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Abstract. The adequate location of wells in oil and environmental applications 
has a significant economical impact on reservoir management. However, the 
determination of optimal well locations is both challenging and computationally 
expensive. The overall goal of this research is to use the emerging Grid infra-
structure to realize an autonomic dynamic data-driven self-optimizing reservoir 
framework. In this paper, we present the use of distributed data to dynamically 
drive the optimization of well placement in an oil reservoir.  

1   Introduction  

The locations of wells in oil and environmental applications significantly affect the 
productivity and environmental/economic benefits of a subsurface reservoir. How-
ever, the determination of optimal well locations is a challenging problem since it de-
pends on geological and fluid properties as well as on economic parameters. This 
leads to a very large number of potential scenarios that must be evaluated using nu-
merical reservoir simulations. Reservoir simulators are based on the numerical solu-
tion of a complex set of coupled nonlinear partial differential equations over hundreds 
of thousands to millions of gridblocks. The high costs of simulation make an exhaus-
tive evaluation of all these scenarios infeasible. As a result, the well locations are tra-
ditionally determined by analyzing only a few scenarios. However, this ad hoc ap-
proach may often lead to incorrect decisions with a high economic impact.  
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Optimization algorithms offer the potential for a systematic exploration of a 
broader set of scenarios to identify optimum locations under given conditions. These 
algorithms, together with the experienced judgment of specialists, allow a better as-
sessment of uncertainty and significantly reduce the risk in decision-making. Conse-
quently, there is an increasing interest in the use of optimization algorithms for find-
ing the optimum well location in oil industry [1,2,3,4]. However, the selection of 
appropriate optimization algorithms, the runtime configuration and invocation of 
these algorithms, and the dynamic optimization of the reservoir remains a challenging 
problem.  

The overall goal of our research is to use the emerging Grid infrastructure [5] and 
its support for seamless aggregations, compositions and interactions, to enable the dy-
namic and autonomic data-driven optimization of oil reservoirs. In this paper we build 
on our autonomic reservoir management framework [6,7,8] to investigate the dynamic 
data-driven steering of the reservoir optimization processes for determining optimal 
well placement and configuration. The specific objective of this paper is to investigate 
how distributed data archives can be used to control and steer the optimization proc-
ess to improve the quality as well as the speed of convergence.  

2   Components of the Autonomic Data-Driven Oil Reservoir 
     Framework  

2.1   The Integrated Parallel Accurate Reservoir Simulator (IPARS)  

IPARS represents a new approach to parallel reservoir simulator development, em-
phasizing modularity, code portability to many platforms, ease of integration and in-
ter-operability with other software. It provides a set of computational features such as 
memory management for general geometric grids, portable parallel communication, 
state-of-the-art non-linear and linear solvers, keyword input, and output for visualiza-
tion. A key feature of IPARS is that it allows the definition of different numerical, 
physical, and scale models for different blocks in the domain (i.e., multi-numeric, 
multi-physics, and multi-scale capabilities). A more technical description of IPARS 
and its applications can be found in [9].  

2.2   Optimization Algorithms  

We use different optimization algorithms in order to capture the complexities of the 
application. All of these algorithms need to be able to find the optimum very effi-
ciently, i.e. with the least number of function evaluations while not requiring gradient 
information as that is generally unavailable in reservoir simulators.  

Very Fast Simulated Annealing (VFSA): This algorithm is a variant of simulated an-
nealing that speeds up the process by using a variable sampling algorithm that shrinks 
the sampling area as the temperature parameter is decreased. This allows for a more 
efficient local search towards the end of the optimization process. Additionally, we 
use different cooling schedules for the optimization variables, see [10].  
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Simultaneous Perturbation Stochastic Algorithm (SPSA): The SPSA algorithm is a 
gradient-based algorithm; however, instead of computing the exact gradient direction, 
it approximates it using a random stochastic direction. Consequently, it requires only 
two evaluations of the objective function per iteration, regardless of the dimension of 
the optimization problem. This allows for a significant decrease in the cost of optimi-
zation, especially in problems with a large number of decision parameters to be esti-
mated. The algorithm is also suitable for noisy measurements of the objective func-
tion and can be customized to perform a more global search by injecting controlled 
random noise (e.g., see [11]).  

Gradient based: This method approximates the gradient of the objective function to 
derive a search direction, and moves the present iterate along this direction. In prac-
tice, this algorithm is much less efficient than other methods [12], but we implement 
this standard algorithm for comparison since it is a very popular and widespread 
method.  

2.3   Querying and Subsetting of Distributed Data: STORM  

An increasingly important issue in Grid computing is to enable access to and 
integration of data in remote repositories. An emerging approach is the virtualization 
of data sources through relational and XML models [13–15]. STORM [16] is a 
service-oriented middleware that supports data select and data transfer operations on 
scientific datasets, stored in distributed, flat files, through an object-relational 
database model. In STORM, data subsetting is done based on attribute values or 
ranges of values, and can involve user-defined filtering operations. With an object-
relational view of scientific datasets, the data access structure of an application can be 
thought of as a SELECT operation as shown in Figure 1. The <Expression> statement 
can contain operations on ranges of values and joins between two or more datasets. 
Filter allows implementation of user-defined operations that are difficult to express 
with simple comparison operations.  

STORM services provide support to create a view of data files in the form of 
virtual tables using application specific extraction objects. An extraction object can be 
implemented by an application developer or generated by compiler [17]. It returns an 
ordered list of attribute values for a data element in the dataset, thus effectively 
creating a virtual table. The analysis program can be a data parallel program. The 
distribution of tuples in the parallel program is incorporated into our model by the 
GROUP-BY-PROCESSOR operation in the query formulation. ComputeAttribute is 
another user-defined function that generates the attribute value on which the selected 
tuples are grouped together based on the application specific partitioning of tuples.  

STORM implements several optimizations to reduce the execution time of queries. 
These optimizations include 1) ability to execute a workflow through distributed fil-
tering operations, and 2) execution of parallelized data transfer. Both data and task 
parallelism can be employed to execute filtering operations in a distributed manner. If 
a select expression contains multiple user-defined filters, a network of filters can be 
formed and executed on a distributed collection of machines. Data is transferred from 
multiple data sources to multiple destination processors in parallel by STORM data 
mover components. 
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SELECT <Attributes> 
 FROM Dataset1,Dataset2,…,Datasetn  
 WHERE <Expression> AND Filter(<Attributes>) 
 GROUP-BY-PROCESSOR ComputeAttribute(<Attributes>) 
 

Fig. 1. Formulation of data retrieval steps as an object-relational database query 

3   Autonomic Grid Middleware for Oil Reservoir Optimization  

The autonomic Grid middleware supports interactions between application compo-
nents, Grid services, resources (systems, CPUs, instruments, storage) and data (ar-
chives, sensors) [18]. It supports autonomic behaviors so that the interactions and 
feedback between simulations, services, sensors and data can be orchestrated using 
high-level rules, defined by expert, to navigate the parameter space and optimize the 
oil reservoir. Key components of the middleware are described below:  

Discover [19] enables seamless access to, and peer-to-peer integration of applica-
tions, services, and resources on the Grid. The middleware substrate integrates Dis-
cover collaboratory services with the Grid services provided by the Globus Toolkit 
using the CORBA Commodity Grid (CORBACoG) Kit [20]. It also integrates the 
Pawn peer-to-peer messaging substrate [21]. Pawn enables decentralized (peer) ser-
vices and applications to interact and coordinate over wide area networks. Finally, the 
DIOS [22] distributed object infrastructure that enables development and management 
of interactive objects and applications, encapsulating sensors and actuators, and a hi-
erarchical control network. DIOS also allows the dynamic definition and deployment 
of policies and rules to monitor and control the behavior of applications and/or appli-
cation services in an autonomic manner [23]. Detailed descriptions of the design, im-
plementation, and evaluation of Discover components can be found in [19–23].  

4   Integrated System for Data-Driven Oil Production Optimization  

The oil production optimization process involves (1) the use of an integrated multi-
block reservoir model and several numerical optimization algorithms (global and lo-
cal approaches) executing on distributed computing systems on the Grid; (2) distrib-
uted data archives for historical, experimental (e.g., data from field sensors), and 
simulated data; (3) Grid services that provide secure and coordinated access to the re-
sources and information required by the simulations; (4) external services that provide 
data, such as current oil market prices, relevant to the optimization of oil production 
or the economic profit; and (5) the actions of scientists, engineers and other experts, 
in the field, the laboratory, and in management offices.  

In the process, item 1 is implemented by the IPARS framework. Both forward 
modeling (comparison of the performance of different reservoir geostatistical parame-
ter scenarios) and inverse modeling (searching for the optimal decision parameters) 
can greatly benefit from integration and analysis of simulation, historical, and ex-
perimental data (item 2). Common analysis scenarios in optimization problems in res-
ervoir simulations involve economic model assessment as well as technical evaluation 
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of changing reservoir properties (e.g., the amount of bypassed oil, the concentrations 
of oil and water). In a Grid environment, data analysis programs need to access data 
subsets on distributed storage systems [16]. This need is addressed by STORM. Fig-
ure 2 shows the performance of STORM for querying and subsetting seismic datasets. 
The performance numbers were obtained on a 30TB seismic dataset generated by 
simulations and stored on a 16-node disk-based cluster storage system, with 
4.3GB/sec peak application-level bandwidth, at the Ohio Supercomputer Center. As 
seen from the figure, we can achieve close to 3.5GB/sec (about 75% of the peak 
bandwidth) bandwidth through runtime optimizations (such as distributed I/O, dis-
tributed filtering, multi-threading) implemented by STORM. The Discover autonomic 
Grid middleware provides the support for items 3, 4, and 5. We now discuss the use 
of Discover/Pawn to enable oil reservoir optimization [24].  

Fig. 2. Querying seismic data using STORM 

The overall autonomic oil reservoir optimization scenario is illustrated in Figure 3. 
The peer components involved include: IPARS providing sophisticated simulation 
components that encapsulate complex mathematical models of the physical interac-
tion in the subsurface, and execute on distributed computing systems on the Grid; 
IPARS Factory responsible for configuring IPARS simulations, executing them on re-
sources on the Grid and managing their execution; Optimization Service (e.g. VFSA 
and SPSA); and Economic Modeling Service that uses IPARS simulation outputs and 
current market parameters (oil prices, costs, etc.) to compute estimated revenues for a 
particular reservoir configuration.  

These entities dynamically discover and interact with one another as peers to 
achieve the overall application objectives. Figure 3 illustrates the key interactions in-
volved: (1) The experts use pervasive portals to interact with the Discover middle-
ware and the Globus Grid services to discover and allocate appropriate resource, and 
to deploy the IPARS Factory, Optimization Service, and Economic model peers. 
(2) The IPARS Factory discovers and interacts with the Optimization Service peer to 
configure and initialize it. (3) The experts interact with the IPARS Factory and Opti-
mization Service to define application configuration parameters. (4) The Optimization 
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algorithm is seeded using DataCutter/STORM. This seed can be obtained by querying 
previously executed simulations. (5) The IPARS Factory then interacts with the Dis-
cover middleware to discover and allocate resources and to configure and execute 
IPARS simulations. (6) The IPARS simulation now interacts with the Economic 
model to determine current revenues, and discovers and interacts with the Optimiza-
tion Service when it needs optimization. (7) The Optimization Service provides 
IPARS Factory with an improved well location, which then (8) launches new IPARS 
simulations with updated parameters. (9) Experts can at anytime discover, collabora-
tively monitor and interactively steer IPARS simulations, configure the other services 
and drive the scientific discovery process. Once the optimal well parameters are de-
termined, the IPARS Factory configures and deploys a production IPARS run. 

 

Fig. 3. Autonomic oil reservoir optimization using decentralized services 

Figure 4 shows the progress of optimization of well locations using the VFSA and 
SPSA optimization algorithms for two different scenarios. The goal is to maximize 
profits for a given economic revenue objective function. The well positions plots (4(a) 
left and 4(b) right) show the oil field and the positions of the wells. Black circles rep-
resent fixed injection wells and a gray square at the bottom of the plot is a fixed pro-
duction well. The plots also show the sequence of guesses for the position of the other 
production well returned by the optimization service (shown by the lines connecting 
the light squares), and the corresponding normalized cost value (4(a) right and 4(b) 
left).  

The overall process described above is data-driven and autonomic in that the peers 
involved automatically detect sub-optimal oil production behaviors at runtime based 
on dynamically injected data, and orchestrate interactions among themselves to cor-
rect this behavior. 
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Fig. 4. Convergence history for the optimal well placement in the Grid using (a) VFSA algo-
rithm and (b) SPSA algorithm 

Further, the detection and optimization process is achieved using policies and con-
straints that minimize human intervention. The interactions between instances of peer 
services are opportunistic, based on runtime discovery and specified policies, and are 
not predefined.  

5   Conclusion  

We presented a novel infrastructure for enabling autonomic dynamic data-driven oil 
production management. We believe that such an infrastructure can aid in gaining bet-
ter understanding of subsurface properties and decision variables, and can assist in the 
implementation of optimized oil production scenarios to lower infrastructure costs 
and maximize productivity.  
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