
Abstract Meeting the demands for energy entails a

better understanding and characterization of the fun-

damental processes of reservoirs and of how human

made objects affect these systems. The need to perform

extensive reservoir studies for either uncertainty

assessment or optimal exploitation plans brings up

demands of computing power and data management in

a more pervasive way. This work focuses on high per-

formance numerical methods, tools and grid-enabled

middleware systems for scalable and data-driven

computations for multiphysics simulation and decision-

making processes in integrated multiphase flow appli-

cations. The proposed suite of tools and systems con-

sists of (1) a scalable reservoir simulator, (2) novel

stochastic optimization algorithms, (3) decentralized

autonomic grid middleware tools, and (4) middleware

systems for large-scale data storage, querying, and re-

trieval. The aforementioned components offer enor-

mous potential for performing data-driven studies and

efficient execution of complex, large-scale reservoir

models in a collaborative environment.

Keywords Reservoir simulation Æ Multiphysics Æ
Grid computing Æ Optimization Æ Data management Æ
Large-scale computing

1 Introduction

Simulations oriented to accurately and efficiently pre-

dict the flow of oil and gas in subsurface reservoirs is

transcendental in hydrocarbon exploitation. Through-

out several years, the constant evolution of computing

power has allowed specialists to increase the resolution

of models and the inclusion of increasingly more

complex processes taking place in the reservoir. The

inherent complexity, heterogeneity and dynamism of

oil reservoirs, however, require new approaches to

developing applications for management and under-

standing of these systems. Current technologies are

pushing the envelope to view the reservoir system as a

data-driven framework capable of managing and

adapting itself based on their current state, available

information and their execution context. Moreover,

this data-driven framework should be such that

actionable information can be efficiently extracted

from large volumes of results generated by complex

numerical models and large quantities of data gathered

by sensors.

Therefore, a dynamic, data-driven applications sys-

tem approach offers great potential to address such

complex problems as understanding and management

H. Klie (&) Æ X. Gai Æ M. F. Wheeler
Center for Subsurface Modeling, The University of Texas
at Austin, Austin, TX 78712, USA
e-mail: klie@ices.utexas.edu

P. L. Stoffa Æ M. Sen
Institute for Geophysics, The University of Texas
at Austin, Austin, TX 78759-8500, USA

M. Parashar
TASSL, Department of Electrical and Computing
Engineering, Rutgers University, Piscataway, NJ, USA

U. Catalyurek Æ J. Saltz Æ T. Kurc
Department of Biomedical Informatics,
Ohio State University, Columbus, OH 43210, USA

W. Bangerth
Department of Mathematics, Texas A&M University,
College Station, TX 77843-3368, USA

Engineering with Computers (2006) 22:349–370

DOI 10.1007/s00366-006-0035-9

123

ORIGINAL ARTICLE

Models, methods and middleware for grid-enabled multiphysics
oil reservoir management

H. Klie Æ W. Bangerth Æ X. Gai Æ M. F. Wheeler Æ
P. L. Stoffa Æ M. Sen Æ M. Parashar Æ U. Catalyurek Æ
J. Saltz Æ T. Kurc

Received: 19 April 2005 / Accepted: 1 February 2006 / Published online: 16 September 2006
� Springer-Verlag London Limited 2006

of reservoir systems. The fundamental process in this

paradigm is dynamic interactions between numerical

models, optimization processes, and data. Dynamic

data-driven approaches are increasingly becoming

more feasible because of the confluence of several

technologies. First, advanced sensor technologies have

improved our ability to capture data at higher resolu-

tion and faster. Second, grid computing is making

possible to realize large-scale, complex numerical

models. Grid computing infrastructure aims to

dynamically and seamlessly link powerful and remote

resources to support the execution of large scale and

disparate processes characterizing a particular prob-

lem. In order to harness wide-area network of re-

sources into a distributed system, a large body of

research has been focused on developing grid middle-

ware frameworks, protocols, and programming and

runtime environments. These efforts have led to the

development of middleware tools and infrastructures

such as Globus [1], Condor-G [2], Storage Resource

Broker [3], Network Weather Service [4], DataCutter

[5], Legion [6], Cactus [7], and Common Component

Architecture (CCA) [8], and many others [9–16]. Ini-

tiatives devoted to analyze the potentialities in grid

computing for lowering infrastructure costs and

impacting the economics of technical computing in the

oil industry have been increasingly reported in latest

conferences and journals; see e.g., special issue in The

Leading Edge [17–21], and our previous work [22–25].

Third, large storage space is becoming more affordable

thanks to off-the-shelf inexpensive disk units and

storage clusters built from commodity items.

Despite these technological advances, effective

implementation of dynamic and data-driven ap-

proaches for reservoir modeling and reservoir studies

requires several challenging issues be addressed. The

massive use of grid computing in diverse energy and

environmental applications is still in its embryonic

stages. Moreover, the design and implementation of

high performance, efficient software systems for man-

aging and analyzing large volumes of data (ranging

from a few terabytes to multiple petabytes in size) is

still a challenging problem.

This paper addresses efficiency issues by exploiting

advanced computational techniques for the autonomic,

seamless and distributed processing of intensive

numerical computations and management of large

amounts of data in reservoir simulation studies. We

illustrate how the latest advances in numerical methods

and tools, grid-enabled autonomic computing middle-

ware, and large-scale data management systems have

driven the conception of new paradigms for the accu-

rate modeling of large fields. To that end, we consider

(1) multiphysics applications that imply the coupling

of flow, geomechanics, petrophysics and seismics; (2)

the determination of optimal well locations; (3) the

efficient uncertainty management and, (4) the flow/

seismic data management. In all these cases, we rely

on the integrated parallel accurate reservoir simulator

(IPARS) which is based on a multiblock approach

for performing scalable simulation of multiphysics,

multiscale and multialgorithm reservoir applications.

The overall approach includes the interplay of

IPARS with discover/automate (a decentralized and

autonomic grid middleware service), geosystems data

access and management (GeoDAM; a data subsetting

and filtering system), Seine/MACE (multiblock

adaptive computational engine), and two very effi-

cient stochastic optimization algorithms such as the

SPSA (simultaneous perturbation stochastic approxi-

mation) and the VFSA (very fast simulated anneal-

ing) to work in a coordinated fashion for the data

driven intense challenge for achieving optimal

exploitation plans.

This work shows how the conjunction and software

engineering of these components offers the possibility

of developing large-scale efficient approaches to per-

form uncertainty analysis and studies leading to

opportune reservoir management decisions. We be-

lieve that the approaches discussed here can also be

applied to other fields such as environmental remedi-

ation and biomedical tissue engineering.

2 Multiphysics oil reservoir management framework

In this section, we present a framework to support

dynamic data-driven reservoir management. This data

driven multiphysics simulation framework (DDMSF)

comprises accurate, multi-resolution, multiphysics

models derivable from diverse data sources, coupled

with dynamic data-driven optimization strategies for

uncertainty estimation and decision-making. Tradi-

tionally, the estimation of model parameters and the

optimization of decision parameters have been treated

separately in decision-making applications. Moreover,

most optimization frameworks have been built under

the assumption of perfect knowledge of (noise-free)

data, forcing specialists to further tune the data when

results do not describe the phenomenon under study.

This process is unreliable and inefficient in practice,

and does not provide, in most cases, a fully unbiased

measurement of uncertainty. The DDMSF aims at

generating a functional and closely connected feedback

loop between data and simulation, driven by

optimization.

350 Engineering with Computers (2006) 22:349–370

123

The technical approach in the development of the

DDMSF is divided in three major components: the

dynamic decision system (DDS), the dynamic data-

driven assimilation system (DDA) and the autonomic

grid middleware (AGM). The orchestration of these

components provide the computational feedback be-

tween data and the model through optimization (see

Fig. 1).

Dynamic decision system This module utilizes the

current knowledge of a subsurface system as input and

initiates the decision-making process. It also includes

estimates of the reliability and accuracy of proposed

strategies, taking into account both numerical errors as

well as uncertainty in subsurface characterization. This

involves the formulation of objective functions, for-

ward numerical simulation models and optimization

algorithms.
The goals include the optimal scheduling, design and

deployment of observations (e.g., wells) to optimize a

desired response (e.g., optimum economic revenue,

minimum bypassed oil); and (2) fitting numerical

model output to field measured values (e.g., history

matching, seismic data and/or resistivity data fitting

together with well constraints). Finding the optimum is

often an ill-posed problem. Furthermore, due to the

complexity of running forward models, optimization

methods must minimize the number of function eval-

uations. Method that have been used with particular

success are a variant of the simulated annealing algo-

rithm, the VFSA [26, 27] and the SPSA method. [28,

29]

Dynamic data-driven assimilation and analysis sys-

tem Data are acquired from different sources and at

different times and scales. From the data manage-

ment and integration perspective, the simulation and

optimization components interact with both data

generated by simulations and data collected by field

sensors. They are driven by the assimilation and

analysis of these datasets. For example, if the infor-

mation available about the subsurface is insufficient,

then all simulations will be unreliable and result in

large error margins. Subsurface characterization with

geophysical and fluid measurements involves the

quantitative assessment of the 3D spatial distribution

of material properties such as density, P- and S-wave

velocities, electrical resistivity, permeability, porosity,

magnetic polarization, pressures, or temperatures,

from a finite set of noisy measurements. 4D seismic

surveys are of increasing use in industry for reservoir

characterization. This is combined with reservoir

modeling that leads to seismic simulations and pre-

dictions. Only by combining 4D seismics and reser-

Fig. 1 Data driven
multiphysics simulation
framework for subsurface
characterization and oil
reservoir management

Engineering with Computers (2006) 22:349–370 351

123

voir simulations can pressure and production data be

matched with greater confidence as ambiguities due

to fault transmissibility and sand body connectivity

are reduced.
The datasets in subsurface characterization and oil

reservoir management are large, multi-scale, and they

are generated or collected at disparate locations. The

dynamic data assimilation and analysis component

provides support for data management, data integra-

tion, and data processing for the analysis, interpreta-

tion, storage and retrieval of these large and

heterogeneous data sets.

Autonomic grid middleware Distributed computation

engines and adaptive runtime management strategies

are required to support efficient and scalable imple-

mentations of adaptive geophysical and flow reservoir

simulations in heterogeneous, widely distributed and

highly dynamic grid environments. Control networks

with embedded software sensors and actuators are re-

quired to enable computational components to be ac-

cessed and managed externally, both interactively and

using automated policies, to support runtime moni-

toring, dynamic data injection and control. Self-man-

aging middleware services are necessary to enable

seamless interactions where the application compo-

nents, grid services, resources (systems, CPUs, instru-

ments, storage) and data (archives, sensors) can

interact symbiotically and opportunistically as peers.

These middleware services must support autonomic

behaviors so that interactions and feedback between

scales, models, simulations, sensor data and history

archives can be orchestrated using high-level policies

and rules to navigate the parameter space and optimize

subsurface modeling.
In summary, the optimal oil production process

involves (1) the use of an integrated multi-physics/

multi-block reservoir model (encompassing flow,

geomechanics, petrophysics and seismics) and several

numerical optimization algorithms (global, local and

hybrid approaches) executing on distributed com-

puting systems on the grid; (2) distributed data ar-

chives for historical, experimental (e.g., data from

field sensors) and simulated data; (3) grid services

that provide secure and coordinated access to the

resources and information required by the simula-

tions; (4) external services that provide data, such as

current oil market prices, relevant to the optimization

of oil production or the economic profit; and (5) the

actions of scientists, engineers and other experts, in

the field, the laboratory, and in management offices.

Figure 2 illustrates the interaction of all these com-

ponents for the optimal reservoir management.

In this process, item 1 is implemented by means of

IPARS. The reservoir simulator IPARS is a parallel

framework for modeling coupled multiphase flow,

reactive transport and geomechanics [30–39]. An

attractive feature of IPARS is that it allows for the

coupling of different models in different subdomains

with possibly non-matching grids [31, 35, 40, 41]. Both

forward modeling (comparison of the performance of

different reservoir geostatistical parameter scenarios)

and inverse modeling (searching for the optimal deci-

sion parameters) can greatly benefit from integration

and analysis of simulation, historical, and experimental

data (item 2). Common analysis scenarios in optimi-

zation problems in reservoir simulations involve eco-

nomic model assessment as well as technical evaluation

of changing reservoir properties (e.g., the amount of

bypassed oil, the concentration of oil and water). In a

grid environment, data analysis programs need to ac-

cess data subsets on distributed storage systems [42,

43]. This need is addressed by GeoDAM (see Sect. 5).

The discover/automate [22, 24, 44] autonomic grid

middleware provides the support for items 3, 4, and 5.

This middleware couples different components in a

peer-to-peer fashion for oil reservoir optimization

studies. The peer components involved include

sophisticated simulation tools (e.g., IPARS and its

coupling with other physical models), a factory com-

ponent responsible for configuring simulations, exe-

cuting them on resources on the grid, and managing

their execution; optimization service (e.g., VFSA,

SPSA and other optimization algorithms); economic

modeling services that use simulation outputs and

current market parameters (oil prices, costs, etc.) to

compute estimated revenues for a particular reservoir

configuration. These entities dynamically discover and

interact with one another as peers to achieve the

overall application objectives.

The main middleware components of the frame-

work are shown in Fig. 3. In this framework, an ex-

pert can use portals to interact with the Discover

middleware to discover and allocate appropriate re-

source, and to deploy the factory, optimization ser-

vice and economic model peers. Optimizer instances

can get their initial inputs from data subsets provided

by the GeoDAM middleware components. During

the optimization process, multiple experts can col-

laboratively interact with optimizer instances and

IPARS. After simulations and optimization processes

are completed and the results stored in the environ-

ment, additional analysis of the results can be carried

out using GeoDAM data subsetting and data pro-

cessing capabilities.

352 Engineering with Computers (2006) 22:349–370

123

3 Description of the multiphysics components
and optimization

In this section, we briefly describe the numerical

models that constitutes the multiphysics model in

IPARS: different flow models, petrophysical descrip-

tion, geomechanics and seismics. We also devoted a

brief description of the SPSA and VFSA approaches as

two novel stochastic optimization algorithms suitable

for large-scale implementations. The incorporation of

all these models into a single simulation and optimi-

zation unit entails the efficient application of the right

physics at the right region of the reservoir domain. This

also aids at providing a continuous workflow for finding

optimal operating scenarios (in terms of profitability,

safety or environmental impact) in contrast to the

traditional view of integrating a more prolonged

assemble of tasks in oil reservoir decision making.

Figure 4 illustrates how the integration of different

processes into a single multiphysics unit may simplify

and speedup the decision loop via optimization.

3.1 Reservoir simulation: flow model

The subsurface model consists of a complex interaction

of fluid and rock properties that evolves with time. To

be able to achieve the desired efficiency and accuracy

in the representation of the different phenomena that

take place in the subsurface, IPARS offers sophisti-

cated simulation components encapsulating complex

mathematical models of the physical interaction in the

subsurface, such as geomechanics, chemical reactions,

different porous flow processes (single phase, oil–wa-

ter, air–water, three-phases, compositional), solution

Fig. 2 Interaction of the several components in DDMSF

Multiphysics Simulation
Optimization Methods

IPARS

Seismic Simulation

SPSA

VFSA

Autonomic Computational Engine

Grid Middleware Substrate

Accord

Meteor

Discover Collaboratory

Data Management and Processing
Middleware

GeoDAM

STORM

DataCutter

Resources
Grid Computing

Storage Clusters

Grid Storage Nodes

Reservoir Simulation Datasets
Seismic Simulation Datasets

Fig. 3 The tools, methods,
and middleware components
of the dynamic data driven
multiphysics simulation
framework for subsurface
characterization and oil
reservoir management

Engineering with Computers (2006) 22:349–370 353

123

algorithms (IMPES, fully implicit) and scales [30–39].

An attractive feature of IPARS is that it allows for the

coupling of different models in different subdomains

with possibly non-matching grids [31, 35, 40, 41]. It uses

state-of the-art solvers and runs on parallel and dis-

tributed systems. Solvers for nonlinear and linear

problems include Newton–Krylov methods enhanced

with multigrid, two-stage and physics-based precondi-

tioners [45]. It can also handle an arbitrary number of

wells each with one or more completion intervals.

3.2 Multiblock and Seine/MACE

The multiblock approach From the conceptual and

computational standpoint, different models and flow

interactions may take place in the same domain at

different spatial and temporal scales. In order to deal

with the accurate and efficient solution of these prob-

lems, the spatial physical domain is decomposed (i.e.,

decoupled) in different blocks or subdomains. Domain

decomposition algorithms with non-overlapping do-

mains provide an useful approach for spatial coupling/

decoupling. A subsurface flow example is the multi-

block mortar methodology described in [35, 38, 40, 46–

48]. This approach allows for the coupling of different

physical processes in a single simulation. Physically

driven matching conditions are imposed on block

interfaces in a numerically stable and accurate way

using mortar finite element spaces.
Some of the computational advantages of the mul-

tiblock approach are as follows: (1) multiphysics, dif-

ferent physical processes/mathematical models in

different parts of the domain may be coupled in a

single simulation (e.g., coupling single-phase, two-

phase, and three-phase flows); (2) multinumerics, dif-

ferent numerical techniques may be employed on dif-

ferent subdomains (e.g., coupling mixed finite element

and discontinuous Galerkin (DG) methods, explicit,

adaptive implicit and fully implicit formulations); (3)

multiscale resolution and adaptivity, highly refined re-

gions may be coupled with more coarsely discretized

regions, dynamic grid adaptivity may be performed

locally on each block; and (4) multidomains, highly

irregular domains may be described as unions of more

regular and locally discretized subdomains with the

possibility of having interfaces with non-matching

grids. The latter allows for the construction of grids

that follow large-scale geological features such as

faults, heterogeneous layers, and other internal

boundaries. This is critical for discretization accuracy.

In addition, the appropriate choice of physical models

and numerical methods can reduce substantially the

Fig. 4 Integrating multiple
processes for the optimized
oil management

354 Engineering with Computers (2006) 22:349–370

123

computational cost with no loss of accuracy. The

multiblock approach leads to coarse level parallel

computations of a domain decomposition type, i.e., it

may be implemented efficiently on massively parallel

computers with near optimal computational load bal-

ance and minimal communication overhead. Figure 5

illustrates the capabilities of the multiblock approach.

When coupling multiple physics and/or multiple

domains (which may have their own grid and timestep)

through interfaces, one must develop appropriate

transmission or matching conditions on the interface.

One approach is the use of mortar finite element

methods [31, 33, 34, 39–41, 49–51]. The interfaces be-

tween blocks are filled with mortars, elements of a fi-

nite element space called the mortar space. Mortar

finite elements also lend themselves to multiscale res-

olution, as one can couple highly refined regions where

one wants to capture fine scale phenomena, with more

coarsely refined regions through the use of a mortar

space [35], thus allowing for nonmatching grids be-

tween subdomains. A posteriori error estimates for

MMFE methods and algorithms for adapting the

mortar and subdomain grids have been developed in

[52]. It is worth to add, that besides supporting the use

of mortar elements, IPARS also comprises discretiza-

tions based on DG approximations for the purpose of

coupling different physical phenomena and/or different

grids [53].

Seine/MACE shared-space interaction framework and

multiblock computational engine A key challenge

presented by the multiblock formulations described

above are the dynamic and complex communication

and coordination patterns resulting from the multi-

physics, multinumerics, multiscale and multidomain

couplings. These communication/coordination patterns

depend on the state of the subsurface phenomenon

being modeled are determined by the specific numer-

ical formulation, domain decomposition and/or sub-

domain refinement algorithms used, etc., and are

known only at runtime. Implementing these commu-

nication and coordination patterns using commonly

used parallel programming frameworks is non-trivial.

Message passing frameworks such as MPI [54], which

are the most widely used paradigm, require matching

sends and receives to be explicitly defined for each

interaction. Programming frameworks based on shared

address spaces provide higher-level abstractions that

can support dynamic interactions. However, scalable

implementation of global shared address spaces re-

mains a challenge.
Associative shared spaces (e.g., tuple spaces) have

been shown to provide a very flexible and powerful

mechanism for extremely dynamic communication and

coordination patterns [55]. In this model, processes

interact by sharing tuples in an associative shared tuple

space. A tuple is a sequence of fields, each of which has

a type and contains a value. The producer of a message

formulates the message as a tuple and places it into the

tuple space. The consumer(s) can associatively look up

relevant tuples using pattern matching on the tuple

fields. The tuple space model provides two funda-

mental advantages: simplicity and flexibility. The

communicating nodes need not care about who pro-

duced or will consume a tuple. Furthermore, the

communicating processes do not have to be temporally

or spatially synchronized. This decoupling allows the

model to effectively support dynamic communication/

coordination. Additionally, the model is accompanied

with a general coordination language, such as Linda,

which defines a set of extremely simple and clear

primitives that present a friendly interface to pro-

grammers. However, scalable implementation of tuple

spaces remains a challenge. In a pure tuple space

environment, all the communication passes through a

logically centralized tuple space with a relatively slow

associative lookup mechanism [56], which is an inher-

ent bottleneck impeding scalability.

Seine/MACE [57, (L. Zhang and M. Parashar, sub-

mitted)] provides a dynamic geometry-based shared

space model to support parallel multiblock simulations

by building on the tuple space model and extending it

to support geometry-based object sharing semantics,

space dynamism, and scalable realizations. The Seine

model builds on two key observations: (a) formulations

of most scientific and engineering applications are

Fig. 5 An illustration of the multiblock paradigm; from left to
right, from top to bottom: multiphysics, multialgorithm, multi-
scale and multidomain

Engineering with Computers (2006) 22:349–370 355

123

based on geometric multi-dimensional domains (e.g., a

grid or a mesh) and (b) interactions in these applica-

tions are typically between entities that are geometri-

cally close in this domain (e.g., neighboring cells, nodes

or elements). Rather than implementing a general and

global associative space, Seine defines geometry-based

transient interaction spaces, which are dynamically

created at runtime, and each of which is localized to a

sub-region of the global geometric domain. Each tran-

sient interaction space is defined to cover a closed region

of the application domain described by an interval of

coordinates in each dimension. The interaction space

can then be used to share objects between nodes whose

computational sub-domains geometrically intersect

with that region. To share an object using the interaction

space, nodes do not have to know of, or synchronize with

each other at the application layer. Sharing objects in

the Seine model is similar to that in a tuple space model.

Furthermore, multiple shared spaces can exist simulta-

neously in the application domain.

The Seine/MACE programming interface provides

operators to initialize and access the shared spaces.

These include init, register, put, get, and rd, as listed in

Table 1. The Seine runtime is initialized using the init

operator. The creation/destruction of a space does not

require global synchronization and processors can

individually and dynamically join or leave a space at

runtime. A processor joins a space by registering its

region of interaction. A processor leaves a space by de-

registering the relevant region. When the last processor

associated with a space de-registers, the space is de-

stroyed. A processor inserts an object into the shared

space using the put operator, which is functionally

similar to out in Linda. A processor can retrieve an

object using the get operator, which is functionally

similar to in in Linda. The get operator is blocking and

will wait until a matching object is written into the

space. The rd operator is similar to get, except that

unlike get, the object is not removed from the space.

Arguments to these operators include a geometry

descriptor to identify the space of interest and a tag to

identify the object of interest.

The implementation of a Seine/MACE framework

complements existing interaction frameworks (e.g.,

MPI, OpenMP) and provides scalable geometry-based

shared spaces for dynamic runtime coordination and

localized communication. This framework uses the

Hilbert Space Filling Curve, a locality preserving

recursive mapping from a multi-dimensional coordi-

nate space to a 1D index space, to construct a distrib-

uted directory structure that enables efficient

geometric region registration and lookup of objects in

the shared space. An experimental evaluation on up to

512 processors demonstrates both scalability and low

operational overheads. Details of the implementation

as well as experimental evaluation of Seine/MACE can

be found (L. Zhang and M. Parashar, submitted).

3.3 Coupling flow, geomechanics and seismics

Flow, mechanics, and seismics are all coupled in the

simulation of subsurface processes: a depletion or

injection of fluids will change the pressure of a reser-

voir, and may also affect the mechanical properties of

the rock matrix. These changes in turn will lead to a

deformation of the reservoir, which in turn has an ef-

fect on fluid pressures. Finally, modified rock proper-

ties and a different geometry affect seismic reflections,

wave amplitudes and two-way times which can be

turned to visualize some of the subsurface changes

using seismic imaging.

Within IPARS, fluid flow is described using single-

or multiphase flow equations. However, in order to

couple flow, geomechanics, and seismics, we need a

relationship describing the correspondence between

flow and mechanical properties. We will briefly outline

such description in the following subsections.

Petrophysical model The purpose of fluid substitution

is to simulate the effect of changes in the reservoir fluid

properties on the isotropic elastic parameters. This

analysis is usually accomplished by the use of Biot–

Gassman theory. Applications include: time-lapse

feasibility studies; prediction of amplitude and AVO

(amplitude vs. offset) anomalies; and invasion correc-

tions for better synthetic seismograms.
The Biot–Gassman theory describes the seismic

velocity changes resulting from changes in pore-fluid

saturations. The theory is mainly supported by the

dependence that seismic velocities have with respect to

saturated, dry, fluid and rock matrix bulk modulus, and

Table 1 Seine/MACE programming interface

Operators Function description Linda

init Uses a bootstrap mechanism
to initialize the Seine runtime system

n/a

register Registers a region with the
Seine framework. Based on
the geometric descriptor registered,
a reference to an existing space
or a newly created space is returned

n/a

put Inserts an object into the shared space out
get Removes an object from the shared space.

The get operator is blocking
in

rd Copies an object from the shared space
without removing it from the
space. Multiple rd can be simultaneously
invoked on an object

rd

356 Engineering with Computers (2006) 22:349–370

123

shear modulus [58]. The moduli are used to calculate

elastic stiffness which defines wave propagation

velocities. Other rock properties include porosity,

shale volume, and grain density. Rock properties can

be obtained from well logs, laboratory measurements

of core properties, and correlations.

Geomechanics model The effects of geomechanics on

seismic arrival changes have been observed in both

numerical calculations and time-lapse (4D) seismic

field monitoring of reservoirs undergoing depletion.

For strongly stress-sensitive formations, reservoir

characterization requires the integration of seismic

surveillance and geomechanics analysis.
Different coupling methods for flow and geome-

chanics can be categorized as decoupled, explicitly

coupled, iteratively coupled and fully coupled. Dean

et al. [59] compared different coupling techniques in

terms of efficiency and accuracy. Their numerical re-

sults indicated that the iterative method could be as

accurate as a fully coupled scheme if a sufficiently tight

tolerance is specified. For most reservoir compaction/

subsidence problems it is more efficient than the fully

coupled scheme, even though it takes more Newton

iterations to converge. In [60], Gai demonstrated that

iterative coupling may be viewed as a special case of

the fully coupled method, thus it is unconditionally

stable and does not have the time-step constraint as the

explicit method does.

In the iterative coupling technique, the diffusion and

elasticity operator are separated first by operator

splitting. The decoupled equations are then solved

sequentially at each nonlinear iteration as shown in

Fig. 6. First the flow model solves the mass balance

equations for pressure and concentrations by neglecting

rock deformation effects. Then the geomechanics

model uses the updated pressure and concentrations

to compute displacements and stresses. The current

iteration is terminated by updating the porosity

according to a fluid fraction equation that depends on

the computed pressures and fluid velocities The flow

model will take the new porosity values and start

another nonlinear iteration. Iteration continues until a

given tolerance on residuals and pore volume is satisfied.

The effects of geomechanics on seismic arrival

changes have been observed in both numerical calcu-

lations and time-lapse (4D) seismic field monitoring of

reservoirs undergoing depletion [61–63]. The measured

time-shifts are mainly caused by stress redistributions

in the pay-zone and its surroundings as a result of

reservoir compaction. To account for the effects of

stress changes on seismic response, geomechanics

studies need to be integrated into 4D seismic inter-

pretations for strongly stress-sensitive formations.

Seismic model Seismic modeling is carried out using

FDPSV and PWAVE3D codes. FDPSV is a time do-

main explicit staggered grid finite difference code that

solves a first-order stress–displacement system assum-

ing linear elasticity. The algorithm is very general and

is valid for generally heterogeneous isotropic media.

On the other hand, PWAVE3D is a fast algorithm that

works in frequency wave number space. Here the

medium is split into two parts. The background is as-

sumed to be 1D to which perturbations are applied to

approximate 3D variations.
Solving the flow model equations using the petro-

physical relations and plugging in the corresponding

seismic velocities to either FDPSV or PWAVE3D, we

can compute the effect of changes in flow properties on

seismic properties. We do so in Fig. 7: the top panels

show P-wave velocities for an oil reservoir into which

gas is injected at the left; obviously, the gas extends at

the top of the oil reservoir towards the right, reducing

the wave velocities in those areas where the gas con-

centrations are highest. At each time, we can use a

seismic modeling code to predict the seismic signature

of the reservoir (bottom row at different resolution

levels). The effects of the changes in the reservoir are

clearly visible in the seismic predictions. The incorpo-

ration of the geomechanics model into this computa-

tion add further prediction capabilities with respect to

changes in the pore volume. The possibility to predict

and monitor such changes using seismics in oil reser-

voirs that are currently in production, as well as the

ability to interpret the changes in seismic signatures, is

an important aspect of current research in geophysics

and petroleum engineering.

The integration of flow, petrophysics, geomechanics

and seismics models is key to achieve a more efficient

and robust decisions as it was already depicted in

Fig. 4.

Using these relations, we can compute the effect of

changes in flow properties on seismic properties. We

do so in Fig. 7: the top panels show P-wave velocities

for an oil reservoir into which gas is injected at the left;

obviously, the gas extends at the top of the oil reservoir

towards the right, reducing the wave velocities in those

areas where the gas concentrations are highest. At each

time, we can use a seismic modeling code to predict the

seismic signature of the reservoir (bottom row). The

effects of the changes in the reservoir are clearly visible

in the seismic predictions. The possibility to predict

and monitor such changes using seismics in oil reser-

voirs that are currently in production, as well as the

ability to interpret the changes in seismic signatures, is

an important aspect of current research in geophysics

and petroleum engineering.

Engineering with Computers (2006) 22:349–370 357

123

3.4 Optimization algorithms

The DDMSF supports a family of different optimiza-

tion algorithms. In [64] some of the authors describe

experiences in comparing different approaches for the

optimal well placement problem. The two algorithms

we describe here and their extensions and hybridiza-

tion with other algorithms open a promising avenue of

research for large-scale applications.

Simultaneous perturbation stochastic approxima-

tion This method [29] is a random-direction version

of the Kiefer–Wolfowitz algorithm. At each iteration,

we simultaneously perturb all N components of the

present iterate by generating N independent and

identically distributed (i.i.d.) symmetric random vari-

ables (commonly) following a Bernoulli (i.e. ±Dx) or

pseudo-Bernoulli distribution. The gradient of the

objective function is the estimate to be the finite dif-

ference approximation to the derivative in the direc-

tion of this perturbation. Therefore, the algorithm

requires only two parallel function evaluations, i.e.

simulations in our case, per iteration. A step in the

descent direction is taken with a step length that is

given by the product of the approximate value of the

gradient and a factor that decreases with successive

iterations.
Besides its efficiency, the SPSA algorithm is

appealing since it works as a variant of the nonlinear

steepest descent method if the objective function is

deterministic, but is equally effective as a stochastic

algorithm if the objective function contains noise. It

can even be converted to a global optimization algo-

rithm by cautious injection of noise into the objective

function. Recently, SPSA has been topic of interest in

several soft computing applications such as neural

networks, see e.g., [65, 66]. Grid computing imple-

mentations for reservoir optimization and management

have been reported in [22, 23, 25].

Very fast simulated annealing This algorithm shares

the property of other stochastic approximation algo-

rithms in relying only on function evaluations. Simu-

lated annealing attempts to mathematically capture the

cooling process of a material by allowing random

changes to the optimization parameters if this reduces

the energy (objective function) of the system. While

the temperature is high, changes that increase the en-

ergy are also likely to be accepted, but as the system

cools (anneals), such changes are less and less likely to

be accepted.
Standard simulated annealing randomly samples

the entire search space and moves to a new point if

either the function value is lower there; or, if it is

higher, the new point is accepted with a certain

probability that decreases over time (controlled by

the temperature decreasing with time) and by the

amount by which the new function value would be

worse than the old one. On the other hand, VFSA

also restricts the search space over time, by increas-

ing the probability for sampling points closer rather

Fig. 6 Iterative coupling of reservoir flow and geomechanics

Fig. 7 Vp and the corresponding seismic response after 100 days
(left) and 400 days (right) of flow simulation (top). Correspond-
ing synthetic seismograms (bottom) at different resolution levels

358 Engineering with Computers (2006) 22:349–370

123

than farther away from the present point as the

temperature decreases. The first of these two parts of

VFSA ensures that as iterations proceed we are more

likely to accept only steps that reduce the objective

function, whereas the second part effectively limits

the search to the local neighborhood of our present

iterate as we approach convergence. The rates by

which these two probabilities change are controlled

by the ‘‘schedule’’ for the temperature parameter;

this schedule is used for tuning the algorithm. VFSA

has been used successfully in several geophysical

inversion applications [27, 67]. Alternative description

of the algorithm can be found in [26].

Both SPSA and VFSA are gradient-free, non-

intrusive optimization algorithms. This feature allows

us to achieve both modularity and flexibility of using

them interchangeably in a black-box fashion. More-

over, they are both suitable for performing a systematic

and dense sampling on those regions that are most

likely to lead a global optimal solution. Construction of

surrogate models out of this sampling (i.e., local re-

sponse surface metamodels) are convenient for even-

tually replacing the behavior of the simulation model

by a cheaper computational model. This is key for

generating faster responses for decision making and

uncertainty analysis in our DDMSF approach.

4 Autonomic computational engine and grid
middleware substrate

Emerging knowledge-based and dynamic data-driven

geosystem management and control applications,

such as the applications described in this paper,

combine computations, experiments, observations,

and real-time data, and are highly heterogeneous and

dynamic in their scales, behaviors, couplings and

interactions. Furthermore, the underlying enabling

computational and information grid is similarly het-

erogeneous and dynamic, globally aggregating large

numbers of independent computing and communica-

tion resources, data stores and sensor networks. To-

gether, these characteristics result in complexities and

challenges that require a fundamentally different

approach to how the applications are formulated,

developed and managed—one in which applications

are capable of managing and adapting themselves in

accordance with high-level rules from the experts

based on their state, the available information and

their execution context [68]. AutoMate [44], an

autonomic computational engine for geosystem

management and control, investigates conceptual

models and implementation architectures to address

these challenges and enable the development and

execution of such self-managing grid applications.

Key research components of AutoMate are described

below.

4.1 Autonomic computational engine

The simulations targeted by this research and the

phenomena they model are inherently dynamic and

heterogeneous (in time, space, and state). Further, they

employ advanced adaptive solution techniques, such as

multi-block and adaptive mesh refinement. As a result,

the appropriate behaviors of application elements and

their compositions can no longer be statically defi-

ned—they depend on the application state, current

information and the execution context, and are know

only at runtime. As a result, applications must be able

to detect and dynamically respond during execution to

changes in both the execution environment and appli-

cation state. This requirement suggests that (1) the

applications should be composed from discrete, self-

managing components that incorporate separate spec-

ifications for all of functional, non-functional and

interaction–coordination behaviors, (2) the specifica-

tions of computational (functional) behaviors, inter-

action and coordination behaviors and non-functional

behaviors (e.g., performance, fault detection and

recovery, etc.) should be separated so that their com-

binations are composedly, and (3) the interface defi-

nitions of these components should be separated from

their implementations to enable heterogeneous com-

ponents to interact and to enable dynamic selection of

components.

The autonomic grid-based computational engine

supports self-managing and optimizing, dynamically

adaptive geosytem simulations, using sophisticated

numerical techniques based on multiblock grids,

adaptive mesh refinement and multigrid. The key

component is the Accord programming framework [69,

70] that enables the definition of autonomic compo-

nents and the dynamic composition, management and

optimization of these components using externally

defined rules and constraints. Autonomic components

in Accord export three programmable ports: a func-

tional port defining the functionalities provided or used

by the component, a control port exposing sensors and

actuators for external monitoring and steering the

component, and an operational port encapsulating

rules for managing runtime behaviors of the compo-

nent. A rule agent (possibly embedded) evaluates and

executes rules to dynamically (and consistently)

change the computational behaviors of components in

response to current context and/or external events and

Engineering with Computers (2006) 22:349–370 359

123

injected rules/constraints [71]. Accord builds on and

complement emerging components/service based pro-

gramming paradigms. Current implementations of

Accord include:

• An object based prototype of Accord, named

DIOS++ [72], implements autonomic elements as

autonomic objects by associating objects with sen-

sors, actuators and rule agents, and providing a

runtime hierarchical infrastructure consisting of

rule agents and rule engines for the rule-based

autonomic monitoring and control of parallel an d

distributed applications.

• A component based prototype of Accord, named

Accord-CCA [73], based on the DoE CCA and the

Ccaffeine framework in the context of component-

based high-performance scientific applications. This

prototype extends CCA components to autonomic

components by associating them with control and

operation ports and component managers, and

provides a runtime infrastructure of component

managers and composition managers for rule-based

component adaptation and dynamic replacement of

components.

• A service based prototype of Accord, named Ac-

cord-WS [74], based on the WS-Resource specifi-

cations, the Web service specifications, and the Axis

framework. Autonomic elements are implemented

as autonomic service by extending traditional WS-

Resources with service managers for rule-based

management of runtime behaviors and interactions

with other autonomic services, and coordination

agents for programmable communications. A dis-

tributed runtime infrastructure is investigated to

enable decentralized and dynamic compositions of

autonomic services.

Accord is currently being used to enable autonomic

simulations in subsurface modeling, combustion and

other areas [22, 24, 73, 74]. Further, the prototype

implementations interface with advanced feature-

based visualization techniques to enable both interac-

tive [75] as well as rule-based automated [76] visuali-

zation and feature-tracking.

The autonomic runtime application management

substrate provides policies and mechanisms for both

‘‘system sensitive’’ and ‘‘application sensitive’’ runtime

adaptations to manage the heterogeneity and dyna-

mism of the applications as well as grid environments.

The former are driven by the current system state and

system performance predictions while the latter are

based on the current state of application. The overall

goal is to maximize solution quality and computational

efficiency for the given set of available resources and

their current state. Prototype implementations [77]

have demonstrated both the feasibility and the effec-

tiveness of the autonomic runtime substrate in man-

aging the complexity, heterogeneity and dynamism of

grid environments.

4.2 Autonomic grid middleware

The content-based grid middleware supports auto-

nomic application behaviors and interactions, and to

enable simulation components, sensors/actuators, data

archives and grid resources and services to seamlessly

interact as peers. For example, simulation components

interact with grid services to dynamically obtain nec-

essary resources, detect current resource states, and

negotiate required quality of service. Further, the data

necessary for simulation is usually sparse and incom-

plete. Therefore, the simulation components must

interact with one another and with data archives and

real-time sensors to enable a better characterization

and understanding of the subsurface model. The sim-

ulation components may interact with other services on

the grid, for example, with optimization services such

as the VFSA or SPSA algorithms to optimize a given

objective function. Finally, the experts (scientist,

engineers, and managers) collaboratively access, mon-

itor, and steer the simulations and data at runtime to

drive the discovery process. The processes described

above must be autonomic in that the behaviors of the

interacting elements and their interactions must be

dynamically orchestrated using high-level polices de-

fined only at runtime. These polices will enable the

elements involved to automatically detect sub-optimal

behaviors at runtime and opportunistically orchestrate

interactions to correct this behavior.

A key component of the middleware is Meteor [78],

a scalable content-based middleware infrastructure

that provides services for content routing, content

discovery and associative interactions. The Meteor

stack consists of three key components: (1) a self-

organizing content overlay, (2) a content-based routing

engine and discovery service (Squid), and (3) the

associative rendezvous messaging substrate (ARMS).

The Meteor overlay is composed of peer nodes, which

may be any node on the grid (e.g., gateways, access

points, message relay nodes, servers or end-user com-

puters). These nodes can join or leave the network at

any time. The overlay topology is based on standard

structured overlays. The content overlay provides a

single operation, lookup(identifier), which requires an

exact content identifier (e.g., name). Given an identi-

fier, this operation locates the peer node where the

content should be stored.

360 Engineering with Computers (2006) 22:349–370

123

Squid [79] is the Meteor content-based routing en-

gine and decentralized information discovery service.

It support flexible content-based routing and complex

queries containing partial keywords, wildcards, and

ranges, and guarantees that all existing data elements

that match a query will be found. The key innovation

of Squid is the use of a locality preserving and

dimension reducing indexing scheme, based on the

Hilbert Space Filling Curve, which effectively maps the

multidimensional information space to the peer iden-

tifier space. Squid effectively maps complex queries

consisting of keyword tuples (multiple keywords, par-

tial keywords, wildcards, and ranges) onto clusters of

identifiers, and guarantees that all peers responsible for

identifiers in these clusters will be located. Keywords

can be common words or values of globally defined

attributes, depending on the nature of the application

that uses Squid, and are based on common ontologies

and taxonomies.

The ARMS layer [78] implements the associative

rendezvous (AR) interaction paradigm. AR is a para-

digm for content-based decoupled interactions with

programmable reactive behaviors. Rendezvous-based

interactions provide a mechanism for decoupling

senders and receivers, in both space and time. Such

decoupled asynchronous interactions are naturally

suited for large, distributed, and highly dynamic sys-

tems such as pervasive grid environments. AR extends

the conventional name/identifier-based rendezvous in

two ways. First, it uses flexible combinations of key-

words (i.e, keyword, partial keyword, wildcards and

ranges) from a semantic information space, instead of

opaque identifiers (names, addresses) that have to be

globally known. Interactions are based on content de-

scribed by these keywords. Second, it enables the

reactive behaviors at the rendezvous points to be

encapsulated within messages increasing flexibility and

enabling multiple interaction semantics (e.g., broadcast

multicast, notification, publisher/subscriber, mobility,

etc.).

4.3 The discover collaboratory

The utility and cost-effectiveness of large-scale scien-

tific and engineering process can be greatly increased

by transforming the traditional batch applications into

more interactive and collaborative ones. Closing the

loop between the user and the applications enables

experts to drive the discovery process by observing

intermediate results, by changing parameters to lead

the simulation to more interesting domains, play what-

if games, detect and correct unstable situations, and

terminate uninteresting runs early. Furthermore, the

increased complexity and multi-disciplinary nature of

these simulations necessitates a collaborative effort

among multiple, usually geographically distributed

scientists/engineers. As a result, collaboration-enabling

tools are critical for the applications processes.

The overall objective of the Discover computational

collaboratory [80, 81] is to realize a collaborative

problem solving environment that enables geographi-

cally distributed scientists and engineers to collabora-

tively monitor, interact with, and control high

performance applications in a truly pervasive manner.

Its goal is to transform high-performance simulations

into true modalities for research and instruction. Key

features of Discover include detachable, pervasive

(web based) collaborative portals for interaction and

control, mechanisms for web-based runtime visualiza-

tion, scalable interaction and collaboration servers

networks that reliably provide uniform access to re-

mote distributed applications, and security, authenti-

cation, and access control mechanisms that guarantee

authorized access to applications

5 Data management and data processing support

In order to enable dynamic data driven approaches in

simulation studies, we need support for gleaning and

extracting information from results of complex

numerical models, which are large, multi-scale in time

and space, and heterogeneous, and from data gathered

by field sensors. These datasets are stored on large-

scale storage systems, consisting of clusters of disk-

based storage nodes, and can be distributed across

multiple storage nodes in a grid environment. There

are some recent efforts to develop grid services [82, 83]

and Web services [84] implementations of database

technologies [85]. Raman et al. [86] discusses a number

of virtualization services to make data management

and access transparent to grid applications. These

services provide support for dynamic discovery of data

sources and collaboration. Bell et al. [87] develop

uniform web services interfaces for relational data-

bases. The goal is to address interoperability between

database systems at multiple organizations. Smith et al.

[88] address the distributed execution of queries in a

grid environment. In addition to supporting interop-

erability among databases, there is a need for tools that

support storage, management, and querying of very

large and distributed scientific datasets. These datasets

are oftentimes stored in a set of distributed files. In this

work, we develop data handling techniques and mid-

dleware frameworks which form the GeoDAM. Geo-

DAM encapsulates methods, optimizations, and tools

Engineering with Computers (2006) 22:349–370 361

123

in a distributed service-based software platform to

support large-scale data management, access, and

analysis and to harness the disk and memory capacity

and I/O bandwidth of very large disk-based storage

systems. It builds on two middleware components

DataCutter [5] and STORM [89, 90] that are designed

to provide high performance support for data subset-

ting and distributed data processing.

5.1 STORM and DataCutter

STORM is a service-oriented middleware that sup-

ports data select and data transfer operations on sci-

entific datasets, stored in distributed, flat files, through

an object-relational database model. In STORM, data

subsetting is done based on attribute values or ranges

of values, and can involve user-defined filtering oper-

ations. STORM services provide support to create a

view of data files in the form of virtual tables using

application specific extraction objects. STORM is

structured as a suite of loosely coupled services: (1) the

query service, where clients submit queries to the

database middleware; (2) the meta-data service, that

maintains information about datasets, and indexes and

user-defined filters associated with the datasets; (3) the

indexing service that encapsulates indexes for a dataset;

(4) the filtering service that is responsible for execution

of user-defined filters; (5) the partition generation ser-

vice that allows an application developer to implement

the data distribution scheme employed in the client

program at the server; and (6) the data mover service

which is responsible for transferring selected data ele-

ments to destination processors based on the parti-

tioning description generated by (5). STORM

implements several optimizations to reduce the exe-

cution time of queries. These optimizations include (1)

ability to execute a workflow through distributed fil-

tering operations, and (2) execution of parallelized

data transfer. Both data and task parallelism can be

employed to execute filtering operations in a distrib-

uted manner. If a select expression contains multiple

user-defined filters, a network of filters can be formed

and executed on a distributed collection of machines.

Data is transferred from multiple data sources to

multiple destination processors in parallel by STORM

data mover components.

DataCutter is a middleware system designed to

support processing of large datasets in a distributed

environment. A DataCutter application consists of a

network of interacting application-specific compo-

nents, called filters, one or more filter groups. Filters

are connected through logical streams and collectively

realize the processing structure of the application. A

logical stream denotes a uni-directional data flow from

one filter (i.e., the producer) to another (i.e., the con-

sumer). DataCutter allows for combined use of task-

parallelism, data-parallelism, and pipelining for

reducing execution time of data processing and analy-

sis applications. Using the DataCutter and STORM

components, the GeoDAM system provides the fol-

lowing functionality.

5.2 Data virtualization and data subsetting

A major barrier to effective utilization of distributed

collections of data sets is that the types and formats of

datasets vary widely. Most scientific datasets are stored

in files with different formats, making it difficult to

search for and extract the data of interest. In order to

provide support for data querying and manipulation on

such datasets, a level of abstraction is needed that will

separate application specific characteristics from pro-

cesses that query and analyze the data. These

abstractions are virtual tables based on object-rela-

tional database models, select queries, and distributed

data descriptors. A dataset can be viewed as a table.

The rows of the table correspond to data elements,

each consisting of a set of attributes and attribute

values. The data analysis program that process the data

can be a parallel program implemented using a dis-

tributed-memory programming paradigm. The distrib-

uted data descriptor abstraction is utilized to specify

how data elements selected from the database are to be

distributed across processing nodes. This functionality

is supported by the STORM component. The metadata

and filtering services of STORM implement the sup-

port for on-the-fly generation of virtual tables on top of

the data files of the dataset. The query and partition

generation services provide the support for select

queries and distributed data descriptors.

5.3 Support for management and processing of very

large (100 TB scale) datasets at data centers

With the help of inexpensive disk-based storage, we

are seeing the emergence of data centers with large-

scale mass storage platforms. Because of cost-perfor-

mance considerations and the need to support wide

range of applications, these mass storage platforms are

made up of multiple levels of storage with varying

capacity/bandwidth (from larger, slower disk pools to

smaller, faster disks to memory on compute cluster)

and distance from compute resources.

Several optimizations can be applied when storing

and accessing very large terabyte-scale datasets to

362 Engineering with Computers (2006) 22:349–370

123

minimize the time spent for retrieving the data of

interest. (1) Data declustering. Efficient access to data

depends on how well the data has been distributed

across storage units, both within a storage level and

across levels. The declustering of the dataset should be

done in such a way that a request to read a portion of

the dataset would be served by as many storage units as

possible and I/O load is distributed based on the I/O

bandwidth of the storage units. (2) Data indexing. The

datasets can be indexed to speed up searches for data

elements that intersect a given query. When dataset

collections and datasets reach several terabytes or

petabytes in size, the index for the entire dataset can be

extremely large. As a result, it may be very expensive

to manage the index and search for data elements that

satisfy a query using a single index file. In that case, a

hierarchical multi-level indexing scheme may provide

an efficient solution. (3) Data caching and replication.

Multiple queries are expected, the data can be cached

on faster disks or in memory so that it can be accessed

much faster next time it is requested. To use aggregate

system memory effectively, the data to be cached

should be distributed across the nodes in the system,

both to provide a large data cache and to achieve

parallelism when data is accessed. Another optimiza-

tion would be partial replication of input datasets. If

most of the queries to a dataset collection accesses a

common subset of data, that portion can be extracted,

redistributed across the disks at the same or a higher

level storage to minimize search and data extraction

overheads. The support for data declustering and

indexing is provided by the meta-data and indexing

services of STORM. We have also implemented pro-

totype support for data replication and caching in

STORM.

5.4 Distributed storage and processing of data

on storage islands

It is reasonable to anticipate that the collection of

datasets comprising a simulation study will be distrib-

uted across a wide-area network, since computational

and storage demands compel the use of multiple su-

percomputers. A similar expectation is true for field

measured data. PC clusters built from low-cost, com-

modity items are increasingly becoming widely used.

With fast CPUs and high-speed interconnects, they

provide cost-effective compute nodes for computation

intensive applications. With high-capacity, commodity

disks, they create active storage nodes that enhance a

scientist’s ability to store large-scale scientific data.

Active storage clusters can be employed as storage is-

lands, which maintain data from nearby data sources.

For example, an institution may deploy a medium-size

cluster that stores datasets generated by large simula-

tions executed at a nearby supercomputer facility.

A storage island can also be set up near field sensors

that feed data into the storage system. Such configu-

rations have two main advantages. First, it reduces cost

by directing low-bandwidth links to nearby storage and

staging platform, which may have higher-bandwidth

connection to other systems. Second, with proper

middleware systems, the data islands can be utilized as

on-demand dynamic data generation platforms. That

is, we can run codes to integrate data from different

sensors or different simulations, filter out data, or on-

demand produce an aggregate data production on the

data island platform before transferring data to data

centers for data assimilation.

This functionality is supported by the DataCutter

component of GeoDAM. DataCutter allows an appli-

cation developer to implement data processing filters

and execute them storage islands near data sources.

6 Results

6.1 Evaluations Seine/MACE interaction

framework

The performance of the Seine/MACE framework has

been evaluated using a parallel multi-block oil reser-

voir simulation consisting of six 3D grid blocks and five

2D mortar-grids at the interfaces of the blocks. The

geometry-based shared spaces were used to share data

on mortar grid objects at the interfaces between blocks.

Note that the application used Seine/MACE for the

couplings between the blocks and MPI for all other

communications.

The experiments were conducted on a 64 node

Beowulf cluster. The Beowulf cluster has 64 Linux-

based computers connected by 100 Mbps full-duplex

switches. Each node has an Intel(R) Pentium-4

1.70 GHz CPU with 512 MB RAM and runs Linux

2.4.20-8 (kernel version). The experiments consist of

measuring the time for register, get and put operations

for a range of system sizes, from 8 to 64 processors. In

each case, the time for each operation was averaged

across the processors. The results are plotted in Fig. 8.

Note that the metric used here is the overall average

cost rather than the average cost per unit size.

As seen in the figures, the system startup time in-

creases as system size increases, while the times for

register, get and put operations decrease. The increase

in startup time is due to the client-server nature of

bootstrapping in the current implementation. As the

Engineering with Computers (2006) 22:349–370 363

123

system size increases, the average size of objects and

corresponding regions decreases. The reason is that as

the system size increases, each block will be mapped to

a larger number of processors and the size of the sub-

block (and corresponding shared interface) at each

processor will be smaller. Since the size of the regis-

tered region is the dominant factor contributing to the

cost of an operation, the overall cost decreases as the

system size increases.

6.2 Autonomic optimal production

The optimal well location on the grid is illustrated in

Fig. 9. Discover provides the portal for users to inter-

act with different optimization services and the IPARS

factory triggers different parallel instances of IPARS

corresponding to different well configurations. Previ-

ous computed configurations are checked in the data-

base in order to reduce the computations and guide the

optimal search to other unexplored regions. Users can

interact among themselves and the application to

analyze the progress towards the optimal solution.

The optimization of well locations using the VFSA

and SPSA optimization algorithms for two different

scenarios are presented in Fig. 10. The goal is to

maximize profits for a given economic revenue objec-

tive function. The well positions plots (top and bottom

of Fig. 10) show the oil field and the positions of the

wells. Black circles represent fixed production wells

and a gray square at the bottom of the plot is a fixed

injection well. The plots also show the sequence of

guesses for the position of the other injection well re-

turned by the optimization service (shown by the lines

connecting the light squares), and the corresponding

normalized cost value (top and bottom of Fig. 10).

Further details can be found [22, 24].

6.3 Uncertainty management

Another important aspect of autonomic optimization is

to capture the effects of uncertainty: in general, we

may have some information about the properties of an

oil reservoir, but due to its largely inaccessible nature,

our picture may be incomplete. Recent approaches to

cope with this lack of information center around sim-

ulating with several different reservoir models, all of

which fit the knowledge we have, but can be considered

different realizations of a probability space represen-

tation of what we know about the reservoir.

This creates several opportunities for parallelism, all

of which should be exploited for efficient solution of

the problem:

• Simulations for different reservoir models are inde-

pendent of each other; the only information that is

important to us are ensemble averages over our set

of stochastic realizations of our reservoir model.

Execution time per object

for get operation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

8 16 24 32 40 48 56 64
number of processors

T
im

e(
m

se
c)

Execution time

 for system initialization

1
1.02
1.04
1.06
1.08

1.1
1.12
1.14
1.16
1.18

1.2
1.22

8 16 24 32 40 48 56 64

number of processors

T
im

e(
se

c)

Execution time per object

for register operation

0.8
0.9

1
1.1
1.2

1.3
1.4

1.5
1.6

8 16 24 32 40 48 56 64

number of processors

T
im

e(
se

c)

Execution time per object

for put operation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

8 16 24 32 40 48 56 64

number of processors

T
im

e(
m

se
c)

Fig. 8 Average execution
time for system initialization
and per object register, get
and put operations on the
64-node Beowulf cluster

364 Engineering with Computers (2006) 22:349–370

123

• Different initial guesses: since optimizers may find

different solutions for non-convex problems when

using different starting positions, we run several

instances of the optimization algorithm in parallel,

in order to compare the best solutions found

by each instance. These runs are completely

independent, however; we are only interested in

comparing the final result of each optimization

run.

• Different optimizers: some optimization algorithms

get stuck more easily in local minima; if the prop-

erties of the solution surface as described by the

objective function are unknown, it may be prudent

to run several different optimization algorithms in

parallel, and to compare the quality of the solution

each of them finds. These runs, again, are inde-

pendent of each other.

• Finally, IPARS itself can run in parallel. Each

IPARS run may therefore be distributed across a

number of machines, which will be in tight contact

during the solution of a problem.

Fig. 9 The autonomic oil reservoir optimization system on the
grid

Fig. 10 Convergence history
for the optimal well
placement in the grid using
VFSA algorithm (top) and
SPSA algorithm (bottom) [91]

Engineering with Computers (2006) 22:349–370 365

123

All these levels of parallelism can be used to dis-

tribute extremely large numbers of simulations across

tightly or loosely coupled clusters of machines. Using

grid technology, we schedule the next IPARS simula-

tion (as requested by a particular instance of a partic-

ular optimization algorithm started from a certain

initial guess) to run on available resources, wait for its

termination, evaluate the result and possible pass the

output on to the next program in line, such as a seismic

simulator. If all this is done, we schedule the next job.

Figure 11 illustrates how a three level parallelism can

be exploited in the grid.

6.4 Flow/Seismic data management

Figure 12 shows the performance of the STORM

component of GeoDAM for querying and subsetting

seismic datasets. The performance numbers were ob-

tained on a 30TB seismic dataset generated by simu-

lations and stored on a 16-node disk-based cluster

storage system, with 4.3 GB/s peak application-level

bandwidth, at the Ohio Supercomputer Center. As

seen from the figure, we can achieve close to 3.5 GB/s

(about 75% of the peak bandwidth) bandwidth

through runtime optimizations (such as distributed I/O,

distributed filtering, multi-threading) implemented by

STORM.

We also evaluated the support for partial replication

using a large dataset with characteristics similar to

those created by oil reservoir management applica-

tions. All of the experiments were carried out on eight

nodes in a Linux cluster where each node has a PIII

933 MHz CPU, 512 MB main memory, and three

100 GB IDE disks. The nodes are inter-connected via a

Switched Fast Ethernet. We generated a 0.35 TB size

dataset, with the same domain partitioning as the

simulator code, so that we can manage the distribution

of attributes for a more controlled experimental envi-

ronment. Each grid point is stored as a tuple and each

tuple consists of 21 attributes. Sixteen time steps worth

of data is created using a grid of size 1,024 · 1,024 ·
256. The data is partitioned into 8 · 8 · 256 · 1

size chunks on X, Y, Z and TIME dimensions (attri-

butes). Each chunk is roughly 1.3 MB in size. The

metadata associated with a chunk includes lower and

upper bounds of each attribute along with a (filename,

offset, size) triple that is required to retrieve it. The

chunks were declustered across the data nodes. Each

node maintains a local index of its chunks’ metadata.

The index takes a query as input and returns the list of

chunks whose bounds intersect with the range of the

query. The attributes that we will focus on are SOIL

(oil saturation), which has a uniform distribution in [0,

1], and the VX (oil velocity in x-dimension) attribute

which has a standard normal distribution. Queries are

sliding window queries,each of which is of the form

Q = [(lX, lY, lT, lSOIL, lVX):(hX, hY, hT, hSOIL, hVX)].

Figure 13 shows the time taken to execute the

queries. Performance of replication ratios 0.5 and 1.0

are shown in the above figures. The replicated data is

partitioned along SOIL and VX dimensions using both

uniform and recursive partitioning techniques. This

Fig. 11 Uncertainty analysis leads to a three level of parallelism Fig. 12 Querying seismic data using STORM

366 Engineering with Computers (2006) 22:349–370

123

decreases spurious I/O and improves query perfor-

mance. We can see increased benefits for the sliding

window queries as the replication ratio is increased.

7 Conclusions

Grid computing enables the development of large oil

engineering applications to an unprecedented scale.

The philosophy of ‘‘on-demand’’ availability of com-

putational resources is a challenging topic of research

for dealing with the different processes and scales

governing the exploration and production phase of a

reservoir.

The present paper has offered a broad overview of

recent computational developments aiming at facili-

tating the incorporation of more complex processes,

data, interaction and understanding of the oil reservoir.

The advent of new sensor technology and computing

power has established new and shorter scientific con-

nections between different areas that have traditionally

coexisted in an isolated fashion in the industry, such as

reservoir simulation, geophysics, petrophysics and

geomechanics.

We have shown how grid middleware and data

management tools enable and support the computation

of different physics, scales, algorithms towards reduc-

ing uncertainty, increasing the reliability of production

decision-making and oil exploitation planing.

The present team believes that the development of

more flexible and efficient grid environments would

enable engineers and scientists to efficiently exploit

this technology and significantly increase the under-

standing and control the oil reservoir studies.

Acknowledgments The authors want to thank the National
Science Foundation (NSF) for its support under the ITR grant

EIA-0121523/ EIA-0120934, grants #ACI-9619020 (UC Sub-
contract #10152408), #EIA-0121177, #ACI-0203846, #ACI-
0130437, #ANI-0330612, #ACI-9982087, #CCF-0342615, #CNS-
0406386, #CNS-0426241, #ACI-9984357, #EIA –0103674, #ANI-
0335244, #CNS-0305495, #CNS-0426354 and #IIS-0430826,
Lawrence Livermore National Laboratory under Grant
#B517095 (UC Subcontract #10184497), and grants from Ohio
Board of Regents BRTTC #BRTT02-0003.

References

1. Foster I, Kesselman C (eds) (1999) Globus: a toolkit based grid
architecture. Morgan Kaufman, San Francisco, pp 259–278

2. Frey J, Tannenbaum T, Foster I, Livny M, Tuecke S (2001)
Condor-G: a computation management agent for multi-
institutional grids. In: Proceedings of the 10th IEEE sym-
posium on high performance distributed computing
(HPDC10). IEEE Press, New York

3. Rajasekar A, Wan M, Moore R (2002) MySRB &
SRB—components of a data grid. In: The 11th international
symposium on high performance distributed computing
(HPDC-11)

4. Wolski R, Spring N, Hayes J (1999) The Network Weather
Service: a distributed resource performance forecasting ser-
vice for metacomputing. J Future Gener Comput Syst 15(5–
6):757–768

5. Beynon MD, Kurc T, Catalyurek U, Chang C, Sussman A,
Saltz J (2001) Distributed processing of very large datasets
with DataCutter. Parallel Comput 27(11):1457–1478

6. Grimshaw AS, Wulf WA, the Legion Team (1997) The le-
gion vision of a worldwide virtual computer. Commun ACM
40(1):39–45

7. Allen G, Dramlitsch T, Foster I, Karonis N, Ripeanu M,
Seidel E, Toonen B (2001) Supporting efficient execution in
heterogeneous distributed computing environments with
Cactus and Globus. In: Proceedings of the ACM/IEEE
SC1001 conference. ACM Press, New York

8. Common Component Architecture Forum. http://www.cca-
forum.org

9. Allcock W, Chervenak A, Foster I, Kesselman C, Salisbury
C, Tuecke S (2001) The DataGrid: towards an architecture
for the distributed management and analysis of large scien-
tific datasets. J Netw Comput Appl 23:187–200

10. Casanova H, Dongarra J (1998) Applying Netsolve’s net-
work-enabled server. IEEE Comput Sci Eng 5(3):57–67

11. Czajkowski K, Fitzgerald S, Foster I, Kesselman C (2001)
Grid Information services for distributed resource sharing.
In: 10th IEEE symposium on high performance distributed
computing

12. Oldfield R, Kotz D (2001) Armada: a parallel file system for
computational grids. In: Proceedings of CCGrid2001: IEEE
international symposium on cluster computing and the grid.
IEEE Computer Society Press, Brisbane, Australia

13. Sato M, Nakada H, Sekiguchi S, Matsuoka S, Nagashima U,
Takagi H (1997) Ninf: a network based Information Library
for a global world-wide computing infrastructure. In: Pro-
ceedings of HPCN’97 (LNCS-1225), pp 491–502

14. Thain D, Basney J, Son S, Livny M (2001) Kangaroo ap-
proach to data movement on the grid. In: Proceedings of the
10th IEEE symposium on high performance distributed
computing (HPDC10)

15. Thain D, Bent J, Arpaci-Dusseau A, Arpaci-Dusseau R,
Livny M (2001) Gathering at the well: creating communities
for grid I/O. In: Proceedings of supercomputing 2001. Den-
ver, CO, USA

0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

0 1 2 3 4 5 6 7 8 9 10

T
im

e
(s

ec
on

ds
)

Query Number

r-1.0
u-1.0

r-0.5
u-0.5

original

Fig. 13 Query execution time with different replicas

Engineering with Computers (2006) 22:349–370 367

123

16. Vazhkudai S, Tuecke S, Foster I (2001) Replica selection in
the Globus data grid. In: International workshop on data
models and databases on Clusters and the grid (DataGrid
2001). IEEE Computer Society Press, New York

17. Bevc D (2003) eBusiness and geophysics, vol 22. The
Leading Edge, Provo, pp 53–53

18. Bevc D, Popovici M (2003) Integrated Internet collabora-
tion, vol 22. The Leading Edge, Provo, pp 54–57

19. Fuller J, Fay J (2003) How the Internet is influencing today’s
E&P business, vol 22. The Leading Edge, Provo, pp 65–68

20. Hanley S (2003) The collaborative power of IT leads industry
transformation, vol 22. The Leading Edge, Provo, pp 62–64

21. Karbarz F (2003) Grid computing for seismic processing, vol
22. The Leading Edge, Provo, pp 58–60

22. Bangerth W, Matossian V, Parashar M, Klie H, Wheeler M
(2005) An autonomic reservoir framework for the stochastic
optimization of well placement. Cluster Comput J Netw
Softw Tools 8(4):255–269

23. Klie H, Bangerth W, Wheeler MF, Parashar M, Matossian V
(2004) Parallel well location optimization using stochastic
algorithms on the grid computational framework. In: 9th
European conference on the mathematics of oil recovery
(ECMOR). EAGE, August 30–September 2 2004

24. Matossian V, Bhat V, Parashar M, Peszynska M, Sen M,
Stoffa P, Wheeler MF (2005) Autonomic oil reservoir opti-
mization on the grid. Concur Comput Pract Exp 17(1):1–26

25. Parashar M, Klie H, Catalyurek U, Kurc T, Bangerth W,
Matossian V, Saltz J, Wheeler MF (2005) Application of
grid-enabled technologies for solving optimization problems
in data-driven reservoir studies. J Future Gener Comput Syst
Spec Issue Eng Auton Syst 21(1):19–26

26. Ingber L (1989) Very fast simulated reannealing. Math
Comput Model 12:967–993

27. Sen M, Stoffa P (1995) Global optimization methods in
geophysical inversion. Elsevier, Amsterdam

28. Spall JC (1992) Multivariate stochastic approximation using
a simultaneous perturbation gradient approximation. IEEE
Trans Autom Control 37:332–341

29. Spall JC (2003) Introduction to stochastic search and opti-
mization: Estimation, simulation and control. Wiley, New
Jersey

30. Gai X, Dean R, Wheeler MF, Liu R (2003) Coupled geo-
mechanical and reservoir modeling on parallel computers.
In: SPE 79700, proceedings of SPE reservoir symposium,
Houston, TX

31. Lu Q, Peszyńska M, Wheeler MF (2001) A parallel multi-
block black-oil model in multi-model Implementation. In:
2001 SPE reservoir simulation symposium, Houston, TX,
SPE 66359

32. Minkoff S, Stone CM, Arguello JG, Bryant S, Eaton J,
Peszynska M, Wheeler MF (1999) Staggered in time coupling
of reservoir flow simulation and geomechanical deformation:
Step 1—one-way coupling. In: 1999 SPE symposium on res-
ervoir simulation, Houston, TX, SPE 51920

33. Parashar M, Wheeler JA, Pope G, Wang K, Wang P (1997)
A new generation EOS compositional reservoir simulator.
Part II: framework and multiprocessing. In: 14th SPE sym-
posium on reservoir simulation, Dallas, TX, Society of
Petroleum Engineers, pp 31–38

34. Peszyńska M, Lu Q, Wheeler MF (2000) Multiphysics cou-
pling of codes. In: Bentley LR, Sykes JF, Brebbia CA, Gray
WG, Pinder GF (eds) Computational methods in water re-
sources. A. A. Balkema, Amsterdam, pp 175–182

35. Peszyńska M, Wheeler MF, Yotov I (2002) Mortar upscaling
for multiphase flow in porous media. Comput Geosci
6(1):73–100

36. Wang P, Yotov I, Wheeler MF, Arbogast T, Dawson CN,
Parashar M, Sepehrnoori K (1997) A new generation EOS
compositional reservoir simulator. Part I: formulation and
discretization. In: 14th SPE symposium on reservoir simu-
lation, Dallas, TX, Society of Petroleum Engineers, pp 55–
64

37. Wheeler MF (2002) Advanced techniques and algorithms for
reservoir simulation, II: the multiblock approach in the
integrated parallel accurate reservoir simulator (IPARS). In:
Chadam J, Cunningham A, Ewing RE, Ortoleva P, Wheeler
MF (eds) IMA volumes in mathematics and its applications,
vol 131. Resource recovery, confinement, and remediation of
environmental hazards. Springer, Berlin Heidelberg New
York

38. Wheeler MF, Peszynska M (2002) Computational engineer-
ing and science methodologies for modeling and simulation
of subsurface applications. Adv Water Resource 25(8):1147–
1173

39. Wheeler MF, Wheeler JA, Peszyńska M (2000) A distributed
computing portal for coupling multi-physics and multiple
domains in porous media. In: Bentley LR, Sykes JF, Brebbia
CA, Gray WG, Pinder GF (eds) Computational methods in
water resources. A. A. Balkema, Amsterdam, pp 167–174

40. Arbogast T, Cowsar LC, Wheeler MF, Yotov I (2000) Mixed
finite element methods on non-matching multiblock grids.
SIAM J Numer Anal 37:1295–1315

41. Lu Q (2000) A parallel multi-block/multi-physics approach
for multi-phase flow in porous media. PhD Thesis, University
of Texas at Austin

42. Narayanan S, Catalyurek U, Kurc T, Zhang X, Saltz J (2003)
Applying Database support for large scale data driven sci-
ence in distributed environments. In: Proceedings of the 4th
international workshop on grid computing (Grid 2003),
Phoenix, Arizona, pp 141–148

43. Saltz J et al (2003) Driving scientific applications by data in
distributed environments. In: Dynamic data driven applica-
tion systems workshop, held jointly with ICCS 2003, Mel-
bourne, Australia

44. Parashar M, Liu H, Li Z, Matossian V, Schmidt C, Zhang G,
Hariri S (2006) AutoMate: enabling autonomic grid appli-
cations. Cluster Comput J Netw Softw Tools Appl Spec Issue
Auton Comput 9(2):161–174

45. Lacroix S, Vassileski Y, Wheeler J, Wheeler M (2003) Itera-
tive solution methods for modeling multiphase flow in porous
media fully implicitly. SIAM J Sci Comput 25(3):905–926

46. Li J, Wheeler MF (2000) Uniform convergence and super-
convergence of mixed finite element methods on anisotrop-
ically refined grids. SIAM J Numer Anal 38(3):770–798

47. Peszyńska M, Lu Q, Wheeler MF (1999) Coupling different
numerical algorithms for two phase fluid flow. In: Whiteman
JR (ed) MAFELAP Proceedings of mathematics of finite
elements and applications. Brunel University, Uxbridge, UK,
pp 205–214

48. Wheeler MF, Yotov I (1998) Physical and computational
domain decompositions for modeling subsurface flows. In:
Mandel J et al (eds) 10th international conference on do-
main decomposition methods, contemporary mathematics,
vol 218. American Mathematical Society, pp 217–228

49. Wheeler MF, Arbogast T, Bryant S, Eaton J, Lu Q, Pes-
zyńska M, Yotov I (1999) A parallel multiblock/multidomain
approach to reservoir simulation. In: 15th SPE symposium
on reservoir simulation, Houston, TX. Society of Petroleum
Engineers. SPE 51884, pp 51–62

50. Wohlmuth BI (2000) A mortar finite element method using
dual spaces for the Lagrange multiplier. SIAM J Numer
Anal 38:989–1012

368 Engineering with Computers (2006) 22:349–370

123

51. Yotov I (1996) Mixed finite element methods for flow in
porous media. PhD Thesis, Rice University, Houston, TX.
TR96-09, Dept. Comp. Appl. Math., Rice University and
TICAM report 96-23, University of Texas at Austin

52. Wheeler MF, Yotov I (2005) A posteriori error estimates for
the mortar mixed finite element method. SIAM J Numer
Anal 43(3):1021–1042

53. Peszynska M, Sun S (2002) Reactive transport model cou-
pled to multiphase flow models. In: Hassanizadeh SM,
Schotting RJ, Gray WG, Pinder GF (eds) Computational
methods in water resources. Elsevier, Amsterdam, pp 923–
930

54. Snir M, Otto S, Huss-Lederman S, Walker D, Dongarra J
(1996) MPI: the complete reference. MIT Press, New York

55. Carriero N, Gelernter D (1989) Linda in context. Commun
ACM 32(0001–0782):444–458

56. Sterck H, Markel R, Pohl T, Rude U (2003) A lightweight
Java taskspaces framework for scientific computing on
compuatational grids. In: Proceedings of the 18th annual
ACM symposium on applied computing, 1-58113-624-2,
Melbourne, FL, USA, pp 1024–1030

57. Zhang L, Parashar M (2004) A dynamic geometry-based
shared space interaction framework for parallel scientific
applications. In: Proceedings of the 11th annual international
conference on high performance computing (HiPC 2004), vol
3296. LNCS, Springer, Bangalore, pp 189–199

58. Bourbie T, O OC, Zinsner B (1987) Acoustics of porous
media. IFP Publications, Paris

59. Dean R, Gai X, Stone C, Minkoff S (2003) A comparison of
techniques for coupling porous flow and geomechanics. In:
Tthe SPE reservoir simulation symposium. Houston, TX,
SPE 79709

60. Gai X (2004) A coupled geomechanics and reservoir flow
model on parallel computers. PhD Thesis, The University of
Texas at Austin

61. Kenter C, van den Beukel A, Hatchell P, Maron K, Mole-
naar M (2004) Geomechanics and 4D: evaluation of reser-
voir characteristics from time-shifts in the overburden. In:
Presented at Gulf Rocks 2004, Houston, TX, June 5–9.
ARMA/NARMS 04-627

62. Minkoff S, Stone C, Arguello J, Bryant S, Eaton J, Peszyńska
M, Wheeler M (1999) Coupled geomechanics and flow sim-
ulation for time-lapse seismic modeling. In: Expanded Ab-
stracts, 1667–1670. Soc Expl Geophys

63. Molenaar M, Hatchell P, van den Beukel A (2004) 4D in-situ
stress as a complementary tool for optimizing field man-
agement. In: Presented at Gulf Rocks 2004, Houston, TX,
June 5–9. ARMA/NARMS 04-639

64. Bangerth W, Klie H, Wheeler M, Stoffa P, Sen M (2006) On
optimization algorithms for the reservoir oil well placement
problem. Comput Geosci (in press)

65. Ji XD, Familoni BD (1999) A diagonal recurrent neural
network-based hybrid direct adaptive SPSA control system.
IEEE Trans Autom Control 44:1469–1473

66. Maeda Y, Toshiki T (2003) FPGA implementation of a pulse
density neural network with learning ability using simulta-
neous perturbation. IEEE Trans Neural Netw 14:688–695

67. Chunduru RK, Sen MK, Stoffa PL (1997) Hybrid optimi-
zation methods for geophysical inversion. Geophysics
62:1196–1207

68. Parashar M, Browne J (2005) Conceptual and implementa-
tion models for the grid. Proc IEEE Spec Issue Grid Comput
93(3):653–668

69. Liu H, Parashar M (2006) Accord: a programming frame-
work for autonomic applications. IEEE Trans Syst Man
Cybern Spec Issue Eng Auton Syst 36(3):341–352

70. Liu H, Parashar M, Hariri S (2004) A component-based
programming framework for autonomic applications. In: the
1st IEEE international conference on autonomic computing
(ICAC-04), New York, pp 10–17

71. Liu H, Parashar M (2005) A framework for rule-based
autonomic management of parallel scientific applications. In:
The 2nd IEEE international conference on autonomic
computing (ICAC-05), Seattle, WA, USA

72. Liu H, Parashar M (2005) Rule-based monitoring and
steering of distributed scientific applications. Int J High
Perform Comput Netw 3(4):272–282

73. Liu H, Parashar M (2005) Enabling self-management of
component-based high-performance scientific applications.
In: The 14th IEEE international symposium on high per-
formance distributed computing (HPDC-14). Research Tri-
angle Park, NC, pp 59–68

74. Liu H, Bhat V, Parashar M, Klasky S (2005) An autonomic
service architecture for self-managing grid applications. In:
Proceedings of the 6th IEEE/ACM international workshop
on grid computing (Grid 2005). Seattle, WA, USA

75. Chen J, Silver D, Parashar M (2003) Real time feature
extraction and tracking in a computational steering envi-
ronment. In: Proceedings of the 11th high performance
computing symposium (HPC 2003), Orlando, FL

76. Liu H, Jiang L, Parashar M, Silver D (2005) Rule-based
visualization in the discover computational steering collab-
oratory. J Future Gener Comput Syst Spec Issue Eng Auton
Syst 21(1):53–59

77. Chandra S, Parashar M, Yang J, Zhang Y, Hariri S (2005)
Investigating autonomic runtime management strategies for
SAMR applications. Int J Parallel Programm 33(2-3):247–259

78. Jiang N, Parashar M (2004) Enabling applications in sensor-
based pervasive environments. In: Proceedings of
BROADNETS 2004: workshop on broadband advanced
sensor networks (BaseNets 2004), San Jose, CA, USA

79. Schmidt C, Parashar M (2004) Enabling flexible queries with
guarantees in P2P systems. IEEE Netw Comput Spec Issue
Inform Dissem Web 8(3):19–26

80. Mann V, Parashar M (2003) DISCOVER: a computational
collaboratory for interactive grid applications. In: Berman F,
Fox G, Hey T (eds) Grid computing: making the global
infrastructure a reality. Wiley, New York, pp 727–744

81. Parashar M, Muralidhar R, Lee W, Wheeler M, Arnold D,
Dongarra J (2005) Enabling interactive oil reservoir simula-
tions on the grid. Concur Comput Pract Exp 17(11):1387–1414

82. Foster I, Kesselman C, Nick J, Tuecke S (2002) Grid services
for distributed system integration. IEEE Comput 36(6):37–46

83. Foster I, Kesselman C, Nick JM, Tuecke S (2002) The
physiology of the grid: an open grid services architecture for
distributed systems integration. http://www.globus.org/re-
search/papers/ogsa.pdf

84. Graham S, Simeonov S, Boubez T, Davis D, Daniels G,
Nakamura Y, Neyama R (2002) Building Web services with
Java: making sense of XML, SOAP, WSDL, and UDDI.
SAMS Publishing, USA

85. Data Access and Integration Services. //http://www.cs.ma-
n.ac.uk/grid-db/documents.html

86. Raman V, Narang I, Crone C, Haas L, Malaika S, Mukai T,
Wolfson D, Baru C. Data access and management services
on grid. http://www.cs.man.ac.uk/grid-db/documents.html

87. Bell WH, Bosio D, Hoschek W, Kunszt P, McCance G, Si-
lander M. Project Spitfite—towards grid web service data-
bases. http://www.cs.man.ac.uk/grid-db/documents.html

88. Smith J, Gounaris A, Watson P, Paton NW, Fernandes A,
Sakellariou R. Distributed query processing on the grid.
http://www.cs.man.ac.uk/grid-db/documents.html

Engineering with Computers (2006) 22:349–370 369

123

89. Narayanan S, Kurc T, Catalyurek U, Saltz J (2003) Database
support for data-driven scientific applications in the grid.
Parallel Process Lett 13(2):245–271

90. Weng L, Agrawal G, Catalyurek U, Kurc T, Narayanan S,
Saltz J (2004) An approach for automatic data virtualization.
In: The 13th IEEE international symposium on high-per-
formance distributed computing (HPDC-13)

91. Parashar M, Matossian V, Bangerth W, Klie H, Rutt B, Kurc
T, Catalyurek U, Saltz J, Wheeler M (2005) Towards dynamic
data-driven optimization of oil well placement. In: Sunderam
V et al (eds) Proceedings of the workshop on distributed data
driven applications and systems. International conference on
computational science 2005 (ICCS 2005), vol 3514–3516,
Springer, Berlin Heidelberg New York, pp 656–663

370 Engineering with Computers (2006) 22:349–370

123

	Models, methods and middleware for grid-enabled multiphysics oil reservoir management
	Abstract
	Introduction
	Multiphysics oil reservoir management framework
	Fig1
	Description of the multiphysics components �and optimization
	Reservoir simulation: flow model
	Fig2
	Fig3
	Multiblock and Seine/MACE
	Fig4
	Fig5
	Coupling flow, geomechanics and seismics
	Tab1
	Optimization algorithms
	Fig6
	Fig7
	Autonomic computational engine and grid middleware substrate
	Autonomic computational engine
	Autonomic grid middleware
	The discover collaboratory
	Data management and data processing support
	STORM and DataCutter
	Data virtualization and data subsetting
	Support for management and processing of very large (100 TB scale) datasets at data centers
	Distributed storage and processing of data �on storage islands
	Results
	Evaluations Seine/MACE interaction framework
	Autonomic optimal production
	Uncertainty management
	Fig8
	Fig9
	Fig10
	Flow/Seismic data management
	Fig11
	Fig12
	Conclusions
	Acknowledgments
	References
	Fig13

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

