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Abstract: Based on the diffusion equation, a parallel FEM system is proposed, describing photon 
propagation and fluorescence emission using appropriate boundary conditions. Iterative 
reconstruction methods will benefit from the speed-up due to parallelized forward model 
execution.   
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1. Introduction 

Fluorescence tomographic methods aim at reconstructing the concentration of fluorophores within the imaged 
object. Diffuse measurements of fluorescence emissions are obtained on the boundary of the object; excitation is 
performed through external laser sources at various positions. These methods become increasingly important in the 
context of  targeted or activatable fluorescent probes, “smart” contrast agents with merely no background that offer 
unique functional imaging capabilities on the cellular or sub-cellular level. Spatially resolved quantification of 
fluorochrome concentration could provide a measure for receptor concentration, gene expression or enzymatic 
activity, depending on the probe used [1]. While this method is commonly employed in the field of fluorescence 
microscopy, the necessary means to quantitatively image small animals are just being developed. Due to the 
excellent signal to background ratio, sub-millimeter resolution in homogeneous phantoms is reported [2].  

An established standard model for photon propagation in turbid media is the time-independent diffusion 
equation, derived from the radiative transfer equation [3]. It is less computationally expensive, but is not valid in all 
biological environments [4]. The photon density created by a continuous source emitting at wavelength λ described 
by an input function ( )q r  within a turbid domain Ω of inhomogeneous absorption and scattering properties aλµ  
and s 'λµ  can be approximated by the following diffusion equation, describing the photon fluence Φ using 

coefficients aλµ  and ( )[ ] 13 +s aD 'λ λλ µ µ −
=  for absorption and diffusion, respectively: 

 ( )( ) ( ) ( ) ,aD µ q−∇ ∇ + Φ = ∈ Ωr r r r  (1) 

Internal reflection at the boundaries ∂Ω can be modeled with Robin boundary conditions of the form: 
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where A describes reflection due to refractive index mismatch of object and surrounding non-scattering medium 
[5]. External, collimated sources cannot be described by (1) and (2) directly, but are usually approximated by point 
sources ( ) ( )0s sq δ= Θ −r r r  of power sΘ  one diffusion length away from the boundary into the medium [6]. For 
biomedical applications it is generally assumed that only external sources are present for excitation while internal 
sources represent fluorescence.  

With respect to the coefficients, the diffusion equation of (1) and (2) can be linearized and then inverted [2,7] 
employing Green’s functions and a small perturbation approach. While this results in a linear system quickly 
solvable with standard methods, the solution is disturbed by inhomogeneities of the domain [8,9]. Furthermore, the 
implementation of boundary conditions (2) is complex and time-consuming, although new approximations have 
been published recently [10]. The finite element method, however, is capable of modeling the system (1) and (2) 
accurately, but only the forward problem can be solved easily. Parameter estimation is performed using non-linear 
methods that usually require a large number of forward calculations [11,12]. We present herein a way to reduce the 
computational effort for a combined model describing fluorescence and absorption by decoupling the underlying 
system of equations. 



2. Independent formulation of excitation and emission 

Fluorochromes within domain Ω increase the absorption at λ by ( )cλε r , where c is the spatially varying 
concentration and λε  is the molar extinction coefficient of the fluorochrome at wavelength λ. The fluorochrome will 
emit at a wavelength λ' with a probability of 'λγ , the quantum yield, which is regarded as spatially invariant. 
Assuming that only two distinct wavelengths are present—excitation wavelength λx and emission wavelength λm—
results in the coupled equations: 
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Under the assumption that the Stokes shift is small, the equality of the coefficients for both wavelengths can be 
considered equal, i.e. x mD D D= =  and ax am aµ µ µ= = . Also, ε and γ can be written without index. The first 
equation in (3) can then be rewritten as 
 ( ) ( ) ( ) ( )( ) ( )0x s s a xc Dε δ µΦ = Θ − − −∇ ∇ + Φr r r r r r . (4) 

Substituting (4) in (3) and dividing by γ, this yields 
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which is solved with respect to 1
t f xγΦ = Φ + Φ . This way, both equations become independent and can be 

computed completely in parallel, thus decreasing the total computation time needed for one forward solution by one 
half. The fluence rate due to fluorescence is recovered by calculating ( )f t xγΦ = Φ − Φ  afterwards, if desired. In an 
experimental setting, measurements are taken at the boundary at both wavelengths through the use of filters, so that 
boundary measurements ˆ ˆ,x mΦ Φ  can easily be combined to 1ˆ ˆ ˆ

t f xγΦ = Φ + Φ  and used in an error estimator or 
measurement operator. 

3. Finite Element Formulation 

A solution for (5) can be obtained by using a Galerkin approach, which yields the weak formulation of the problem, 
similar to the models used in [6,12][1]: 
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for all test functions iϕ  and iψ , where ( ) ( ) ( ),a b a b d
Ω Ω

= ∫ r r r  is the scalar product on the full domain Ω and 

( ) ( ) ( ),a b a b d
∂Ω ∂Ω

= ∫ r r r  is the scalar product on its boundary ∂Ω . Setting ,s j j jj
α ϕ αΦ = ∈∑  and 

,t j j jj
β ψ βΦ = ∈∑ , the left hand side of (6) turns into a matrix-vector equation where the vector contains the 

unknown coefficients α and β while the matrix contains the scalar products only depending on the test functions. For 
an appropriate choice of functions, the matrix is sparse and the equation can be inverted quickly, resulting in a 
solution for α and β. The solution to (6) equals a projection of xΦ and tΦ into the space of test functions. The 
resulting equations in matrix form are: 
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Note that if the same function spaces are used, the system matrices are nearly similar and could also be 
computed just once, with later addition of ϕεc  for the first equation.  

We implemented a finite element system based on the freely available DEAL-II library (www.dealii.org) [13]. 
The library uses hexahedral meshes that can be employed in a dimension-independent way. For exemplary purposes, 
a three-dimensional cylindrical mesh of 4cm diameter and 4cm length with background properties 10.3a cmµ −=  and 

1' 10s cmµ −=  was used with a point source located at one diffusion length away from the border of the domain 
(Fig.1). Boundary conditions were applied to the outer part of the cylinder, with the exception of top and bottom 



side. These boundaries were left floating to simulate an infinite cylinder. A spherical fluorescent emitter with 
diameter 2mm and µ=0.19cm–1 and γ=0.23 was simulated at different distances from the source (Fig.2). The 
properties of this emitter resemble a 1µM solution of fluorochrome Cy5.5 (Amersham Biosciences). 
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Fig. 1: The cylindrical mesh consisting of hexahedrals is shown on the left. The cylinder was 4cm long and had a diameter 
of 4cm. The outer layers were more refined to account for correct source modelling. The fluence created by a fluorescent 
source with µ=0.19cm–1 and γ=0.23 excited by a source on the right side (cross) is shown in a central slice along the 
cylinders main axis, after subtraction of the source fluence from the result of Eq. (5). Relative insensity is shown on a 
linear greyscale. 

 
Fig. 2: Predicted fluence of the source (left) and of the fluorochrome at different positions (left to right): opposite rim, 
center, close to the source. Slices were taken from the center of the cylinder, at z=0. 

4. Discussion 

While the assumption of small changes in the optical parameters for a small shift in wavelength is generally 
accepted and frequently made, the idea of a spatially invariant quantum yield might be questionable in biological 
environments. However, newly developed anorganic emitters like quantum dots which are embedded in an isolator, 
are independent of the environment [14]. Also, a constant quantum yield is a basic assumption of quantitative 
fluorescence imaging as in [2] or in [15]. Thus, we propose to implement a non-linear iterative reconstruction based 
on the new, faster forward model. It might also be advantageous to estimate the system parameters of the governing 
equation of tΦ in (6), as it is independent of fluorochrome concentration, and then estimate the concentration in a 
second iteration. 
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