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INTRODUCTION 

 
Generally speaking, inverse problems consist of the 

recovery of coefficients in a domain from data in the 
domain (invasive inverse problems) and/or data on its 
boundaries (noninvasive inverse problems). In particle 
inverse problems, photons (including X-rays), neutrons or 
both are used. The most commonly found inverse 
problems include computed tomography/radiography with 
applications to medical fields, oceanography, 
homogenization, aerospace engineering, object detection 
(including special nuclear material, chemical or biological 
agents) etc [1,2,3]. For instance, tomographic imaging is a 
non-contact, non-destructive investigation method that 
provides cross-sectional images of objects from 
transmission data measured by illuminating the objects 
from one or more different directions and locations. A set 
of mathematical techniques reconstruct (i.e., infer) the 
composition of the interior of the objects from their cross-
sectional images. The common feature of these so-called 
inverse problems is that the unknowns are the object 
material properties and the givens are the data collected 
when illuminating the object with a known source. Data 
can be collected inside the object (invasive method) or at 
its boundaries (noninvasive method). For the purpose of 
homeland security applications, such as cargo and 
container screening, we will mostly consider noninvasive 
inverse problems where measurements are performed at 
the boundaries of the object under scrutiny. The 
uniqueness of solutions for such problems is discussed in 
[5,6]; noninvasive problems have in general no unique 
solution except in the case of 1-group transport with 
isotropic of mildly anisotropic scattering (see [6]). 

An unconstrained optimization approach combined 
with duality principles was previously devised to solve 
the noninvasive inverse problem [7]. In this paper, we 
show equivalence of solutions of the previous 
unconstrained optimization framework with a more 
conventional constrained optimization approach. We also 
provide 1-group 2-D sensitivity studies for a sarin vile 
hidden in a high scatterer object. 

 
THEORY 
 

The noninvasive reconstruction problem is a 
nonlinear optimization problem. It consists of finding the 
distribution of the optical properties of the object under 
investigation so that the neutron fluxes recovered at the 

boundary

Σ

X∂ of the domain X best match the measured 
fluxes. We briefly recall earlier results based on the 
unconstrained problem, describe the constrained problem, 
and show the equivalence between these two frameworks. 
 
Unconstrained minimization problem 

Assuming that some initial guess of the material 
property is given, one computes the functional F 
measuring the discrepancy between the predicted particle 
fluxes ( )Ψ Σ  at the boundary, obtained by solving the 
transport equation, and the measured fluxes *Ψ . The 
functional F to be minimized reads as follows: 
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Tikhonov regularization terms could be added to F to 
ensure existence of a solution; we omit them here solely 
for clarity in demonstrating the equivalence between the 
two frameworks. Furthermore, for conciseness, we define 
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Once the functional has been defined and an initial guess 
for the material properties has been chosen, a direct 
problem  
 { } on ,   on incB S DΨ = Ψ = Ψ Γ−  (3) 
is solved for flux ( )Ψ Σ due to an extraneous source S, if 
any, and an incident flux (the illuminating source). incΨ
B H P= ⋅∇+Σ − −Ω is the transport operator, with H the 
scattering operator and P the production operator. The 
phase-space is [ ] ( )0, 4D X π= × ∞ × . If the value of the 
misfit function for this ( )Ψ Σ is zero, then the material 
properties are the correct converged values. Otherwise, 
we need to update the material properties using an 
iterative method. This is done by evaluating the gradient 
of this functional with respect to the material properties, 
i.e., FΣ∇ , which indicates how material properties 
influence the particle fluxes. This gradient is:  

*( ), ( )FΣ Σ +
∇ = ∂ Ψ Σ Ψ Σ −Ψ       (4). 

Using duality principles [4,3], Eq. 4 is replaced by: 
( )†( ), ( ) ( )F BΣ Σ∇ = Ψ Σ ∂ Ψ Σ       (5) 
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where ( ),  
D

f g dx= ∫ fg with  anddx dSdEd= Ω †( )Ψ Σ is 

the adjoint flux, solution of the adjoint problem 
 { }† † † *0 on ,  ( )  on B DΨ = Ψ = Ψ Σ −Ψ Γ+  (6). 

Because the leakage term in B is absent from , Eq. 5 
is a simple integral to compute. 

BΣ∂

 
Constrained minimization problem 
An alternative viewpoint is to write the problem as a 
constrained minimization problem, where the objective 
functional is written as: 
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and where the explicit dependence of Ψ on has been 
removed. Rather, this dependence is expressed as a 
constraint in the form of Eq. 3. To solve the constrained 
problem, we introduce the Lagrangian functional L 
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where λ is the Lagrange multiplier acting on the 
constraint (the direct transport problem). From the theory 
of constrained optimization, we know that the optimum 
satisfies the following optimality condition for L 
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At any iteration during the optimization process, it is easy 
to note  

1. that the first equality in Eq. 9 leads to Eq. 5 
(previously obtained from Eq. 4 via duality 
principles),  
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2. that the second equality in Eq. 9 leads naturally 
to Eq. 6 (and that the Lagrange multiplier is 
simply the adjoint flux),  
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3. and that the third equality in Eq. 9 is simply 
related to Eq. 3 (the constraint itself).  
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Should the functional F  be equal to zero, the optimality 
condition Eq. 9 would necessarily be satisfied because the 
misfit would be exactly 0, leading to a null 
Lagrange multiplier in Eq. (11), and thus a null RHS in 
Eq. (10). 

*Ψ −Ψ

Consequently, solutions to the unconstrained problem are 
also solutions to the constrained one, and vice versa. 
On the other hand, while in the unconstrained case the 
coefficient Σ  is the only variable that is updated in each 
iteration (while the flux and adjoint flux are then 

recomputed using Eqs. 3 and 6), in the constrained case 
all three of these variables are considered independent and 
are updated independently using the gradient of L defined 
in Eq. 9. While the result of this is that the flux and 
adjoint flux do not satisfy the forward and adjoint 
equation at each iteration (though they do at the point of 
the solution), decoupling the functional F and the state 
equation typically leads to a less nonlinear and 
consequently simpler to solve problem. 
 
SENSITIVITY STUDIES 

 
Before implementing the proposed 

methodologies for the noninvasive inverse problem, it is 
worthwhile testing whether material property changes 
within the domain would cause a reasonable signal at the 
boundaries. A model of a 2-D 100 cm2 square container 
(wood, aluminum, polyethylene) containing various 
inclusions (Cobalt or sarin nerve gas) was used. An 
incoming neutron flux was applied on one side and 
measurements were taken on all four sides.  The 
inclusions were moved within the container. A S16 1-
group bilinear short characteristics method was used to 
solve the transport equation. The sensitivities and relative 
sensitivities are calculated as 
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by solving several forward problems. The case of 1 cm2 
sarin gas vile is presented in figures 1 and 2. The x and y 
coordinates represent the inclusion location. Regardless of 
the inclusion position, significant sensitivity values can be 
noted on at least one side of the object. By illuminating 
the object from more than just one side, sensitivities are 
expected to be even greater. 
 
CONCLUSION and ONGOING WORK 

 
Computed tomography based on the full 

transport equation can be readily applied in a 
mathematically consistent fashion, either as an 
unconstrained optimization problem devised with the help 
of duality relations or as a constrained optimization 
problem. Both frameworks yield equivalent solutions, 
though their implementation complexity, convergence 
properties, and effectiveness may differ; for instance, the 
constrained formulation solves both the forward transport 
problem and the minimization problem at once. These 
methodologies are presently developed for national 
security applications (neutron radiography of devices, 
detection of special nuclear material in cargos and 
containers, etc.). 
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Fig. 1.  Sensitivities as a function as the position of a sarin gas vile in wooden container. The plots show the relative change 

in neutron flux after illumination from the left for different positions of the inclusion when measuring the flux on the left 
(top left image), right (top right), front (bottom left), and back (bottom right) boundaries, respectively.



 
Fig. 2.  Relative sensitivities as a function as the position of a sarin gas vile in wooden container. The plots show the relative 

change in neutron flux after illumination from the left for different positions of the inclusion when measuring the flux on 
the left (top left image), right (top right), front (bottom left), and back (bottom right) boundaries, respectively.
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