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Abstract

Instead of writing the Galerkin approximation as seeking the station-
ary point of some functional over a finite-dimensional subspace of the
original function space, we write it as the initial, infinite-dimensional vari-
ational problem with an explicit constraint that models the fact that we
are actually searching in a subspace. By formulating this as a constrained
variational problem using a Lagrangian functional, we are led to introduce
a Lagrange multiplier for the discreteness constraint. This multiplier turns
out to be the residual of the approximation, shedding some light on the
basic interpretation of the residual in Galerkin methods.

Since Lagrange multipliers indicate the first order response of a func-
tional to perturbations in the constraint, we consider applications of this
relationship to mesh refinement strategies and error estimation for fi-
nite element methods. After considering an introductory example for the
Laplace equation, the fully nonlinear case is treated, where the accurate
computation of some functional of the solution is required.

1 Introduction

Finite element methods, and Galerkin approximations in general, seek to ap-
proximate the solution of an infinite-dimensional variational problem by search-
ing only in a finite-dimensional subspace. For finite element methods, this sub-
space is usually spanned by a nodal basis defined on a grid. While this approach
is easy to understand, it is not the only possible formulation of the problem. In
this paper, we rewrite it slightly by using the original variation over the infinite-
dimensional space, and add the desired discreteness, or finite-dimensionality, of
the solution as an explicit constraint. We will then try to interpret the findings
we get from this formulation.

It turns out that the Lagrange multiplier associated with the discreteness
constraint is actually the residual we get if we enter the approximate solution
into the differential equation that is associated with the variational problem. We
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will generalize this surprising result to the case of general nonlinear problems
where the goal is the accurate computation of some output functional of the
solution. In that case, the Lagrange multiplier is the residual of a dual problem.
Using this equivalence, we invoke a result from optimization theory that links
the Lagrange multiplier to the first-order change in the target functional upon
perturbations of the constraint. This suggests methods for “optimal” mesh
refinement that we will explore, and we will also briefly touch connections with
error estimation.

The formulas appearing in this paper are mostly well-known. However, they
are usually derived in different ways, and quantities like the residual, or a dual
solution, are usually associated with different notions than in this paper. The
purpose of this work is therefore not to produce new results, but only to put
them into a different context that allows different interpretations, and to explore
the connection between the Lagrange multiplier, the residual, and some of the
consequences that are already known for variational problems with constraints.

The layout of the rest of this paper is as follows: In the next section, we de-
scribe how Galerkin approximation of the solution of the Poisson equation can
be considered as a constraint. Section 3 generalizes this to arbitrary nonlinear
problems and the goal oriented case, and we show what consequences pertur-
bations of the constraint have on the target functional applied to the solution.
In section 4, we consider application of this to generating “optimal” refinement
strategies. Section 5 is then devoted to error estimation.

2 Discretization as a Constraint

In this first section, we would like to lay out the basic idea of this paper using
a simple model problem, the Laplace equation. For this, let us consider the
following problem: minimize the energy functional E(v) = 1

2‖∇v‖
2 − (f, v),

min
u∈V

E(u), (1)

where V = H1
0 (Ω), (u, v) =

∫
Ω
uv dx, and ‖ · ‖2 = (·, ·). For the Ritz projection,

we seek an approximation uh to the solution u of this continuous problem by
restricting the search space to a finite dimensional subspace Vh ⊂ V :

min
uh∈Vh

E(uh). (2)

For example, in finite elements, the space Vh is chosen as the one spanned by a
nodal basis associated with a triangulation of the domain Ω.

We now rewrite the finite dimensional minimization problem (2) in a different
form. For this, let us denote by {ϕih}Ni=1 a basis of Vh, made up of linearly
independent, but not necessarily orthogonal basis functions ϕih. Then we can
state problem (2) in the following form:

min
ũ∈V, α∈RN

E(ũ), subject to ũ−
N∑
i=1

αiϕih = 0. (3)
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Note that we extend the minimization over the whole space V , and use an
explicit constraint for the requirement that the discrete solution should actu-
ally belong to the subspace Vh. Discretization is thus considered as a linear
constraint to an infinite-dimensional minimization problem.

We will consider the solution of (3) in a Lagrangian framework. Testing
the constraint in the H1

0 -H−1 duality product, we are then led to introduce the
following Lagrangian:

L(ũ, α, λ) = 1
2‖∇ũ‖

2 − (f, ũ) +
(
ũ−

∑
αiϕih, λ

)
,

where λ ∈ H−1 is a Lagrange multiplier.

Proposition 1. The solution {ũ, α, λ} of Problem (3) satisfies ũ = uh =∑
αiϕih and λ = f + ∆uh.

Proof. The solution of (3) is characterized by stationarity of L:

L′ũ(ũ, α, λ)(ϕ) = (∇ũ,∇ϕ)− (f, ϕ) + (λ, ϕ) = 0 ∀ϕ ∈ V, (4)

L′αi(ũ, α, λ) = −(ϕih, λ) = 0 ∀1 ≤ i ≤ N, (5)

L′λ(ũ, α, λ)(ψ) =
(
ũ−

∑
i

αiϕih, ψ
)

= 0 ∀ψ ∈ H−1, (6)

where L′ denotes differentiation of L with respect to the subscripted variable.
Considering (4) for discrete test functions ϕh ∈ Vh and using (5) to delete the
last term, we see that indeed ũ satisfies the same equation that uh satisfies.
Together with the condition of discreteness, (6), it follows that ũ = uh, proving
the first claim of the proposition.

Next, considering (4) for arbitrary test functions ϕ ∈ V and integrating the
first term by parts, it follows that the Lagrange multiplier for the discretization
constraint is actually the residual: λ = f + ∆ũ = f + ∆uh. (In the following,
for finite elements, we will denote by the term residual both the cell and the
edge residuals. λ is thus in H−1, or if associated with a function representation,
contains also Dirac measures on cell edges.) Then, (5) states that the residual is
orthogonal to the subspace Vh in which we look for our solution; this property
is commonly refered to as Galerkin orthogonality.

Alternatively, one could have enforced the constraint in the H1 scalar prod-

uct, with the Lagrangian L(ũ, α, λ) = 1
2‖∇ũ‖

2−(f, ũ)+
(
∇(ũ−

∑
i α

iϕih),∇λ
)

.

This leads to similar formulas as above, and corresponding conclusions. The La-
grange multiplier is now λ = (−∆)−1(f + ∆uh) = e ∈ H1, where e = u− uh is
the error.

3 Goal orientation and nonlinear problems

After this introduction, let us generalize the above formulation to nonlinear and
possibly indefinite problems, and a general goal functional instead of the natural
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energy norm. Assume we wanted to find the solution u ∈ V of the variational
problem

A(u)(ϕ) = 0 ∀ϕ ∈ V,

where A is some semilinear form that includes the operator as well as the right
hand side and boundary terms. For the Laplace equation above, A(u)(ϕ) =
(∇u,∇ϕ)−(f, ϕ). Let the goal of the computation be the accurate computation
of some functional J(u) of the solution. Assuming that the semilinear form
introduced above allows for a unique solution, we can write this problem as an
optimization problem (see, for example, Becker and Rannacher [2001]):

min
u∈V

J(u), subject to A(u)(ϕ) = 0 ∀ϕ ∈ V.

This problem is a trivial optimization problem, since the constraint has only one
feasible point. After discretization, the finite-dimensional solution uh would be
determined in a similar way:

min
uh∈Vh

J(uh), subject to A(uh)(ϕh) = 0 ∀ϕh ∈ Vh.

In the same way as in the previous section, let us rewrite this finite-dimensional
problem such that we minimize over the full, infinite-dimensional space, and add
discreteness as an explicit constraint:

min
ũ∈V,α∈RN

J(ũ),

subject to A(ũ)(ϕh) = 0 ∀ϕh ∈ Vh, (7)

and
〈
ũ−

∑
αiϕih, ψ

〉
= 0 ∀ψ.

Here, 〈·, ·〉 denotes either the H1
0 -H−1 duality pairing or the Dirichlet scalar

product (∇·,∇·), putting the two possibilities discussed at the end of the previ-
ous section into a common framework. Depending on the choice of this product,
the test functions ψ are then either from Λ = H−1 or Λ = H1

0 . Note that in (7)
the state equation constraint alone does not determine the solution ũ uniquely,
since we search in an infinitely dimensional space but only test with functions
from a finitely dimensional one. The second constraint is therefore necessary to
guarantee a unique solution.

In order to solve (7), we define a Lagrangian as

L(ũ, α, zh, λ) = J(ũ)−A(ũ)(zh) +
〈
ũ−

∑
αiϕih, λ

〉
.

The optimality conditions are now

L′ũ = J ′(ũ)(ϕ)−A′(ũ)(ϕ, zh) + 〈ϕ, λ〉 = 0 ∀ϕ ∈ V, (8)

L′αi = −
〈
ϕih, λ

〉
= 0 ∀1 ≤ i ≤ N, (9)

L′zh = −A(ũ)(ϕh) = 0 ∀ϕh ∈ Vh, (10)

L′λ =
〈
ũ−

∑
αiϕih, ψ

〉
= 0 ∀ψ ∈ Λ. (11)
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From the discreteness constraint (11) and equation (10) we see that indeed
ũ = uh. On the other hand, choosing discrete test functions in (8) and using
(9) shows that zh is the discrete solution of the dual problem A′(ũ)(ϕh, zh) =
J ′(ũ)(ϕh) for all test functions ϕh ∈ Vh. Then, it is obvious that λ is the residual
of this dual problem. Note that if we take the natural energy functional as goal
functional as we did in the previous section, then primal and dual solution
coincide, and the Lagrange multiplier λ is also the primal residual. It is also
worth mentioning that in the case of finite element methods, the solution of the
discrete dual problem, zh, is defined on the same mesh as the primal solution
ũ, and need not be computed on a finer mesh.

As a last observation in this section, let us consider how perturbations in the
constraint and corresponding perturbations in the solution ũ affect the value
of the functional J(·) at the optimum of the unperturbed and the perturbed
problems. Let ũ1, zh, λ be the solution of problem (7), and ũ2 ∈ V an arbitrary
function that is presumably close to ũ1. Then, by Taylor expansion and using
(8), we have with δũ = ũ2 − ũ1:

J(ũ2)− J(ũ1) = J ′(ũ1)(δũ) +R1

= A′(ũ1)(δũ, zh)− 〈δũ, λ〉+R1,
(12)

where R1 is a higher order term at least quadratic in δũ.
Let us consider the special case that not only ũ1 = uh satisfies A(ũ1)(ϕh) = 0

for all discrete test functions ϕh ∈ Vh, but that the same holds true for ũ2 as
well. For example, this is the case if ũ2 is the solution of the same problem on
a finer grid, or the exact solution u. Then,

0 = A(ũ2)(ϕh)−A(ũ1)(ϕh) = A′(ũ1)(δũ, ϕh) +R2, (13)

where again R2 is a higher order term at least quadratic in δũ. Inserting this
into (12), we get

J(ũ2)− J(ũ1) = −〈δũ, λ〉+R1 +R2, (14)

From it we infer that the Lagrange multiplier indicates, to first order, changes
in the minimization functional under (Galerkin) perturbations of the constraint.
It is this aspect of the residual/Lagrange multiplier that we will stress in the rest
of this work. As a side note, given what λ denotes in the two cases discussed
above, it is obvious that the above representation does not depend on which
type of product the bilinear form 〈·, ·〉 refers to.

4 Application to “optimal” mesh refinement

Considering the special case of finite element schemes with a basis defined over
a grid, let us apply the above ideas to devise strategies for “optimal” mesh
refinement. Here, by “optimal” we mean that we want to refine those cells that
bring the value of the goal functional J(·) at the discrete solution closest to its
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optimal value when minimized over the full space V . We approach this question
by asking: if we refine cell K, how much would the value of J change. We will
repeat this for every cell in the triangulation, and pick those cells for refinement
for which the change is largest.

As stated, we have already made an approximation, since we are considering
the change due to refining each cell separately from all others. Indeed, since the
Ritz projection is not local, refining two cells does not yield a change in J that is
simply the sum of the changes due to each of these. We will ignore these second-
order effects for practical purposes, and will also make other approximations.

Of course, we can not simply evaluate the change in J upon refining cell K,
since this would require the solution of a full problem for each K. Rather, we
will make use of the fact that the change is, to first order, given through the
Lagrange multiplier. Doing so amounts to a kind of saturation assumption: we
drop the second order terms in (14) because we assume the error to be small
already.

If we denote by ũ1 = uh the solution on the “coarse” mesh with associated
space Vh, and ũ2 = u+K

h the solution on the mesh with cell K refined and
associated space Vh ⊕ V +K , where V +K is the space spanned by the newly
added shape functions, then we have by (14) and using the assumption stated
above:

J(u+K
h )− J(uh) ≈ −

〈
δũ+K , λ

〉
,

where δũ+K = u+K
h − uh. We can obviously evaluate the residual/Lagrange

multiplier λ by solving the discrete dual problem (8) for zh only once, i.e. in-
dependently of the cell K presently under consideration; note again that λ is
the residual of the primal problem if J is the natural energy functional in-
duced by A(·)(·). The question is then whether we have any chance to evalu-
ate the change in the solution δũ+K . For simplicity of notation, assume that
we are dealing with a linear problem, in which case A(·)(·) can be written as
A(u)(ϕ) = a(u, ϕ)− (f, ϕ). Then δũ+K satisfies

a(δũ+K , ϕih) = 0 ∀ϕih ∈ Vh,
a(δũ+K , ϕ+K

i ) = (f, ϕ+K
i )− a(uh, ϕ

+K
i ) ∀ϕ+K

i ∈ V +K ,

where ϕ+K
i are the basis functions of V +K , i.e. for lowest-order elements one

hat function for the cell interior and each edge and face. Unfortunately, since
the Ritz projection is not local, δũ+K is not local either, and in particular not in
V +K only. However, due to the decay properties of the Ritz projector, we may

approximate it locally by some δ̂ũ+K ∈ V +K . For this, two standard approaches
exist (although usually smooth bubbles are taken as additional test functions,
rather than the hierarchical enrichment). In the first approach, we solve a local
Dirichlet problem on the patch K̂ including the cell K and its neighbors:

a(δ̂ũ+K , ϕ+K
i )K̂ = (f, ϕ+K

i )K̂ − a(uh, ϕ
+K
i )K̂ . (15)
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Zero boundary conditions are imposed at the boundary ∂K̂. This approach has
first been proposed in the context of error estimation in Babuška and Rheinboldt
[1978].

An alternative is to solve local Neumann problems. For more information
on this, see Ladevèze and Leguillon [1983], Bank and Weiser [1985], Ainsworth

and Oden [1993]. In both cases, δ̂ũ+K can be interpreted as the local correction
on cell K to uh obtained by a single iteration of a Jacobi preconditioned form
of a defect correction scheme, since the right hand side of the defining equation
(15) is the residual of the original problem.

With the so-defined approximations δ̂ũ+K for each cell K, we can then set

out to compare refinement indicators ηK = |
〈
δ̂ũ+K , λ

〉
|, defined as the amount

by which the target functional J(·) would change when refining cell K.

Remark 1. The strategy of constructing local approximations to the error e =
u − uh and using them for mesh refinement is well known, and described in a
plethora of papers. For a general overview, see, for example Verfürth [1996],
Ainsworth and Oden [2000], Babuška and Strouboulis [2001]. However, there
the refinement strategy is usually based on picking those cells for which the error
is largest, using error estimates. The derivation above demonstrates the non-
trivial conjecture that this is actually equivalent to picking those cells for which
the change in the target functional is largest under refinement of a single cell.

5 Error estimation

In the previous section, we chose ũ2 equal to the solution of a problem where
we refined a single cell. In this section, let us instead set it equal to the exact
solution: ũ2 = u. Then δũ = ũ2 − ũ1 = u − uh = e is the error. From (14) we
then see that

J(u)− J(uh) = −〈e, λ〉+R1 +R2. (16)

Note in particular that if both A and J are linear, then the quadratic remainders
Ri, i = 1, 2 vanish.

In this section, let us briefly indicate how this formula can be placed among
the various ways errors are estimated in the literature. Basically, we may use
this error representation in two ways. In the first, we approximate the error e
by some ê, to get

J(u)− J(uh) ≈ −〈ê, λ〉 . (17)

Since λ can be evaluated after solving a discrete dual problem for zh, there
remains the choice of ê. For this, various strategies have been devised in the
literature. For example, one may compute the solution u+

h on a finer grid, and
set ê = u+

h − uh, see for example Becker and Rannacher [2001], Bangerth and
Rannacher [2003]. Alternatively, the local corrections defined in the previous
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section may be used to set

ê =
∑
K

δ̂ũ+K .

Many other possibilities of various sophistication are possible, which we will all
not discuss further. For more information, see the general references mentioned
above. If such an estimate ê has been computed, the numerical evaluation of
the goal oriented error approximation (17) is straightforward.

Alternatively, introducing the continuous dual problem

J ′(ũ)−A′(ũ)(ϕ, z) = 0 ∀ϕ ∈ V,

and using it together with (8), we see that 〈ϕ, λ〉 = −A′(uh)(ϕ, z − zh). Thus,

J(u)− J(uh) = A′(uh)(e, z − zh) +R1 +R2. (18)

This leads us to residual based error estimators, since the first term on the right
is actually a residual weighted by z−zh. For example, for the Laplace equation,
using cell-wise integration by part, this equation attains the well-known form

J(u)− J(uh) =
∑
K

(f + ∆uh, z − zh)K + 1
2 (n · [∇uh], z − zh)∂K , (19)

where the normal jump at a face ∂K between cells K and K ′ is defined as usual
by

n · [∇uh]|K =

{
n · (∇uh|K′ −∇uh|K) if ∂K 6⊂ ∂Ω,
−2n · ∇uh|K otherwise,

and the outward normal vector is denoted by n.
Instead of finding an approximation for the primal error e, the challenge lies

here in approximating the dual error z − zh. We will not discuss this approach
either, but instead refer to the book Bangerth and Rannacher [2003] which is
entirely devoted to error estimation and adaptivity based on weighted residuals.

6 Conclusions

We have given a different statement of Galerkin approximation, by not assuming
that we perform variation only on a finite-dimensional subspace, but putting the
discreteness into an explicit constraint. This leads, in a Lagrangian formulation,
to a multiplier for the constraint, that then turns out to be the residual of either
the primal problem (if we minimize the natural energy functional associated
with the differential equation) or of a dual problem (in the general goal-oriented
setting).

Well-known properties of Lagrange multipliers were then used to analyze re-
finement strategies and error estimates. In particular, some common strategies
for mesh refinement based on the size of an error indicator are re-interpreted
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to be “optimal” in the sense that they pick those cells which will generate the
largest change in the target functional, thus bringing the value of the desired
quantity closest to its exact value. The formulas resulting from the formula-
tion as a constrained variational problem were then also used to derive error
estimation formulas.

The results of this paper are not new in the sense that the representations
have been known previously. However, it seems that their derivation using the
discreteness-as-a-constraint idea have not been given in the literature so far.
Insofar, this paper offers a different perspective on otherwise known facts, and
may help clarify our intuition what the residual is in finite element computations
and what it can be used for. Our results also allow us to appreciate the role of the
residual in error estimates and mesh refinement criteria, as it not only denotes
a measure of the error if viewed in appropriate norms, but also indicates how
restrictive the discreteness constraint is, or conversely how much the solution
would change if the constraint didn’t exist.
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