need the constraint

uopo(X) + u1p1(X) = u2p2(X) + uzps(X) + uapa(X). (4)

It is obvious that this constraint is enforceable since #striction of thel); space on the
left to the sub-face is a linear function and that we can gairsthe quadratic function on
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1% an
14 Q2 Q1
Ql !2 Q2 2 g
I
. . 12 Q3
L 4 L 4

Fig. 5. The simple (left) and complicated (right) casehefefinement across a face between cells with different
finite element spaces associated with them. Only thoseategfdreedom that are relevant for the interpolation
process are indicated.

the right to equal this linear function. In particular, itgasy to show that we need

s 11
2 2 .
Uuo subfacésf)
U|dominated sideofsubfacee | u3 | =10 1 =1, U|dominating side of subfage
1 3 Uy Q22—
4 171

(%)

wheresf denotes the number of the subface we are presently lookingsabefore, for
Q1. elements, we can obtain the interpolation mafii¥f°¢s/) py evaluating the shape
functions associated with the coarse side of the face ahthgoiolation points of the shape
functions on the refined side of the face.

REQUIREMENT ON IMPLEMENTATIONS 6. Finite element classes need to be able to
generate the constraint matricé&"°¢/) as in(5), for each of thed™-! subfacesf of
a face. These matrices must be available for all possiblespaispaces appearing in a
triangulation.

In deal.ll, this requirement is currently implemented fareents from the same family
by automatically computing the interpolation matricesifaces between cells.

4.4.2 The complex case, approach The more complicated case is the one shown
on the right of Fig. 5. The problem is that the linear (domimg} element is located on
the refined side of the subface. As we will see in the followithis case is riddled with
problems, false hopes, and traps; we will consider sevasssand possible solutions that
illustrate why this case is hard.

A naive approach to the situation shown in Fig. 5 is as foltolmsorder to force conti-
nuity of finite element functions, we need to make sure thatthinee degrees of freedom
0, 1, and 2 of th&), element actually form a linear function, since otherwisr¢hwould
be no way the linear function on the upper right cell could match the one on the left.
In general, we need to constrain the finite element spaceelethof the refined face to
the most dominating space on the right, h@se We could do that by constraining the left
face to the degrees of freedom 3 and 4 of the most dominatitdjfelse, i.e. to require

Uug 2 —1 u bf

3 subfacésf

U|dominated sideofface= [u1 | =10 1 < ) = RIQ1—>C§2 )U|most dominating subface
u9 1 0

subfacésf

We call the matrixiI, 5 ) thereverse interpolation matrixlt is not hard to see that
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0\ /1
- 1](2
Q1—Q2 Q2—Q1 Q1—Q1 1 0

4
: ) . (6)

This formula can be understood as follows: Let us introdheealegrees of freedomy,
of a virtual linear finite element space along the entire edde condition of continuity

then means that
Uo
u __ rface Zo us _Isubfacésf) Zo
T Q@ \ gy ) uy) Qi@ x1)
ubfacésf)

U
It is now important to realize that the matiy ™ 5 ° " should always be invertible, even
if we replace the spac€@; by any other reasonable finite element space. This follows
from the fact that the matrix intuitively describes how atinélement space on a face is
restricted to the same space but on a subface. Its inversexists, then describes how
a finite element function on a subface uniquely determinedithction on the entire face.
Since we are dealing with polynomials, the existence andguariess of the inverse is easy
to see: polynomials are analytic functions, and its Taykgagsion on a subface therefore
uniquely determines its extension to the entire face. Theixihat relates the values of
this polynomial at disjoint interpolation points must cegaently be invertible.

Given this, (6) is therefore a universal representatiomefreverse interpolation matrix
that we can obtain by removing the virtual unknowgsz; from the equations.

Using these formulas, we have now seen how to constrain treegof freedom on the
left - side of the face. The remaining question is what to do withotiver subfaces on
the right. To this end, note that we have chosen the most dorhfinite element space
present on this face and its children to define the virtuahemknsz, 1. Consequently,
all other subfaces can be constrained to it as well. For elarfgr the; subface shown
in the figure, we would get

RIsubfacésf) face [Isubfacésf)} -1 _

N O =

—=

Uus

ug | _ rface xo :Isubfacésf/) Isubfacésf) - U| o

ur Q3—Q1 x1 Q3—Q1 Q1—Q1 most dominating subface
us

Here,sf’ is the subface with th€s, andsf denotes the subface associated with the most
dominating finite element space, i.e. the one with@he

So what is wrong with this approach? To see why this appraacttialways successful,
consider the situation shown in Fig. 6. In this case, we gestaintsug = %uo + %ug, i.e.
ug IS constrained ta,y. On the other hand, we have to constrainu;, andug to either
ug, 12, Or t0Ou1g, u12. Let us assume we chose the second alternative. In thatwase,
obtain the constrainty = 2u12 — uyp. In effect,ug is constrained to a degree of freedom
that is itself constrained.

We note that we could have avoided this here by choosing ttensealternative. How-
ever, this would not have been the case if, for examplethelement characterized by
degrees of freedom 12, 13, 0, and 16 were replaced @y alement, in which case the
second alternative would have been forced upon us since ek toerestrict to the most
dominating finite element space on a face.
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Q1

Ql/Ql
Ql /Ql

Fig. 6. lllustration how the first approach leads to connected caists: Geometry and associated finite element
spaces (left) and degrees of freedom (right).

Q2

Q3 | Q1

Q1 Q3
— Q2 -
Q3 Q1

(OX} |03

Fig. 7. lllustration how the first approach leads to circular coratits: Geometry and associated finite element
spaces (left) and those degrees of freedom relevant to sisagiion (right).

So far, the constraints are not self-contradicting: as Esge get chains of constraints
ug — ug — u1g, the constraints form an directed acyclic graph (DAG). Aligh it is
awkward to deal with such nested constraints in progranis ciértainly possible to deal
with them.

However, we can find situations where this graph has cyclessider, for example, the
situation shown in Fig. 7: On the bottom face, degrees oftivee0, 3, and 8 have to be
constrained to th€); subface, i.e. to degrees of freedom 3 and 8. In particulaget¢he
constraintug = 2ug — us. In a similar way, we get; = 2ug — ug, us = 2u19 — uy, and
ug = 2u11 — ug On the other three faces of the central cell. Note how we hastecyeated
a cycle in our directed graph of constraints.

Since we are unsure how to proceed both theoretically arctipaily, we believe that
this first approach of dealing with constraints in the “coaxjlcase is not workable.

4.4.3 The complex case, approach &.second approach is to not constrain the de-
grees of freedom on the large side of the face to those of otfeecfubfaces, but among
themselves. Going back to the right side of Fig. 5, that wané&hn that we impose con-
straints only on degrees of freedom 0, 1, and 2 to make sureshiéting function is linear.

In the present case, this would require the constraint 2uo + 1u;.
In the more general case, let us again introduce virtualesdegof freedonx that corre-
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spond to the most dominant finite element restricted to a fabich we names. Then
Ul coarse side of face= Igafg(i‘hgx,

where 5%°€ is the finite element space on the coarse side of the face.e Smchave
assumed tha$™°® is dominated byS, we can divideu|coarse side of facdNtO & Set of master
and slave nodes such that
y|master Iface, mast
U| ’ — coarse side of facd _ Sface_, X
coarse side of face— slave - Iface, slave :
coarse side of fa Gface_, g

Let us assume that we can subdivide degrees of freedom irgtensnd slave nodes such
that 773S® Mastelig an invertible square matrix (an assumption that we witdss below),

Gface_, g
then we can conclude that

slave _ Iface, slavg( _ Iface, slave Iface, maste -1 master
u|coarse side of face~ * gface_, g  — £ gface_, g Sface_, g ulcoarse side of face
Now that we know how to deal with the degrees of freedom on tase side of the
face, it is clear that we can deal with the subfaces as follows

o Isubfacésf) . Isubfacésf) Iface, maste -1 master
U|subfacesf = Lgsuvtacesf) _, g™ = L gsuvfacesf) _, g |4 grace_, g u|coarse side of face

Here,SsW0™césf) s the finite element space on subfage

Using this second approach, one can easily constructisiisaivhere one gets chains
of constraints. For example, tlig; degrees of freedom on the interface between the small
@1 and@s cells at the bottom of Fig. 7 (though not explicitly shown)lie constrained
to the degrees of freedom located on the two vertices of theywan edge. One of those is
degree of freedom 8, which is itself constrained to degréégedom 0 and 3.

However, it is easy to prove that with this second approaetetbhan be no cycles in the
graph of constraints: resulting from the definition of doarioe of spaces, each constraint
is always from a degree of freedom to other ones associatadagtrictly smaller embed-
ded finite element space. The fact that this wasn’t the casbédirst approach illustrates
immediately why that approach was prone to failure.

We conclude this subsection with a discussion of the sligihmlication of how to
choose the subdivision of nodes on the coarse side of thérfecmaster and slave nodes,
U|master e of fac@NAU[SE | e of face First, let us note that the matrgSe . necessarily
must have full column rank, since it is the matrix that intdgtes the shape functions of
the dominating spac§ at the support points of the dominated spa&&. Assumings to
be unisolvent, i.e. consisting of linearly independenpghfainctions, and assuming that no
two interpolation points o™ coincide, then the full column rank immediately follows.
Consequently, we can hope that we can select certain linieatpendent rows afigss

Stace .5
to form an invertible matriﬁﬁﬁiﬁ“}ass“?’

The selection of these rows, however, turns out to be morehied than one would
think at first. In particular, one can not simply take the fitst of the ngnee rows, since
they sometimes are linearly dependent. It is conceivaldedhe could devise an exact
strategy for this problem, though we are not aware of any sygiroach and therefore
chose to implement a heuristic:rife"e nline %% are the number of degrees of freedom
associated with each vertex, line, and quad of the domigafiaces, then select the first
n'e"® degrees of freedom from each vertex in the dominated sg#¢&as master nodes,

then the first:"® degrees of freedom from each line, and so on.
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Fig. 8. Left: Depiction of three hexahedral cells meeting at a comradge. The cell in the background is
associated with @)1 element and has degrees of freedom 0 and 1 on the common ellgeelement in the
foreground is aQ2 and carries degrees of freedom 0, 1, and 2. The element onghiels a Q3 with degrees of
freedom 0, 1, 3, and 4. Only degrees of freedom on the comngeneaee shown. Right: The same situation with
Q2, Q3, andQ4 elements meeting at a common edge.

Using this heuristic almost always produces a malﬁﬁ{';fassmthat is invertible. In our
experiments, the only cases where it fails are in 3-d whe®& = Q, (or higher) element
on a coarse cell neighborssa= @3 (or higher) element on a set of refined cells. If we
encounter such a situation, we drop the last master nodeaddr to the list and replace
it with a slave node, until we end up with an invertible matrikhe checks for this are
numerically expensive, but given the rarity of using suaghhpolynomial degrees in 3-d
and that the subdivision into master and slave nodes hasdor@only once per program

run, the additional effort is negligible.

4.5 Complications in 3-d: Seemingly incompatible constraints

Faces between cells, i.e. lines in 2-d and quadrilateradsdnare special in that they are
shared between exactly two cells. Consequently, dealitig them is fairly straightfor-
ward, despite the length of the discussion above. On the b#med, vertices in 2-d and
lines in 3-d can have arbitrarily many finite elements asgedi with them. While this is
not much of a problem in 2-d since only slightly uncommon edats (such ag'* con-
tinuous elements) have more than one degree of freedomiatezbwith each vertex, it
is perhaps not surprising that the situation is more compleé3«d and generates an ad-
ditional set of problems. (Vector-valued elements suctpa% of course have more than
one degree of freedom per vertex, but they can be decompuateettheir individual vector
components, each of which is handled independently.)

Consider, for example, the situation shown in the left parfié¢lig. 8. There, we have
three cells associated with;, )2, and@s elements meeting at a common edge. If we,
for example, first treat the face between the and Q3 elements, we would record the
constraint

2

_ 1 8
U3 = guop — g1 + gu2-

However, if we treat the face between the and thel);, elements next, we would discover
the constraint

Uz = %uo + %ul.
It is important to note that these seemingly incompatiblest@ints orug are in fact the
same since we will later discover that = %uo + %ul when we treat the face between the
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Q- andQ@, elements, and we can expand the first constraintgainto the second form by
resolving the chain of constraints.

REQUIREMENT ON IMPLEMENTATIONS 7. An implementation has to be able to keep
track which degrees of freedom are already constrained, sintbly ignore constraints
generated for degrees of freedom for which other constsdiate already been registered.

While this is a simple solution, it is bothersome that oneefothe ability for safety
checks by just throwing away a constraint. It would be ni€eva could keep it, expand
the constraint later on whem, is resolved, and then make sure that it equals the original
constraint with which it appeared to conflict. A defensiveplementation would therefore
follow this latter strategy, in order to ensure that our coitagions are correct, and produce
an error if the two constraints are not the same. We have fthisdstrategy of perva-
sive and exhaustive internal consistency checks of gréa¢ va finding obscure bugs and
corner cases in our implementation.

4.6 Complications in 3-d: Seemingly circular constraints

Yet another situation is shown in the right panel of Fig. 8 e Eftuation is similar to the
one discussed in the preceding subsection, but with polyalalagrees increased by one.
The additional complication is introduced because we hdemstified the middle degree of
freedom on the), side of the edge with degree of freedom 2 of e side of the edge,
using the algorithm of Section 4.2. Now, when we build caaists for the face between
the Q4 and@3 elements, we realize that the latter element dominatetinesk one, and
therefore has to register constraints for degrees of fimedg us, andug. In particular,
we find

Uy = —%uo — 1—16u1 + %u?, + %ml.
On the other hand, we find when dealing with the face betwee@thand (), elements
the constraint

_ 2 1 8
Uz = FUo — g1 =+ gu2.

This is a circular constrainty — uz — us.

We have not found a fully satisfactory solution to this peshl Ideally, one would like
to exclude those degrees of freedom from identification éxxidbed in Section 4.2) that
will later create such trouble. Here, this means that thediaidegree of freedom on the
Q4 edge should not have been identified with the degree of frac2lof the@, edge.
However, writing a routine that pre-scans for the poterffitiatrouble appears complicated.
Our solution is to simply not identify any degrees of freedohenever there are three or
more finite elements associated with an edge in 3-d, in csiriwahe algorithm shown in
Listing 1.

Note that this actually only concerns a relatively small hemof degrees of freedom,
since the restriction only triggers in 3-d and on edges atkvbells meet that have at least
three different finite elements associated with them. Métethg however, the smoothness
of solutions changes gradually and the regions of the doasnciated with a particular
finite element form shells with interfaces where only twdetiént finite elements meet.

ACM Transactions on Mathematical Software, Vol. V, No. N, Mo 20YY.



20 . W. Bangerth and O. Kayser-Herold

5. EFFICIENT HANDLING OF CONSTRAINTS

After applying the strategies of the previous section, we t@ave a set of degrees of
freedom many of which are constrained. (In a slight abusamajliage, we will call them
“constrained degrees of freedom”.) In practical applmasi such as those shown below,
up to 20% of the total number of degrees of freedom can be @nst. Their efficient
handling is therefore of importance, and involves two atpestoring the information
about constraints, and applying these constraints torlisgstems of equations. We will
discuss these in the following.

5.1 Data structures for constraints

All the constraints we have constructed in the previousaestre homogeneous, i.e. have
the form

U =0,
wherec;,i = 1,..., 1 is a vector of weights for théh constraint, and’ is the vector of
unknownsu,, k = 1,..., N. The set of all constraints can therefore be writte6@’&5= 0,

and we callC' the constraint matrix
Because constraints typically only involve a small numHeaurnknowns,c; is a sparse
vector and storing constraints as a set of full vectors iseffitient. In addition, we use
that each constraint; corresponds to one particular degree of freeddm that is con-
strained by the values df; other degrees of freedom with indice$:),l = 1,..., L;. In
other words, we can normalize such that(c;),;) = 1 to obtain the following form of
constraint:
L;
Ug(s) = = Y (C)r (o) Ur (- (7)
=1
A suitable and efficient storage format for the constraintrim#s therefore a list of length
I, where each entry contains first the indgx) of the constrained degree of freedom, and
secondly a list of lengttL; of pairsr(i), (c;),, ). This format is memory efficient and
well suited to the operations involving constraint matsidescribed below.

5.2  Applying constraints

With this definition of constraints, the problem we need tos®s AU = F', whereA is the
matrix with entriesu;; = b(y;, ;) obtained from the bilinear forrb(-, -) of the problem
involving all shape functiong; (corresponding to unconstrained and constrained degrees
of freedom) andF’ the corresponding right hand side. In addition, we have forea

our constraintsCU = 0. In general, however, this constrained form is not paréduyl
suitable, since, among other reasons, it is already uneleether this set of two equations
will have a solution at all. (It is easy to show the existentea anique solution ifA
corresponds to a positive definite operator such as the tiaplgbut the problem becomes
more complicated with indefinite operators where the soiut no longer derived through
the minimization of an energy.)

3 Alternatively, the pairs-; (3), (¢i)r, (i) could be stored in a compressed row-major (CSR) format astraxoé
sizel x N, with theg(¢) being stored as an additional vector of siz&However, building this matrix is inefficient
in practice since the size and number of entries per row areroovn a priori, requiring costly resizing operations
on the compressed sparsity pattern.
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Fig. 9. Bilinear (Q1) shape functions on an adaptively refined mesh. Top lefth\es enumeration of degrees
of freedom. Top right, bottom left, bottom right: Shape fioms ¢, ©1, ¢2 as defined by mapping vertex shape
functions defined on each of the cells individually to thésdelwhich the corresponding vertex is adjacent. Note
that the shape functions are discontinuous.

Instead, let us adopt a viewpoint dual to that consideringstaints. In the approach
outlined above, we obtain a system of linear equations bgideningall shape functions
; and then solve it subject to constraints. We need the contstrsince in general the
linear combinatioruy, (z) = ). u;pi(x) is not going to be a function that satisfies the
continuity requirements of a suitable function space wharging nodes are present. This
can easily be seen on the usggl shape functions, where the functions associated with
hanging nodes are discontinuous and thereforédftetonforming; this non-conformity is
shown in Fig. 9. On the other hand, the linear combinatipfx) = ), u;p;(x) is indeed
a continuous function if the constraints are respected.

The alternative viewpoint is to construct a getof conforming shape functions (i.e., in
the case off ! conformity a set of continuous shape functions) from thefioms; that
are defined locally on each cell without respect to hangirdeso We can clearly find as
many conforming shape functiogs as there are unconstrained degrees of freedom on a
mesh. For example, Fig. 10 shows the two conforming shapaifurs associated with the
refined edge of the mesh shown in Fig. 9. For the case showse thactions are

~ 1 N 1
<P0=<P0+5902, 901=<P1+§<P2-

In the general case, we can find the so-called “condensegestumctiong; for each
unconstrained degree of freedom as follows:

i=ei+t >, (¢

7 constrained DoF

where(c;); is thei-th component of the constraint vector corresponding torestrained
degree of freedonj. With these new, conforming shape functions, we then olten
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Fig. 10. “Condensed” shape functions for the adaptive mesh showngn%

“condensed” linear systeddl/ = F where

b(@i, p;) if degrees of freedom j are both unconstrained,
aij =4 1 if ¢ = j and degrees of freedoins constrained,
0 if degree of freedom or j is constrained but # j.

- (f, i) if degree of freedom is unconstrained,
710 if degree of freedoni is constrained.

The solution of this condensed linear system uniquely detexs the values of those de-
grees of freedom that are unconstrained. The values of thetreoned degrees of freedom
can be obtained from the equati6fi/ = 0.

The beauty of the approach lies in the fact that we can stiéble the matrix and
the right hand side vectord, F' as before, i.e. using exclusively the original, possibly
nonconforming shape functions that are defined on each ahlbwt regard for the fact that
they may be located on a hanging node. The condensed férifisare then, in a second
step, obtained by a condensation procedure. For examplg, fee need to take each entry
F; that belongs to a constrained degree of freegothen for eacl) < i < N multiply it
by a factor(c;);, and add it to row or columf This corresponds to the operation

ﬁ‘z:(faszjl): fa%‘f' Z (cj)i ©j :(f7(p1)+ Z (Cj)i (fvcpj)

j constrained DoF j constrained DoF

=F+ Y. (¢:F

7 constrained DoF

Subsequently, the entrid%- are set to zero. An algorithm to implement this is shown
in Listing 2. A similar procedure can be applied to obtairfrom A4, by copying and
adding the rows and columns of the matrix corresponding tsitained degrees of free-
dom to those of the unconstrained nodes. The rows and colarerteen zeroed out, and
the diagonal entry is set to one to ensure regularity of tisaltieg matrix. At the cost
of re-allocating memory and copying all entries, these rawd columns could also be
eliminated from the matrix, but we do not usually do so.

Given the numbed/ = O(N) of constraints inhp computations, it is important that
the condensation of the matrix and right hand side vectorbeaperformed efficiently.
From Listing 2 and using thdt; is a numbel(1) that only depends on the kind of finite
elements in use and the topology of the mesh, it is clear iradensingl” is an operation
of complexityO(M) = O(N).
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for (unsigned int i=0; i<n_constrained_dofs; ++i) {

for (unsigned int 1=0; I<L_i; ++l)
F(r_I(i)) +=c_i(l) * F(a(i));
F(q(i)) = 0;

}

Listing 2. Condensing constrained degrees of freedom from a right lsadelvector. The
symbold__i ,c.i (1) ,andq(i) correspond td.;, (c;),, (i), andq(i) in equation(7).

for (unsigned int i=0; i<n_constrained_dofs; ++i)
for (unsigned int j=0; j<n_dofs; ++) {

for (unsigned int 1=0; I<L_i; ++l)
ACr_I(),j) +=ci(h) » ACq(i).j);
ACa(i).j) = 0;

}

Listing 3. A naive algorithm for condensing the rows of a matrix cormsging to con-
strained degrees of freedom.

The situation is more complicated when condensing matrk€iest, it may be necessary
to add certain elements to the sparsity pattern of the mafiecond, care must be taken
to avoid a quadratic complexity of the algorithm. Listingt®ws a naive implementation
of eliminating rows corresponding to constrained degrdefseedom. As written, the
algorithms complexity iD(sM N) = O(sN?), wheres = O(1) is the cost of writing
to a random entry of a given row. When operating on sparseiceatrit is clear that one
doesn’t need to loop over all entries of a row (theop in the code), but only over the
O(1) nonzero entries, reducing the complexity®§sN'). On the other hand, with the
usual compressed row storage of sparse matrices, care enadtdm to ensure that the cost
s stays within reasonable bounds even for matrices with matries per row, for example
T entries per row, i.e. with = O(log T') instead ofs = O(T).

A similar algorithm then subsequently eliminates the caiuimat corresponds to this
degree of freedom. A careful implementation of these ideapresent in deal.ll, will yield
arather complicated code that, however, run®@{@V) and therefore at a better complexity
than most linear solvers.

6. NUMERICAL RESULTS

In this section, we present some numerical examples thabdsirate how the imple-
mentation of the ideas outlined in previous sections perfor a practical implementa-
tion. In particular, we will investigate the run-time befavof the various steps of the
hp method identified above, and implemented in the deal.ll Cpeurce finite element
library [Bangerth et al. 2008; 2007] since release 6.0. Tlogimam with which the results
below are generated is a slight modification of the extehst@cumented step-27 tutorial
program of deal.ll, also included in the deal.ll distrilmutisince release 6.0. All compu-

tations were performed on a system equipped with Opterof p&icessors and 16GB of
memory.
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Fig. 11.Results for example 1. Left: The solutienCenter: The mesh used for the discretization in the seventh
adaptive refinement step. Right: The distribution of poigiad degrees onto cells.

Both numerical examples solve the linear Poisson equatidky = f. Since all al-
gorithms described above are independent of the actualgmnodplved, it is of no further
consequence that we do not solve a more complicated equation

Example 1.In this first example, we solve on a square domain with a h@Qle=
[—1,1]2\[~2, ]2, using the right hand sid¢(z,y) = (z + 1)(y + 1), and usinghp
finite elements);, with orders2 < k < 8.

The solution of this problem is shown in Fig. 11, togethehwiite mesh after a few steps
of adaptive refinement and a distribution of finite elements ¢his mesH. The algorithm
to determine whether to refirteor increasey on a given cell uses an error indicator and
a simple criterion to estimate the smoothness of the seluwfahis cell. Looking at the
right panel of Fig. 11, we see that the polynomial degreedséa low in the vicinity of
the singularities close to re-entrant corners as well asgaibe boundary, and high in the
interior. This corresponds to the expected smoothnesepiep of the solution. Whether
this particular arrangement of elements is in fact optimdili¢h it certainly isn’t) is outside
the scope of this contribution: we only want to investigaie/lour algorithms perform for a
given distribution of finite elements onto a mesh, not thémak choice of finite elements.
For details of thé: refinement ang assignment algorithms, we refer to the documentation
of the step-27 tutorial program [Bangerth et al. 2008].

Given this, the left panel of Fig. 12 shows the growth of thenber of degrees of
freedom ashp refinement iterations proceed, as well the number of cansiladegrees
of freedom. The latter number is roughly constant at aboti 20the total.

The right panel shows a view of where the compute time for thmerical solution of
this problem is spent. The total time used on each mesh grgpvezimately likeO(N!-%),
whereN is the total number of degrees of freedom; this rate can beatgd for the SSOR
preconditioned Conjugate Gradient solver we use in thisprdation. This total compute
time is in fact entirely dominated by solving the linear gyst which consumes more than
95% of the compute time faV > 10°.

The rest of the time is spent on assembling the linear sys3éfrf¢r N=105) and various
other tasks. Among thep specific activities, both allocating degrees of freedone tbe
discussion in Sections 3 and 4.2) and computing constr@atsSections 4.3—4.5 and 5.1)
take negligible fractions of the total compute time, andydheé elimination of constrained
nodes from the linear system (see Section 5.2) is noticeabtmvever, even the latter

4The solution looks blocky since we output it as a bilineaeiipblation even on cells with high polynomial
degree. The actual computed solution is much more accuratedepicted.
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Fig. 12. Results for example 1 for a sequence of adaptively refinetieses eft: Growth of the total number of

degrees of freedom and the number of constrained degreesealoin as refinement iterations proceed. Right:
Compute times in seconds for (i) total compute time excugistprocessing on one mesh, (ii) allocation and
identification of degrees of freedom alone, (iii) constimttof constraints alone, (iv) elimination of constrained
degrees of freedom from the linear system alone, and (vjradgef the linear system alone.

Fig. 13. Results for example 2. Left: The solutian Right: The mesh and distribution of polynomial degrees
onto cells after five refinement steps.

takes less than 2% of the total compute time on finer grids,faridermore grows at a
complexity of onlyO(N) and therefore slower than the overall solver process.

In summary, we can conclude from this example that‘thepecific algorithms do not
significantly contribute to the overall compute time of tha&té element solution of this
problem. An obvious opportunity of improvement is cleathg tsimplistic linear solver,
although this is outside the scope of this paper.

Example 2.In our second example, we solve on a realistic 3d domain gusly already
used in the simulation of breast cancer imaging [Banger#h &007; Hwang et al. 2006],
see Fig. 13. As a right hand side, we u8er,y,z) = 1 in the wedger > |y|, and
f(x,y, z) = 0 otherwise. We use elemen®s. with orders2 < k < 5.

Compared to the 2d example, the solver is still the most tioreseming part of the
program, but assembling the linear system now takes up to, 22 eliminating con-

5A better fit for the data points involved is in fa@(sN), wheres = log T with T the number of nonzero
entries per row. Her@' grows with refinement iterations since the average polyabdégree of shape functions
on cells grows. The observation is then consistent with gtienates given in Section 5.2.
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Fig. 14. Results for example 2 for a sequence of adaptively refinetieses eft: Growth of the total number of

degrees of freedom and the number of constrained degreesealoin as refinement iterations proceed. Right:
Compute times in seconds for (i) total compute time exctugimstprocessing on one mesh, (ii) allocation and
identification of degrees of freedom alone, (iii) constimttof constraints alone, (iv) elimination of constrained
degrees of freedom from the linear system alone, and (vjradgef the linear system alone.

strained degrees of freedom from the matrix and the spapsitern takes another 11%.
On the other hand, actually computing these constraigtsta.form the constraint matrix
C discussed in Section 5.1 takes less than 0.5%, and all @tbles are also negligible.

The fact that assembling the linear system takes a signifezanponent of the overall
compute time does not come as much of a surprise, and is welrkifior higher-order
finite elements in 3d. One of the available strategies to awthis situation is to pre-
compute some of the matrix components, as explained for pbeaim [Kirby and Logg
2006a; 2006b]. We were surprised, however, that elimigatonstraints is so expensive.
In our initial implementation, eliminating constrainedgdees of freedom from the col-
umn compressed storage sparsity pattern was the largést fia@verall compute time.
We consequently changed the data structures used to stordeamediate form of the
sparsity pattern (see the documentation of @oepr essedSpar si t yPatt er n and
Conpr essedSet Spar si t yPat t er n classes at [Bangerth et al. 2008]) and thereby
reduced the time for elimination by about a factor of 6, legdio the numbers quoted
above. On the other hand, the fact that tampering with mestréad sparsity patterns is
expensive should not have come entirely unexpected sirde &t); element has 216 de-
grees of freedom on each cell, and a typical row in the systamnixrcan have more than
300 nonzero entries. Given our algorithmic improvements, ieassuring to see that the
linear solver is still the dominant part of the simulatiamplying that even in 3djp finite
elements are very much a feasible and usable technology.

7. CONCLUSIONS

The implementation of fullyhp adaptive finite element methods for general classes of
elements is a complicated task, sometimes rumored to bereaf magnitude harder”
than nonAp methods. While the mathematics of such methods are welfithescin the
literature, there do not appear to be very many attemptstt@mby implement it beyond
discontinuous Galerkin methods for which the method doésatiire the construction of
hanging node constraints (see, however, [Ainsworth anib§&897; 1999]).

In the current paper, we have described the many componeocéssary to implement
hp methods for general combinations of finite elements and bo&d and 3d (the 1d
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case is so notably absent of any particular problems thatidv@at discuss our imple-
mentation), and the complications and pitfalls one runs.inthe techniques discussed
here provide the generic algorithms that can make this imefgation work not only for
Q. elements, but general combinations of elements. Actushigs of finite element
classes essentially only have to describe equivalencegbatdegrees of freedom on ver-
tices, edges, and faces, and provide matrices that desctéspolation from one element
to another on faces and subfaces between cells. Beyondhbaieneric algorithms dis-
cussed can work independently of the actual elements iadolwn particular, this includes
H(div) [Brezzi and Fortin 1991] and (curl) [Nedelec 1980] elements, but also immedi-
ately vector-valued elements for problems with more thasswiution variable.

In the final section of this paper, we also demonstrated thiaalgorithms are efficient,
i.e. that they are cheap compared to the expensive partstefédlement programs: assem-
bling linear systems and solving them. This demonstratasitis possible to implement
hp finite elements efficiently, even for continuous and 3d eletismie A reference imple-
mentation of our ideas, as well as the tutorial program & explaining the use oip
adaptivity, is available as part of the Open Source finitenelet library deal.ll [Bangerth
et al. 2008] since release 6.0.

Finally, we can also address the question whethas hard to implement: we estimate
that to fully address the problems discussed in this papehad to implement less than
20,000 lines of code on top of what deal.ll already had toroffehis is comparable to
probably less than one year of work for a skilled and traimetividual already familiar
with the internals of deal.ll. This has to be compared to al wkroughly 360,000 lines of
code presently in deal.ll, of which maybe 100,000 are patti@low-level core that deals
with meshes, degrees of freedom, and finite elements. Inm atbs, while a significant
and certainly non-trivial task, the implementation of tdeas in this paper is clearly not
“orders of magnitude” more difficult than a reasonably gahienplementation of the finite
element method.
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