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SUMMARY

The purpose of this work is to analyse the parameter sensitivity problem for a class of nonlinear elliptic
partial di�erential equations, and to show how numerical simulations can help to optimize experiments
for the estimation of parameters in such equations. As a representative example we consider the Laplace–
Young problem describing the free surface between two �uids in contact with the walls of a bounded
domain, with the parameters being those associated with surface tension and contact. We investigate the
sensitivity of the solution and associated functionals to the parameters, examining in particular under
what conditions the solution is sensitive to parameter choice. From this, the important practical question
of how to optimally design experiments is discussed; i.e. how to choose the shape of the domain and
the type of measurements to be performed, such that a subsequent inversion of the measured data for
the model parameters yields maximal accuracy in the parameters. We investigate this through numerical
studies of the behaviour of the eigenvalues of the sensitivity matrix and their relation to experimental
design. These studies show that the accuracy with which parameters can be identi�ed from given
measurements can be improved signi�cantly by numerical experiments. Copyright ? 2005 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Even if a system is qualitatively well understood, one usually needs to identify essential
parameters before its behaviour can be predicted quantitatively in an accurate way. These
parameters may be coe�cients in a constitutive relation (for example heat conductivity),
material parameters (such as density), or boundary coe�cients (e.g. the wetting energy for
a �uid in contact with a wall). When such properties cannot be measured directly, one can
instead measure the response of the system to a known input and identify the parameters by
using the theory of inverse problems, e�ectively tuning the parameters until the model predicts
the measurements correctly. This is a computationally expensive task, but it is theoretically
well understood (see, e.g. References [1, 2]).
However, the question of how to perform measurements so that parameters can be iden-

ti�ed most accurately is not as well understood for models described by partial di�erential
equations [3–5]. In essence, we want to set up experiments so that the subsequent inversion
of the data for the values of parameters such as the material properties yields maximum accu-
racy; i.e. we want to maximize the sensitivity of measurements to the actual values of model
or system parameters. Note that this contrasts with the usual desire to have models be rather
insensitive to parameter changes when solving the forward problem, since then the results of
computations do not change too much if the values of parameters are not exactly known.
In the present study we consider the questions of parameter sensitivity and optimal experi-

mental designs. Of particular interest are models that are described by nonlinear elliptic partial
equations, and, as a representative example, we take the Laplace–Young problem describing
free surface behaviour of a �uid in contact with walls. First, this problem is representative
of a class of elliptic boundary value problems of general interest that includes, for example,
the minimal surface problem for soap �lms [6–8], certain subsonic potential �ow approxima-
tions [9–14], and certain other problems arising in deformation of membranes, �ow through
porous media, eddy current electromagnetics, and elsewhere. Moreover, the Laplace–Young
problem is su�ciently nonlinear to be interesting and non-trivial. For example in certain cases
the solution can be singular near corners [15]. This equation also displays some of the ways
that parameters typically enter equations. Consequently, the parameter optimization, sensitivity
analysis and experimental design problem are interesting but remain of modest complexity.
Moreover, the problem is easy to interpret and also amenable to simulation as well as practical
laboratory experiment.
For the Laplace–Young equation, the two parameters of interest are a �uid property related

to the surface tension, and the contact angle between �uid and wall. While there are several
well established techniques to measure these parameters [16, 17], they typically work in a
di�erent manner to the inverse problem technique examined here, and do not seem to have
been the subject of optimal experimental design. In the context of this equation, knowledge
of the two parameters is of signi�cant practical interest mainly in handling molten materials,
such as in crystal growth or soldering applications. Also, the wetting behaviour of �uids
is important in micro�uidics, cleaning of surfaces for microelectronics applications, and for
lubrication. An application for a related equation is the measurement of gas parameters in
potential �ow.
Optimal experimental design is of great practical interest, since it guides the design of

experiments so that we measure the responses of the system in a con�guration that allows
us to identify the system parameters with the greatest possible accuracy [3, 4]. The results
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of optimal experimental design can also help to avoid experiments that would yield data
that is insensitive to one or more parameters, or insensitive to certain combinations of these
parameters, as shown later. In practice, experimental design involves the following:

1. Initial design: given physical intuition and experience, design an initial experimental
setup.

2. Measurements: perform the experiment and measure output variables.
3. Inverse problem: use all previously made measurements to determine most likely values
of system parameters and their uncertainties.

4. Experimental design: assuming that the identi�ed parameters are correct, determine a
modi�ed experimental design that would minimize the uncertainty in the parameters.

5. Implementation: implement this modi�ed experiment and go back to the measurement
phase in step 2.

In this paper, we will be mostly concerned with step 4, although we discuss step 3 in Section 4
as well, since it provides the basis for experimental design. It is worth noting that both steps
3 and 4 in general depend nonlinearly on the output of the previous step. Thus, the optimal
experiment determined in step 4 is based on the assumption that the parameters identi�ed in
step 3 are already correct and that we only want to minimize their uncertainty. In most cases,
this assumption will not hold, and the next round of measurements and solving the inverse
problem will yield improved parameters which in turn will again yield a di�erent optimal
design. For the purpose of considering only one iteration of optimal experimental design, we
can, however, assume the values of the parameters in the model as known and �xed. We will
then use the numerical experiments discussed in this paper to calculate the sensitivity of the
inverse problem to various experimental design factors, and to determine optimal values for
these factors.
An outline of the paper is as follows: in the following two sections we �rst describe the

Laplace–Young model equation and the role of the parameters, and then brie�y discuss the
behaviour of solutions for domains of di�erent shapes. In Section 4, we introduce the idea
of measurement operators and mis�t functionals used in the inverse problem to identify the
parameters in the model. The sensitivity matrix associated with the inverse problem is derived
in Section 5, and the role of its eigenvalues is discussed. Following this, we present results
for the eigenvalues of the sensitivity matrix as a function of the geometry of the domain
in which measurements are performed, and discuss the implications on experimental design.
The implications of our analysis and computations are summarized in the Conclusions. An
appendix shows how we computed sensitivity matrices numerically, using adaptively re�ned
meshes on a domain with a corner.

2. PROBLEM STATEMENT

To introduce the main concepts, let us consider models that can be described as minimizing a
convex energy functional E(u;∇u), where E also depends on certain parameters. The mini-
mization over all admissible functions naturally leads to a (possibly nonlinear) elliptic partial
di�erential equation. As stated in the introduction, we consider this class of equations due
to its wide applicability in modelling, as well as the fact that such problems are generally
well-understood from a theoretical viewpoint [18].
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While this equation class covers a number of broader applications, we choose as a speci�c
case study the Laplace–Young problem describing the height u of a �uid in a bounded domain
� with vertical walls. For this system, surface tension, gravity, and wall contact determine the
shape of the free �uid surface. These factors can be described by two relevant parameters, �
and �. Here, �=�=g� is the ratio of surface energy and gravitational energy, where � is the
energy per unit surface of the �uid interface (between the lower �uid and some upper �uid,
typically air), g the gravitational acceleration, and � the density di�erence between the two
�uids. Thus, � may be considered a property of the �uid. On the other hand, for an interface
with wall contact angle �, ��=� cos � is the energy per unit length of the �uid–boundary
contact and is therefore a model parameter rather than a material property. Note that while
there are often small variations in � along the boundary due to di�ering roughness or surface
coatings of the container, we will consider it as constant for simplicity. In addition, the range
of possible values of �= cos � is [−1; 1], where we have introduced � in favor of � to make
the equations linear in the parameters.
Accumulating respective contributions due to surface tension, gravity, and contact, the

energy functional corresponding to the Laplace–Young problem is

E(u;∇u)=
∫
�

√
1 + |∇u|2 d� +

∫
�

1
2
�u2 d�−

∫
@�

�u ds

and the stationarity condition is given by the following variational statement in terms of a
semilinear form a(�; �; u; ’)=E′(u;∇u)(’;∇’): �nd u∈V such that

a(�; �; u; ’)=

(
∇u√

1 + |∇u|2 ;∇’

)
�

+ �(u; ’)� =�(1; ’)@� ∀’∈V (1)

where (�;  )� =
∫
� � d�, for a space V of appropriate test functions. The choice of this

space depends on the geometry of the domain, as discussed in the next section. The Euler–
Lagrange equation arising from the weak variational statement (1) is the quasi-linear elliptic
Laplace–Young equation,

−∇ · ∇u√
1 + |∇u|2 + �u=0 in � (2)

with natural boundary condition

n · ∇u√
1 + |∇u|2 =� on @� (3)

This problem exhibits a number of interesting features that are often associated with
nonlinear equations. In particular, it has unbounded behavior at corners with small angles,
corresponding to �uids climbing (for wetting �uids) or depressing (for non-wetting �uids)
near the contact boundaries of the enclosing container, as well as nonlinear dependence of
the solution to changes in the parameters. As we will see, this implies a varying sensitivity
to parameters.
To be speci�c, we consider solving the Laplace–Young equation in a pie-shaped domain

of radius R and with corner angle � (Figure 1). This domain geometry may be considered as
the shape of a container in which measurements on the �uid are performed. The �gure also
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θ
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Figure 1. Top: the pie-shaped domains used for the calculations. Bottom: typical solutions computed on
very �ne grids showing the corner and boundary behaviour. The two plots are not at the same vertical

scale, the left one growing to a much larger height.

shows surface plots of typical solutions, demonstrating the behaviour of a wetting �uid close
to walls and corners of both oblique and obtuse angles.
We consider this setting to explore various ideas concerning the best choice of the quantities

to be measured and the associated parameter sensitivity issues. Note, that similar equations
describe di�erent physical applications and many of the ideas to be presented below can be
transferred to these settings. While di�erent types of measurements would be chosen in those
situations, the general concepts and techniques remain the same.
For predictive computations, one needs to know the exact values of the parameters �

and � of the �uid–wall system. They can be inferred using inverse-problem methods (see,
for example, References [1, 2]). In this approach, one probes various properties of the �uid
surface, such as the mean elevation, the �uid height along the wedge boundary, etc., to
determine these parameter values. Two relevant questions then are: (i) which shape of the
domain is best suited for this parameter identi�cation, and (ii) which measurements should
be performed. Accordingly, we �rst examine the e�ect of geometry on the sensitivity of
measurements, as well as the sensitivities that di�erent types of measurements provide. In
particular, we look for an optimal geometry and optimal measurements among some
given set.

3. SOLUTION BEHAVIOUR

The behaviour of solutions to the Laplace–Young equation in a corner is known to depend
strongly on the opening angle of the corner, �, and the contact angle, �, with a long experi-
mental history of exploring this relationship [19–21] (for recent experiments, see, for example,
Reference [22]). Furthermore, it has been shown that there is a critical angle, �c =�−2�, such
that for �¡�c the solution in the corner has a singularity, and is locally planar otherwise.
For example, the bottom left part of Figure 1 shows the solution for a domain with an angle
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�=24◦ that is very close to the critical angle �c =� − 2 arccos 0:2 ≈ 23:07◦ of this �uid; the
strong rise in the �uid surface as the corner is approached radially is clearly visible although
it is bounded for the present case since �¿�c. Experimental results for similar cases but for a
di�erent �uid are, for example, shown in the images of Tim Coburn reproduced in Reference
[23, Figure 5.6, p. 119].
To be more speci�c, the asymptotic behaviour of the solution near a corner is given as

follows:

1. For angles �¡�c the height at the corner is unbounded, having a 1=r type singularity
[8, 15, 24].

2. For �c¡�¡� the solution is locally planar and bounded [25].
3. For re-entrant corners with �¡�¡2� − �c the problem can admit locally planar solu-
tions [26]. Korevaar [27] has constructed examples where the solution does not extend
continuously to the vertex.

4. For re-entrant corners with 2� − �c¡�¡2� there are no locally planar solutions.

For more detailed studies of the behaviour, see in particular Reference [26]. We expect that
these qualitative changes in the solution also a�ect the sensitivity with respect to model
parameters. This issue is examined below.

4. THE INVERSE PROBLEM

In the inverse problem, one tries to use measurements of the �uid height u(x) to infer the
(previously unknown) values of the system parameters � and �. To this end, let us de�ne by
Mi the operator that extracts the ith measurement from the �uid height u. For simplicity we
only consider linear operators Mi. For example, M1 with

M1u=
∫
�
u(x) d� (4)

is the operator associated with measuring the volume of �uid under the surface (or the mean
elevation, up to a constant), and M2 with

M2u= u|� (5)

is the operator associated with measuring the �uid height along a contour such as a speci�ed
part � of the boundary @�. Of course, in practice this might be a collection of point measure-
ments along �. As these examples show, the range space of these measurement operators can
be scalars or functions; i.e. more generally Mi are operators mapping u into another normed
space. For later reference, let us also de�ne the following two additional local measurement
operators M3; M4 by

M3u=
∫
�
h(x) u(x) d�; M4u=

∫
�
h(x)∇u(x) d� (6)

where h(x) is a weight function localized around the corner of the domain, which we have
positioned at the origin for simplicity. It satis�es h(x)=0 for ‖x‖¿r̃ and h(x)= r̃−2 for
‖x‖6 r̃, with some small r̃ chosen to be less than the capillary length scale. Here, M3

and M4 are related to the height and the gradient near the corner of the wedge.
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Note that while we consider the measurement operators M1; : : : ; M4 to be typical, they are
actually close to what is being measured in practice by commercial devices to determine
the surface tension of �uids; for example, the �uid volume measurement (4) is essentially,
up to a constant, the force measured by both the Du Nouy ring and the Wilhelmy plate
methods [16, 17]. However, as we will see below, a chosen measurement may, by itself, not
be adequate to determine both parameters.
Let us denote by zi; i=1; : : : ; 4; the values we would measure for the respective measure-

ments listed above. For measurement operators M1, M3, and M4 these are single values, while
for M2 the measurements are all the values of the solution on �.
Now consider that instead of the physical system, we have a model with parameters that

are yet to be determined. Let us assume that with each set of �xed values for the parameters,
a solution u(�; �) is associated. The inverse problem then involves �nding those values �; �
for which the predicted �uid height u(�; �) has measurements Miu(�; �) that match the actual
measured values zi the best, i.e. for which the mis�t, Miu(�; �)−zi, is smallest in some sense.
If we elect to match all measurements collectively, this involves minimizing the composite
mis�t function

	(�; �)=
∑
i

i	i(�; �); 	i(�; �)=

1
2
‖Miu(�; �)− zi‖2 (7)

where 
i are weights scaling the individual mis�ts, 	i, relative to each other. For simplicity,
we have here taken the standard L2-norm minimization of the mis�t, although more general
functions are possible.
In the general case, 	(�; �) is a nonlinear function of its parameters, and minimizing it

involves nonlinear optimization techniques. In addition, though not in the present case, 	(�; �)
may have more than just one minimum and �nding the global one requires judicious choice
of a starting value or global optimization techniques.
In this study, we do not use actual measurements zi, but rather generate them numerically;

i.e. we choose a ‘target’ set of parameters �∗; �∗ which describes the �uid we would like to
investigate, and accordingly set our synthetic measurements zi=Miũ (�∗; �∗), where ũ (�∗; �∗)
is an accurate numerical solution to the unknown exact solution u (�∗; �∗) of the Laplace–
Young equation. Of course, in this ‘manufactured’ case, we know where the minimum of 	
lies and that at the minimum 	(�∗; �∗)=0 holds. However, we do not make use of this
knowledge other than to generate our ‘measurements’ and evaluate results.
In order to illustrate the concepts and di�culties of minimizing the mis�t 	(�; �),

Figure 2 shows the values of 	i; i=1; : : : ; 4 as a function of the parameters �; �. This data is
generated by repeatedly computing the Galerkin �nite element approximation to the Laplace–
Young problem for a wide range of parameters, and evaluating the mis�ts of these predictions
against the precomputed synthetic measurements. As can be seen, these functions are strongly
nonlinear, and the minimum in each case lies inside a long narrow valley, complicating the
minimization task. (Some of our computed datapoints in Figure 2 are very small or zero,
as explained above. Given the logarithmic scale of the �gures, they cannot be plotted and
are thus omitted, leaving the surface plots ragged close to the troughs. This is an artifact of
the �nite resolution of our sampling mesh, while the surfaces 	i(�; �) are actually smooth
functions, a fact that is re�ected by the smooth contours also shown.)
In fact, for the �rst function measuring the volume of the �uid, it is easy to show that the

minimum of 	1 is attained along an entire line rather than at a single point: using the state
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Misfit surface for measurement along wedge boundary
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Misfit surface for measurement of fluid height at tip
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Misfit surface for measurement of gradient at tip
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Figure 2. Surface and contour values of the mis�t functions 	i(�; �); i=1; : : : ; 4 for a domain with
R=4; �=120◦ and for synthetic measurements zi generated with �∗=1; �∗=0:65.

equation (2) and boundary condition (3), the volume under the �uid surface is given by

M1u(�; �) =
∫
�
u(�; �)=

1
�

∫
�

∇ · ∇u(�; �)√
1 + |∇u(�; �)|2

=
1
�

∫
@�
n · ∇u(�; �)√

1 + |∇u(�; �)|2 =
�
�

|@�|

Thus, all combinations of parameters with �xed ratio �=� will yield a �uid surface with the
same volume underneath. This is easily seen from the straight isolines in the left top part of
the �gure.
From this property, it is obvious that the single, scalar measurement of the volume is not

su�cient to determine optimal values for both system parameters. This de�ciency can be
overcome, however, by adding other types of measurements that are sensitive to changes of
parameters along the insensitive line of the �rst function in parameter space. Although not
completely visible due to the �nite resolution of the mesh we computed our results on, the
second part of Figure 2 shows how a set of measurements along the wedge boundary generates
a unique minimum of the corresponding function, in contrast to all other measurements that do
not have an isolated minimum. In general, taking together as many measurements as possible
allows for better determination of the minimum of the combined mis�t surface. Ideally, one
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would like to have measurements for which the troughs in the mis�t surfaces are non-aligned,
rather than being almost parallel as in the �gure above, since in that case the sum of the
functions has a more clearly marked minimum. In this respect, the fourth measurement (of the
gradient at the tip of the domain) would be a good complement to the �rst three, a fact that
would not be as obvious without computations such as the one shown.

5. SENSITIVITY

In this section, we focus on parameter sensitivity issues and how the design of the experi-
ment (in which we generate our measurements) in�uences them. To introduce the concept of
sensitivity, let us denote by �̂; �̂ the values for which the mis�t function 	(�; �) attains its
minimum. (If the measurements are generated synthetically, then of course �̂=�∗; �̂=�∗.) As
mentioned in the introduction, we can take the values of the parameters as known when we
compute sensitivities as they have already been identi�ed when solving the inverse problem.
Let us assume that the Mi are di�erentiable operators, and that the solution u(�; �) of

the state equation depends smoothly on the values of the parameters. Note that the latter
assumption is violated for parameter values for which the corner angles of the domain are
close to the critical angle �c; it will, however, hold for all other parameter values and we
will only consider angles away from the critical angle in the examples below. Under these
assumptions, we can expand the mis�t function in a Taylor series around its minimum as

	(�̂+ ��; �̂+ ��)=	(�̂; �̂) +
1
2

(
��

��

)T
S

(
��

��

)
+ higher order terms (8)

where S=
∑

i 
iSi is the symmetric, positive de�nite sensitivity matrix composed of the
partial sensitivity matrices

Si=
(
Mi

@u(�̂; �̂)
@{�; �} ; Mi

@u(�̂; �̂)
@{�; �}

)
(9)

There is no linear term since we are expanding around a minimum. As is usual in the treatment
of small-residual inverse problems (see, e.g. References [2, 4]), we have omitted second order
contributions to the matrices Si. Note that this omission can also be interpreted as linearizing
the forward model and forming the sensitivity matrices from this linearized model. An outline
of the algorithm to compute Si numerically is given in the appendix.
The importance of the sensitivity matrix lies in the following ideas: In general, no measure-

ment is without noise. Let us assume, we have noise �i in the measurement zi. The minimum
of the mis�t function with noise will then be of the order 	(�̂; �̂)+ ” with ”=

∑
i (
i=2)‖”i‖2.

This shift in 	 gives rise to perturbations ��; �� such that, to second order in the Taylor
expansion, we have

1
2

(
��

��

)T
S

(
��

��

)
6 ” (10)

For a given amount ” of random noise, the estimated parameter values may be anywhere
within the region described by this relation. This is illustrated in Figure 3. The left and
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Figure 3. Left: contours of the combined mis�t function 	(�; �). Middle: contours of
its second order Taylor expansion. Right: area enclosed by (10) for a given level of

measurement error ” as well as the half axes of this ellipsoid.

middle parts of the �gure show contours of the original mis�t function 	(�; �) as well as
the second order Taylor expansion, respectively. The right part shows the region enclosed by
solutions of (10) for a given level of measurement error ”. The half axes of this ellipsoid
are given by

√
2”=i, where i are the eigenvalues of the matrix S. Note that if the matrix

is singular, one of its eigenvalues is zero and the ellipsoid degenerates to an in�nite strip in
�–� space. This is, for example, the case for the surfaces shown in the top left, bottom left,
and bottom right part of Figure 2.
Thus, the size of the elements and eigenvalues of S determines the impact of small noise ”

on the uncertainty ��; �� with which we can determine the minimum �̂; �̂: for larger eigenval-
ues of S, the ellipsoid in �–� space shown in Figure 3 is smaller, and thus a given amount
of noise will have less in�uence on the reconstructed parameters than if the eigenvalues of
S are small. The eigenvalues of S are therefore also called sensitivity values.
Obviously, large eigenvalues of S are desirable. While the goal of more accurate exper-

iments is to reduce the noise level ”, the optimal experimental design techniques discussed
in this paper try to design experiments for which the eigenvalues of S are larger. Both ap-
proaches reduce the size of the uncertainty ellipsoid in �–� space, but by complementary
means.
The matrix S and its eigenvalues can be given a di�erent, statistical interpretation (see,

e.g. References [2, 28]): One can assign each point (�; �) in parameter space a probability
density

�(�; �)=C−1 exp[−	(�; �)]

that these are the correct parameters. Here, C=
∫ ∫

exp[−	(�; �)] d� d� is a constant used to
normalize the probability �. Obviously, the minima of 	 are the places to which we assign the
highest probability. The function �, in a sense, is a more complete description of the solution
of the inverse problem than the minimum �̂; �̂ of 	 alone.
The probability density � can be approximated locally by a Gaussian. An elementary cal-

culation shows that this approximation is given by

�(�̂+ ��; �̂+ ��)= �(�̂; �̂) exp

⎡
⎣−1
2

(
��

��

)T
S

(
��

��

)⎤
⎦+ higher order terms
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Obviously, that part of the domain in which the probability density is more than a certain
fraction of its maximum value is again given by the solutions of inequality (10) and its half
widths are described by the eigenvalues of the sensitivity matrix S as shown above.

6. RESULTS

In this section, we investigate how the choice of domain and measurement operator a�ects
the sensitivity of the inverse problem. This is usually called experimental design. The goal
here is to �nd an experimental setup that maximizes our ability to identify the correct values
of the parameters. For example, as shown above, measuring the volume under the �uid is not
suited to identifying both parameters, and other measurements are necessary to complement
the identi�cation process. On the other hand, given the nonlinear dependence of the �uid
height in the corner on the angle of the pie-shaped domain, it may be that measuring with
a certain wedge angle yields results that are more sensitive than measuring in domains with
other values of the angle, and thus, for a given measurement error level, yields a higher
accuracy for reconstructed parameters.
For clarity of exposition, we keep the description in the context of the Laplace–Young

equation. However, it is important to emphasize that phenomena like degenerating identi�a-
bility of parameters for certain measurement operators, or sensitivities that depend on domain
geometries and experimental setups are not unique to this particular equation. Rather, these
topics are generic to all inverse problems, and the type of computational experiments shown
below are a useful tool in determining parameters optimally for all parameter identi�cation
problems.
As shown in the previous section, the accuracy with which parameters can be identi�ed is

closely tied to the size of the eigenvalues of the sensitivity matrix. Therefore, in this section
we �rst introduce a formal measure of the amount of accuracy a given experimental setup
will yield, and then proceed to show how it depends on experimental design parameters such
as the wedge angle and radius of the domain in which we measure, as well as the relative
factors with which we weigh di�erent experiments. The formal measure introduced before will
then allow us to rank di�erent experiments and determine which is better suited to identify
parameters with the highest accuracy.
The results shown in this section were obtained by repeatedly applying the solution proce-

dure outlined in Appendix A to obtain the sensitivity matrix, on a sequence of meshes with
varying domain characteristics. All computations were performed with a program based on
the Open Source �nite element library deal.II [29, 30].

6.1. Eigenvalue dependence

Let us �rst consider how the two eigenvalues i;�i of the 2× 2 partial sensitivity matrices
Si depend on the shape of the domain in which experiments are performed. In particular,
we consider the e�ect of varying the wedge angle � of the pie-shaped domain in Figure 1.
As explained above, larger eigenvalues are more bene�cial to the identi�cation process, since
they lead to smaller uncertainties ��; ��.
Note, however, that the actual sizes of the eigenvalues are not comparable. This is due

to the fact that di�erent measurements come with di�erent physical units and need to be
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made dimensionless �rst. Secondly, the full sensitivity matrix S=
∑

i 
iSi will be a linear
combination of the partial matrices, weighted with the values 
i. Scaling arguments suggest
that these weights should be chosen so that the weighted noise levels 
i”i are approximately
of the same size. For convenience, let us assume that the noise level for each experiment
is a �xed fraction � of the measured value, i.e. ”i= �	i(zi)= �	i(Miu(�∗; �∗)); and that the
noise in the di�erent measurements is independent and uncorrelated. This corresponds to a
diagonal covariance matrix for the errors with diagonal entries ”i. Such a choice is also
clearly appropriate since we are free to explore speci�c sensitivity ‘patterns’ in our numerical
experiments. Then, the scaling


i=
1
N

1
	i(Miu(�∗; �∗))

(11)

satis�es the condition that all noise levels are equal (as would any other �xed multiple of
these values), where N is the number of measurements available. Here, we take the N =4
measurements de�ned in Section 4. With this particular scaling, we obtain ”=

∑
i 
i”i= �. In

our experiments we therefore also record the values of 	i(Miu(�∗; �∗)) and in the following
comparisons, we always consider the scaled partial sensitivity matrices 
iSi. The results of
using di�erent scaling weights 
i are given later.
Figure 4 then shows the dependence of the eigenvalues of the scaled matrices 
iSi associ-

ated with the operators Mi, on the wedge angle of the domain, for a �uid with �=1; �=0:65.
The dashed vertical line indicates the value of the critical angle �c = 81◦ for this set of pa-
rameters; the model is strictly valid only to the right of this line, and results to the left would
likely be meaningless due to unboundedness of the ‘real’ solution near the tip of the wedge.
We remind the reader that larger eigenvalues imply a smaller uncertainty ellipsoid. For the

�rst measurement (the mean elevation), the smaller eigenvalue is identically zero, a fact that
should not be surprising given that there are in�nitely many combinations of � and � that yield
the same �uid volume; a zero eigenvalue only indicates that the corresponding measurement
is not able to distinguish between any of the parameter values that lie in the direction of
the eigenvector associated with this eigenvalue, and the uncertainty ellipsoid degenerates to
an in�nite strip in this case. The same conclusion holds for measuring value and gradient at
the tip of the wedge, since both are scalar measurements that are not able to identify both
parameters at the same time. The symmetry of the domain implies that the gradient at the tip
of the domain has really only one degree of freedom.
The only measurement (of those considered here) that can identify both parameters at

the same time is the measurement along the wedge boundary. This is re�ected by the fact
that it has two associated non-zero eigenvalues. Note, however, that even though individual
measurements may separately imply a zero eigenvalue, taking di�erent measurements together
may yield a matrix which has two non-zero eigenvalues, in which case we can identify the
correct parameters. (The steps in the curve for the smaller eigenvalue are artifacts of our
numerical procedure, and are explained in the appendix; the correct curve would be smooth,
but within the same range of values.)
The dependence of the eigenvalues on the wedge angle is also of interest when we consider

the question of designing an experiment to best identify parameters. As can be seen, some of
the measurements become more sensitive to the parameters (i.e. their eigenvalues grow) as we
increase the wedge angle, while the last one, M4, becomes less sensitive. We will investigate
this in more detail in the next section.
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Figure 4. Dependence of the two eigenvalues i;�i of the scaled partial sensitivity
matrices 
iSi on the wedge angle � of the domain.

6.2. Measures of sensitivity

An important goal of studies like the present one is to determine the experimental setup that
minimizes uncertainty in the parameters; i.e. that maximizes sensitivities [3, 4]. To this end,
we need to consider the sensitivity matrix S as a function of experimental design variables,
such as the wedge angle of the domain, or the radius.
Unfortunately, there is no single answer to the task ‘Minimize uncertainty’ (or: ‘Maximize

sensitivity’), since we need to specify what we mean by ‘uncertainty’ when we are given a
sensitivity matrix. The problem is of course related to the fact that there is no natural ordering
on the set of symmetric positive de�nite matrices. Put di�erently: if, given a certain noise
level ”, the parameter estimates may lie anywhere in the region speci�ed by (10) and shown
in the right part of Figure 3, what aspect of this ellipsoid do we want to minimize in order
to reduce uncertainty?
One possible partial ordering is to consider the volume of the ellipsoid in �–� space

in which solutions may lie. Its volume is a multiple of the product of the semi-axes of
the ellipsoid, which in turn are multiples of the inverse square roots of the eigenvalues
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Figure 5. Measures of sensitivities computed from the sensitivity matrix when changing
the angle of the domain. Left: with relative scaling (11) of the individual measurements.

Right: with the sensitivity-optimizing scaling (12).

of S. In this case, minimizing the volume of the ellipsoid is equivalent to maximizing the
quantity

	1(S)=

(∏
j
j(S)

)1=2

where the eigenvalues j(S) are functions of the design variables (here the wedge angle �),
and so is then 	1(S).
Another possibility is to minimize the uncertainty in any of the eigenvector directions

spanning the ellipsoid. This is equivalent to maximizing the minimal eigenvalue of S,

	2(S)= min
j

j(S)

Maximality of either 	1 or 	2 is usually referred to as the D- and E-optimality criterion of
experimental design, see References [3–5, 31].
Depending on the circumstances, maximizing either 	1 or 	2 may be valid goals of ex-

perimental design optimization. Both quantities are plotted in the left panel of Figure 5. As
can be seen, the sensitivity increases in both measures as we increase the wedge angle. The
conclusion is that the best domain (choice of �) for the measurement is that with wedge
angle close to 360◦; i.e. a circular domain that excludes a slender radial sector of vanishing
small angle. If one were to do a measurement on such a domain, one would obtain an in-
crease in 	k of a factor of 3–4, and thus parameters with an uncertainty that is approximately
a factor of

√
3 to

√
4 smaller than if the domain had been chosen to have a wedge angle

around 80◦, in which measurements happen to yield the least accuracy. This is particularly
surprising, since at �rst glance one might think that, close to the critical angle, measurements
would be most sensitive due to the singular behaviour of the �uid height close to the tip of
the wedge.
The sensitivity can also be increased by varying the relative scaling 
i of the individ-

ual measurements. One could, for example, increase the relative weight of a very sensitive
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measurement with respect to the weight of an insensitive measurement. We do so by replacing
the weighting (11) by the following weighting:


i(�i)=
1
N

�i

	i(Miu(�∗; �∗))
(12)

with
∑

i �i=N; 06�i6N . Obviously, the original choice of weights is recovered with �i=1.
Note that this scaling leaves the total noise level invariant: ”=

∑
i 
i�	i(zi)= �1=N

∑
i �i= �.

We are then interested in computing the measures of sensitivity 	k(S); k=1; 2, of the dif-
ferently weighted sensitivity matrices S=

∑
i 
iSi, as a function of the new weights �i and

choosing that relative weighting �i that maximizes them:

	̂k = max
�
	k

(∑
i

i(�i)Si

)

We obviously have that 	̂k =	̂k(�) is at least as large as the original sensitivity measure 	k(�)
obtained with the scaling �i=1. Since we have only four variables �i and since their values
are con�ned to the interval [0; N ], we search for this optimum by direct, exhaustive search
over all grid points of the lattice with spacing N=100. For problems with more measurements,
it would be straightforward to solve for the best vector � using any standard optimization
algorithm.
The optimal sensitivity measures are shown in the right part of Figure 5. For �=360◦, the

optimal weights are �=(2; 0; 2; 0); i.e. the measurements along the boundary � and of the
gradient at the tip are not used at all. As is apparent from the graphics, the sensitivity can be
increased by another factor of 2 to 3 by selecting this better relative scaling. Such an increase
in 	k in turn corresponds to a reduction in uncertainty in each of the parameters by a factor
of

√
2 to

√
3; i.e. an improvement of more than 30%.

A deliberate choice of both the domain in which measurements are performed, as well as of
the relative weights attached to each of the measurements leads to a signi�cant increase in the
sensitivity of our experiment with respect to the parameters, and will therefore signi�cantly
decrease the uncertainty in their values.

6.3. Variation in the radius of the domain

Above, we have considered how varying the wedge angle and the relative weights of measure-
ments a�ect sensitivities. Let us now investigate the e�ects of variations in the radius of the
domain. Figures 6 and 7, respectively, show the dependence of the eigenvalues of the scaled
partial sensitivity matrices and the measures of sensitivity derived from them, as a function
of the domain radius for a pie-shaped domain with a �xed angle of 270◦. From Figure 7, it
is obvious that measurements at very small radii are not useful, since the smaller eigenvalue
goes to zero. This again somewhat contradicts the intuition that the solution should be more
sensitive to parameters if the boundary e�ects are more important due to the smallness of the
domain.
On the other hand, the results of Figure 7 also show that beyond R ≈ 5 one of the

eigenvalues of the composite sensitivity matrix does not increase any more, while the other
one does. This implies that the ellipsoid spanned by solutions of (10) contracts in one of its
principal directions but remains �xed in the other direction.
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Figure 6. Dependence of the two eigenvalues i;�i of the scaled partial sensitivity
matrices 
iSi on the radius R of the domain.
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6.4. Variations in the �uid parameters

As mentioned in the introduction, the improved design for an experiment obtained with the
techniques discussed in this paper depends on knowledge of the values of the parameters �; �.
We have assumed that we know (approximate values of) these parameters from solving the
inverse problem with previously available measurement data. However, sometimes a poorly
chosen experiment will leave us with bad estimates of parameter values. The result of experi-
mental design is then based on a wrong choice of linearization point. To see this, note that the
sensitivity matrix S depends on the parameters via Equation (9) (see also Equations (A4)
and (A6) in the appendix). In this section, we investigate what kind of design we would
get if we started from a signi�cantly di�erent initial guess. If the resulting optimal design is
basically independent of the linearization point, then chances are good that the next round
of measurements will result in a much better parameter estimate; if the optimal design is
signi�cantly di�erent, then no such guarantee can be given.
In order to investigate this issue, we undertook numerical experiments for di�erent �uid pa-

rameters. Computations for �=1:0; �=0:2 gave results very similar to those shown previously
for �=1:0; �=0:65 in Figures 4 and 5. However, results for �=0:2; �=0:2 are di�erent and
graphed in Figures 8 and 9. In particular, note that the dependence of the sensitivities on
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Figure 8. As in Figure 4 but for modi�ed values �=0:2; �=0:2 of the �uid para-
meters: dependence of the two eigenvalues i;�i of the scaled partial sensitivity

matrices 
iSi on the wedge angle � of the domain.
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Figure 9. As in Figure 5 but for modi�ed values �=0:2; �=0:2 of the �uid para-
meters: measures of sensitivities computed from the sensitivity matrix when changing
the angle of the domain. Left: with relative scaling (11) of the individual measure-

ments. Right: with the sensitivity-optimizing scaling (12).

the wedge angle is almost �at (see the left part of Figure 9), although the eigenvalues of the
sensitivity matrices do indeed change. It is also noteworthy that the sensitivities for this set
of parameters are signi�cantly larger than for the previous set. An accurate identi�cation of
parameter values would thus be much simpler here.
The right part of Figure 9 shows the optimal sensitivities after optimizing for the weight

factors �i in (12). Again, some improvements are possible by properly adjusting the weights.
In particular, the kink in the curves is due to the fact that for wedge angles less than 266◦,
the optimal weights are �=(2; 0; 0; 2), while for angles greater than 266◦ the optimal weights
are again �=(2; 0; 2; 0). In other words, for smaller angles one may measure �uid volume
and the gradient of the solution at the tip of the domain, while for angles larger than that the
measurement of the gradient at the tip should be replaced by the measurement of the height
there.
The general conclusion concerning which measurements are more or less sensitive, and for

which wedge angles measurements should be done, are unchanged for both �uids, however:
measuring at angles close to 360◦ yields the highest accuracy. Thus, even if we have only poor
a priori information about the range in which parameters may lie, computational experiments,
such as those carried out here, can determine a good experimental design for this particular
equation.

7. CONCLUSIONS

Parameters enter models in various ways, and knowing the exact values of these parameters
is often critical for quantitatively accurate predictions. In the context of models described by
partial di�erential equations, the process of parameter identi�cation is usually referred to as
the inverse problem. We have shown in this work how numerical simulations can help guide
the design of experiments in which we obtain the measurements used in the inverse problem.
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In particular, we consider a class of systems that are usually characterized mathematically
by nonlinear elliptic partial di�erential equations with system parameters. This problem class
includes the Laplace–Young equation describing the interface between two �uids bounded by
a container with vertical walls, which we take as a representative example for our numerical
studies. The Laplace–Young equation has two parameters which are related to the surface
tension and the wall contact angle, respectively.
In the context of inverse problems, the sensitivity of the solution or of quantities derived

from it, to changes in these parameters is of particular interest. We are thus led to a sensitivity
analysis, which is the main ingredient to evaluate experimental design issues used to optimize
experimental setups and the type of measurements to be performed so that parameters can
be identi�ed with best accuracy. In other words, we wish to select an experimental design
that minimizes uncertainty in the parameters. To meet this goal, we show that we need to
know the eigenvalues of the sensitivity matrix. We explore this idea for a test problem in a
wedge-shaped domain, and demonstrate, not surprisingly, that the two parameters occurring
in the Laplace–Young equation cannot be identi�ed uniquely when the measurement is the
volume of the �uid or any other scalar quantity alone. This non-uniqueness corresponds to
the presence of a zero eigenvalue of the partial sensitivity matrix. However, both parameters
are identi�able if several di�erent measurements are taken together.
In each case studied, we graph the dependence of the sensitivities as a function of the

design parameters describing the domain, i.e. the wedge angle and the radius. We also con-
sider the dependence on the relative weighting of the individual measurements. One of the
interesting results is that the best domain for measurement corresponds to the wedge angle
approaching 360◦. This result is counterintuitive given the behaviour of the solution for this
domain shape, as compared to the behaviour for other angles and especially near the critical
angle. Similarly, we have shown that it is better to perform measurements in larger, rather
than smaller domains, since this decreases the uncertainty in the parameters.
In addition, our results indicate that the conclusions drawn from these computations also

hold if we have only poor prior estimates of the parameters. In this case, one can compute
the sensitivities for the present best estimate of these parameters using the techniques shown,
and thereby guide the design of an optimal experiment to obtain further measurements. These
can in turn be used to improve our knowledge of parameter values. If desired, the process
can then be repeated with the better values of the parameters.
In our computations, we have shown that by choosing an optimal shape of the domain

we can reduce the uncertainty in the parameters by up to a factor of 2, and that a proper
relative weighting of our measurements can improve this by another factor of about 1.7. If
experiments are complicated or expensive to perform, such computations are therefore able
to signi�cantly improve the process of parameter identi�cation by predicting under which
conditions experiments should be conducted to obtain maximal accuracy. It is clear that this
reasoning and these types of results are equally valid for a much wider class of problems
than the representative case considered here.

APPENDIX A: COMPUTING THE SENSITIVITY MATRIX

Given de�nition (9) of the partial sensitivity matrices Si, their computation involves calcu-
lating how the solution u(�; �) changes as a function of the parameters in the vicinity of the
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minimum �̂; �̂. To explore this further, �rst note that for given values of the parameters, the
solution û= u(�̂; �̂) has to satisfy

a(�̂; �̂; û; ’)= �̂(1; ’)@� ∀’∈V (A1)

for some appropriate space of test functions V . Treating u as a dependent variable and taking
derivatives with respect to � and �, we obtain

a�(�̂; �̂; û; ’) + au(�̂; �̂; û; ’)
(
@u
@�

)
=0 ∀’∈V (A2)

a�(�̂; �̂; û; ’) + au(�̂; �̂; û; ’)
(
@u
@�

)
= (1; ’)� ∀’∈V (A3)

where a subscript denotes a derivative of the semilinear form a with respect to the indicated
argument.
In general, the exact solutions of Equations (A2)–(A3) are not known. In order to com-

pute Si, we therefore �rst numerically approximate û and then approximate the linearized
operator as well as the right hand side. Using standard �nite elements [32] with shape func-
tions  m, and denoting by y� the vector of nodal values of a discrete version of the variation
@u=@�, we obtain the linear system

Ay�= − c�
where

Amn= au(�̂; �̂; ûh;  m)( n); (c�)m= a�(�̂; �̂; ûh;  m) (A4)

Likewise, we de�ne (c�)m= a�(�̂; �̂; ûh;  m) − (1;  m)� = − (1;  m)�; the numerical approx-
imation to the solution @u=@� of Equation (A3) then has a nodal expansion y� satisfying
Ay�= − c�.
Let us combine these two solution vectors to the matrix C=[c�; c�], and de�ne the

measurement matrices, Wi, as

(Wi)mn= 〈Mi m;Mi n〉 (A5)

with 〈·; ·〉 the inner product on the image space of operator Mi. For example, the �rst two of
the operators Mi de�ned in Section 4 induce the matrices (W1)mn=(

∫
�  m d�)(

∫
�  n d�), and

(W2)mn=
∫
�  m n d�.

With these de�nitions, we obtain the numerical approximation for the partial sensitivity
matrices

(Si)h=CTA−TWiA
−1C (A6)

and for the full sensitivity matrix

Sh=CTA−T
(∑

i

iWi

)
A−1C (A7)
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Figure A1. Typical domains and adaptively re�ned meshes used in the computations. Solutions on
meshes similar to these but for di�erent opening angles are shown in Figure 1.

In general, A is large and sparse, and we cannot represent its inverse exactly. However, we
can form A−1C for each column of C separately. Since we have only two parameters, C has
only two columns so that this is a manageable task.
In summary, the algorithm for computing Sh is as follows:

1. For given values of �̂; �̂, compute a �nite element approximation ûh to the solution û of
the Laplace–Young equation (A1).

2. Compute the matrices A and the vectors cp; p∈ (�; �) using (A4); compute Wi using
(A5).

3. For each p∈ (�; �), compute the solution yp of Ayp= − cp, using a conjugate gradient
method. Let Y be the matrix with columns yp.

4. Compute the partial sensitivity matrices Sh; i=YTWiY by evaluating (Sh; i)pq= yTpWiyq.
Form Sh=

∑
i 
iSh; i.

For the computations in this study, we approximated ûh using simple piecewise biquadratic
�nite elements on quadrilaterals, as provided by the deal.II library [29, 30]. Computa-
tions were performed on meshes obtained from an initial coarse mesh of three elements
by two global and three adaptive mesh re�nement steps; the smallest cells therefore had a
radial extent of 2−6R. Local re�nement was driven by a simple smoothness criterion due to
Kelly et al. [33]. We re�ned the 30% of cells with the largest errors. Typical adaptively
re�ned meshes for two domains are shown in Figure A1. Solutions of the Laplace–Young
equation on such wedge shaped domains are shown in Figure 1.
This approach ensures that a highly accurate approximation ûh to û is determined, and

likewise for the approximations of the sensitivity factors @û=@�; @û=@�. It therefore implies
that the experimental design goal based on the numerical approximation Sh instead of the
exact S is not ‘masked’ by discretization error. We con�rmed that the choice of a �ner
mesh did not have a signi�cant e�ect on the results and that numerical error was therefore
negligible. The only artifact of numerical errors in our computations can be seen in the smaller
eigenvalues of the top right part of Figure 4: for wedge angles between 30◦ and 90◦, we use
as a coarse mesh a wedge-shaped domain composed of three quadrilaterals that are then scaled

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:583–605



604 M. L. ANDERSON, W. BANGERTH AND G. F. CAREY

to the correct wedge angle; for angles between 90◦ and 150◦ we scale two such basic blocks
of three quadrilaterals each (see, for example, the mesh shown at the left of Figure A1); and
similar for meshes between 150◦ and 210◦, between 210◦ and 270◦, between 270◦ and 330◦,
and beyond that. While this change in the coarse mesh at angles 90◦; 150◦; : : : has only a very
small impact on the solution, it can be seen as an artifact in the small eigenvalue of S2, which
is some three orders of magnitude smaller than the larger one and thus more susceptible to
numerical errors. These inaccuracies, however, do not a�ect the conclusions we draw.
As a �nal point of numerical interest, we remark that in the nonlinear solution of step 1

above (to be performed after each re�nement step), we employed a scheme comprising �ve
successive approximation iterations followed by 12 Newton steps, in order to combine the
stability of the former with the convergence rate of the latter method. This is su�cient to
solve the discretized equations to machine precision, since the Laplace–Young equation is
very similar to the Helmholtz equation that can be solved with only one Newton step (since
it is linear), and the additional iterations only resolve the nonlinear behaviour close to the
boundary where behaviour of the solutions to the two equations di�er signi�cantly.
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