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Abstract: A three-dimensional fluorescence-enhanced optical tomogra-
phy scheme based upon an adaptive finite element formulation is developed
and employed to reconstruct fluorescent targets in turbid media from
frequency-domain measurements made in reflectance geometry using area
excitation illumination. The algorithm is derived within a Lagrangian
framework by treating the photon diffusion model as a constraint to the
optimization problem. Adaptively refined meshes are used to separately
discretize maps of the forward/adjoint variables and the unknown parameter
of fluorescent yield. A truncated Gauss-Newton method with simple bounds
is used as the optimization method. Fluorescence yield reconstructions
from simulated measurement data with added Gaussian noise are demon-
strated for one and two fluorescent targets embedded within a 512ml
cubical tissue phantom. We determine the achievable resolution for the
area-illumination/area-detection reflectance measurement geometry by
reconstructing two 0.4cm diameter spherical targets placed at at a series
of decreasing lateral spacings. The results show that adaptive techniques
enable the computationally efficient and stable solution of the inverse
imaging problem while providing the resolution necessary for imaging the
signals from molecularly targeting agents.
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1. Introduction

Molecular Imaging is a rapidly advancing research area with the potential of providing early
diagnosis and identification of the underlying biochemical causes of human diseases [1]. As
near infrared (NIR) light can travel several centimeters in tissue, fluorescence enhanced NIR
optical imaging promises to open new pathways for the characterization of biological processes
in living animals at cellular and molecular levels.

In the past decade, several approaches have been proposed for fluorescence enhanced optical
tomography involving the determination of the fluorophore yield and/or fluorescence lifetime
distribution in the tissue from a finite number of boundary measurements. Due to the diffusive
nature of photon propagation in tissue, fluorescence-enhanced tomography represents a non-
trivial inverse problem. Initial efforts did not involve classical optimization but instead focused
on approaches such as: perturbative localization [2, 3, 4], backprojection [5], Born Approxima-
tion [6, 7, 8], random walk theory [9], and more recently, fast fluorescence localization [10].
These approaches were successful in locating small fluorescent targets in otherwise homoge-
neous, small sample volumes. Other approaches to fluorescence tomography cast the image re-
construction problem as an optimization problem in which a least squares type minimization is
performed in order to determine the fluorescence map which best predicts the measured bound-
ary fluorescence distribution. Optimization approaches are more general in their scope and can
handle heterogeneous backgrounds as well as large sample volumes albeit at increased com-
putational cost. These approaches include algorithms based on Newton’s or Newton-type opti-
mization methods [11, 12, 13] and Bayesian nonlinear least squares approaches [14, 15, 16, 17].

The sensitivity of fluorescence enhanced imaging potentially rivals that of the conventional,
but “gold-standard” molecular imaging using radiotracers [18]. Yet, the achievable resolution
for fluorescence tomography is determined first by the signal to noise ratio, and secondly by the
level of discretization. To date, the discretization level is selected a priori based on knowledge
of the domain and/or computational constraints. Image quality can be improved by uniformly
refining the level of discretization throughout the domain. However, this global refinement fur-
ther increases the ill-posedness of the problem and results in insurmountable computational
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requirements by increasing the number of unknowns. For example, to achieve a resolution of
one millimeter in a volume of one liter would require the use of 10 9 mesh points, a number that
is clearly not achievable with today’s computational technologies. In contrast, adaptive mesh
refinement provides fine mesh resolution around target locations with coarser resolution in
other regions to improve image quality, while maintaining solution stability and computational
economy.

The outline of this article is as follows: In Section 2 the fluorescence tomography algo-
rithm is described in a continuous function space setting and its discrete implementation with
an adaptive mesh strategy is presented. Sections 3 and 4 detail the computational experiments
conducted to demonstrate the adaptive tomography algorithm for reconstructing single and re-
solving dual fluorescence targets embedded in turbid media with a target to background ratio of
100 : 1. Finally, the results are summarized in Section 5 and we show that Rayleigh resolution
(i.e. the minimum distance between which two target can be resolved from one another) can
approach the continuum limit using the adaptive strategy. To the best of the authors’ knowledge,
this contribution represents the first time that adaptivity has been used in optical tomography to
address the issue of reconstructed image quality.

2. Methodology

In this section, the formulation for the nonlinear inverse problem of fluorescence tomography is
developed in a continuous function space setting, allowing separate and independent discretiza-
tion of the parameter map and the finite element mesh used to solve state/adjoint problems for
the nonlinear update steps toward the optimal solution. The mesh refinement criteria and im-
plementation described herein are based on the general framework developed in [19, 20].

2.1. Formulation

Under conditions of multiple scattering, the generation and propagation of diffuse fluorescence
photon density waves from modulated, time-periodic sources can be described by the following
coupled system of diffusion equations [21]:

−∇ · [Dx(r)∇u(r,ω)]+ kxu(r,ω) = 0, (1)

−∇ · [Dm(r)∇v(r,ω)]+ kmv(r,ω) = βxmu(r,ω), (2)

where

Dx,m =
1

3(µax,mi + µax,m f + µ ′
sx,m)

, kx,m =
iω
c

+ µax,mi(r)+ µax,m f (r), βxm =
φ µax f

1− iωτ(r)
.

Here, an index x denotes the excitation light field and m denotes the emission field; u,v are
the complex-valued photon fluence fields at excitation and emission wavelengths, respec-
tively;(Note that part of the literature uses the symbols Φx,Φm for these variables; u,v are
used to avoid overly complicated expressions with many indices in the next sections.) D x,m

are the photon diffusion coefficients; µax,mi is the absorption coefficient due to endogenous
chromophores; µax,m f is the absorption coefficient due to exogenous fluorophores; µ ′

sx,m is the
reduced scattering coefficient; ω is the modulation frequency; φ is the quantum efficiency of
the fluorophore; finally, τ is the fluorophore lifetime associated with first order fluorescence
decay kinetics. The fluorescence generation mechanism is detailed in [21]. These equations
are complemented by Robin-type boundary conditions on the boundary ∂Ω of the domain Ω:

2Dx
∂u
∂n

+ γu+ S(r) = 0, 2Dm
∂v
∂n

+ γv = 0, (3)
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where n denotes the outward normal to the surface and γ is a constant depending on the optical
reflective index mismatch at the boundary [22]. S(r) is the excitation boundary source. There is
no source term for the emission boundary condition. Note that, here the NIR excitation source
is modeled as a boundary condition. This is an approximation as the true isotropic source will
be one scattering length below the illumination surface. This approximation is justified for
a diffuse area illumination scheme [23] instead of the traditional point illumination by fiber
optics and the finite element solutions of equations (1)–(3) match the experimentally observed
boundary fluorescence [24]. The goal of fluorescence tomography is the reconstruction of a
spatial map of coefficients µax f (r) and/or τ(r) from measurements of the fluences u,v on the
boundary.

Instead of the (strong) formulation as a PDE above, equations (1)–(3) are posed in a weak
variational form as is usual in finite element applications. The two equations are multiplied
with arbitrary test functions ζ ,ξ ∈ H 1, integrated over Ω, and terms with second derivatives
are integrated by parts. Here, H 1 is the Sobolev space of functions with integrable (weak) first
derivatives (see Adams [25]). With this, the resulting variational equation reads:

A(q; [u,v])([ζ ,ξ ]) = 0 ∀ζ ,ξ ∈ H1, (4)

where the semilinear form A is nonlinear in its first set of arguments and linear in the test
functions. q denotes the set of unknown parameters, i.e. µ ax f and/or τ . In this work, we only
consider q = µax f . With (·, ·) denoting the L2 inner product, the definition of A reads

A(q; [u,v])([ζ ,ξ ]) = (Dx∇u,∇ζ )Ω +(kxu,ζ )Ω +
γ
2
(u,ζ )∂Ω +

1
2
(S,ζ )∂Ω

+(Dm∇v,∇ξ )Ω +(kmv,ξ )Ω +
γ
2
(v,ξ )∂Ω − (βxmu,ξ )Ω. (5)

Note that Dx,m = Dx,m(q),kx,m = kx,m(q),βxm = βxm(q).
The goal of the parameter identification problem is to find the set of parameters q for which

the predicted boundary fluorescence measurements resulting from equation (4) best match
actual measurements. The quantity to be minimized (i.e. the misfit between prediction and
measurement) is then

J(q,v) =
1
2
‖v− z‖2

Σ + β r(q), (6)

where the L2 norm of the difference between the actual measurements, z, and the prediction of
the emission fluence v on a part Σ of the boundary ∂Ω is minimized. In practice, z is interpo-
lated between the pixels of an area detection system such as the gain modulated CCD camera.
r(q) is a Tikhonov regularization functional which penalizes certain undesirable aspects of so-
lutions [26] and β is the regularization parameter. Information about measurement noise can be
incorporated by using a different or weighted norm of the misfit [21].

In the past, optical tomography approaches have followed the output least squares formula-
tion where the state variables u,v are taken to be dependent on the parameters q [27, 12]. In this
work, however, we minimize the error functional J by treating {q,u,v} as independent vari-
ables where their relationship is enforced by including the state equation as a constraint to the
optimization problem [19, 20, 28, 29, 30]. We also deviate from the larger part of the literature
in that we formulate the following steps in function spaces, rather than choosing the route of
most optical tomography papers to first discretize state equation and objective function and then
stating the optimization problem in the finite-dimensional space of matrices and vectors. While
our approach leads to equations that at times look cumbersome, they are exactly equivalent to
the matrix formulation if a fixed grid is used. However, they afford for the possibility of using
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different grids for different nonlinear iterations; in other words, we do not yet want to settle on
a fixed discretization and therefore cannot choose the more usual matrix formulation.

With these considerations, the minimization problem reads:

min
q,u,v

J(q,v) subject to A(q; [u,v])([ζ ,ξ ]) = 0. (7)

This constrained optimization problem can be considered in a Lagrangian framework where the
Lagrangian is defined as:

L([u,v], [λ ex,λ em],q) = J(q,v)+ A(q; [u,v])([λ ex,λ em]). (8)

Here, λ ex,λ em are the Lagrange multipliers corresponding to the excitation and emission diffu-
sion equation constraints, respectively. For simplicity, the abbreviation of x = {u,v,λ ex,λ em,q}
is introduced so that the Lagrangian functional can be written as L(x). The optimum is then
characterized by a stationary point of the Lagrangian, i.e. the first order conditions:

Lx(x)(y) = 0 ∀y = {ϕex,ϕem,ψex,ψem,χ}, (9)

where Lx(x)(y) is the Fréchet differential [31] of L(x) and y denotes possible test functions.
Eq. (9) can be expanded for all components of x:

Lu(x)(ϕex) = Au(q; [u,v])(ϕex)([λ ex,λ em]) = 0, (10)

Lv(x)(ϕem) = Jv(q,v)(ϕem)+ Av(q; [u,v])(ϕem)([λ ex,λ em]) = 0, (11)

Lλ ex(x)(ψex) = A(q; [u,v])([ψ ex,0]) = 0, (12)

Lλ em(x)(ψem) = A(q; [u,v])([0,ψ em]) = 0, (13)

Lq(x)(χ) = Jq(q,v)(χ)+ Aq(q; [u,v])(χ)([λ ex,λ em]) = 0. (14)

Subscripts q,u,v,λ ex, and λ em indicate first order partial Fréchet derivatives of J or A. Equa-
tions (12)–(13) are the state equations in variational form. Equation (12) can be solved to pro-
vide the excitation fluence u which is then used to solve equation (13) to obtain the emis-
sion fluence v. Equations (10)–(11) are the adjoint equations defining the Lagrange multipliers
[λ ex,λ em]. Finally, equation (14) is the control equation.

The above set of coupled nonlinear equations is solved by Newton’s method. The update
direction for the kth iteration, δxk = {δuk,δvk,δλ ex

k ,δλ em
k ,δqk}, is determined from

Lxx(xk)(δxk,y) = −Lx(xk)(y) ∀y, (15)

where Lxx(xk) is the Hessian matrix of second derivatives of L at point xk. These equations
represent one condition for each variable in δx k and when expanded read as follows [19, 31]:

Au(qk; [uk,vk])(ϕex)([δλ ex
k ,0])+ Au(qk; [uk,vk])(ϕex)([0,δλ em

k ])
+ Auq(qk; [uk,vk])(ϕex,δqk)([λ ex,λ em]) = −Lu(xk)(ϕex),

Jvv(qk,vk)(δvk,ϕem)+ Av(qk; [uk,vk])(ϕem)([δλ ex
k ,0])+ Av(qk; [uk,vk])(ϕem)([0,δλ em

k ])
+ Jvq(qk,vk)(δqk,ϕem)+ Avq(qk; [uk,vk])(ϕem,δqk)([λ ex,λ em]) = −Lv(xk)(ϕem),

(C) 2004 OSA 1 November 2004 / Vol. 12,  No. 22 / OPTICS EXPRESS  5407
#5220 - $15.00 US Received 7 September 2004; revised 18 October 2004; accepted 20 October 2004



Au(qk; [uk,vk])(δuk)([ψex,0])+ Av(qk; [uk,vk])(δvk)([ψex,0])
+ Aq(qk; [uk,vk])(δqk)([ψex,0]) = −Lλ ex(xk)(ψex),

Au(qk; [uk,vk])(δuk)([0,ψem])+ Av(qk; [uk,vk])(δvk)([0,ψem])
+ Aq(qk; [uk,vk])(δqk)([0,ψex]) = −Lλ em(xk)(ψem),

Aqu(qk; [uk,vk])(δuk,χ)([λ ex,λ em])+ Aqv(qk; [uk,vk])(δvk,χ)([λ ex,λ em])
+ Jqv(qk,vk)(δvk,χ)+ Jqq(qk,vk)(δqk,χ)+ Aq(qk; [uk,vk])(χ)([δλ ex,0])

+ Aq(qk; [uk,vk])(χ)([0,δλ em]) = −Lq(xk)(χ).

From Eq.s (10)–(11) one can infer that the Lagrange multipliers [λ ex,λ em] are proportional
to Jv(q;v). As a consequence, all terms involving [λ ex,λ em] become negligible near the optimal
solution under conditions of low noise and can be dropped from the Hessian of the Lagrange
functional, resulting in the simplified Gauss-Newton method. The equations for the Gauss-
Newton method are then the same as above with the exception that (i) the last terms on the left
hand side of the first and second equations as well as (ii) the first and second term of the last
equation are eliminated.

Once the search direction is computed from Eq. (15), the actual update is determined by
calculating a safeguarded step length αk:

xk+1 = xk + αkδxk. (16)

The step-length αk can be computed from one of several methods, such as the Goldstein-Armijo
backtracking line search [12, 19, 20].

In many cases, bounds on the parameters q are available. For example, background or max-
imal uptake concentrations may be known. This information should be used in the inverse
problem to stabilize its solution, as well as to enforce physically reasonable solutions. Thus,
we incorporate bounds q0 ≤ q(r) ≤ q1 using the scheme presented in [19, 20]. The method is
a variation of the active set strategy, see [32]. At the beginning of each iteration, the set of pa-
rameters which lie at either of the bounds is identified. A first order approximation based on the
gradient of the Lagrangian is used to determine whether the parameters are likely to move out
of the feasible region. If so, then the update for these parameters is constrained to be zero. This
method is computationally efficient since the determination of the likely direction uses only the
information that is already available. Furthermore, enforcing a zero constraint on the update is
equivalent to removing rows and columns from the Schur complement matrix described in the
next section. In particular, no penalty terms need to be integrated into the objective function.

2.2. Discretization

In the previous section, we have formulated the Gauss-Newton method in function spaces. For
carrying out actual computations, we discretize the Gauss-Newton equations with the finite ele-
ment method and choose {ϕ i} as the basis functions for the state and adjoint variables u,v,λ ex,
and λ em, and {χi} as the basis for the parameter q. Piecewise linear, continuous shape func-
tions on hexahedral meshes for {ϕ i} and piecewise constant, discontinuous functions for {χ i}
are used. The discrete equations resulting from the Gauss-Newton modification of (15) are then
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represented by the following block system:

M 0 PT

0 R CT

P C 0





δ pk

δqk

δdk


 =


F1

F2

F3


 , (17)

where the updates for the primal and dual variables are abbreviated as δ p k = [δuk,δvk]T , δdk =
[δλ ex

k ,δλ em
k ]T . The blocks of the matrix are defined as

M =
[

0 0
0 (ϕi,ϕ j)Σ

]
i j

, R =
[
β r′′(qk,χi,χ j)

]
i j , PT =

[
Aex

global −Bex→em
global

0 Aem
global

]
. (18)

Here, P is the representation of the discrete forward diffusion model; A ex
global and Aem

global are the
global stiffness matrices associated with the excitation and emission diffusion equations; and
Bex→em

global is the matrix which couples the excitation and emission linear systems. The subscripts
i, j in the preceding equations iterate over all degrees of freedom. The matrix C is defined as
CT = [C1,C2] with its components obtained by differentiating the semilinear form A in Eq. (5)
with respect to the parameter q:

C1 =
(

∂Dx(qk)
∂q

∇uk ·∇ψi,χ j

)
i j

+
(

∂kx(qk)
∂q

ukψi,χ j

)
i j

,

C2 =
(

∂Dm(qk)
∂q

∇vk ·∇ψi,χ j

)
i j

+
(

∂km(qk)
∂q

vkψi,χ j

)
i j
−

(
∂βxm(qk)

∂q
ukψi,χ j

)
i j

.

(19)

The right hand side terms in Eq. (17) are the discretized components of the negative gradient of
the Lagrangian:

F1 =
[−(Dx(qk)∇λ ex

k ,∇ϕi)− (kx(qk)λ ex
k ,ϕi)− γ

2 (λ ex
k ,ϕi)∂Ω +(βxm(qk)λ em

k ,ϕi)
−(vk − z,ϕi)Σ − (Dm(qk)∇λ em

k ,∇ϕi)− (km(qk)λ em
k ,ϕi)− γ

2(λ em
k ,ϕi)∂Ω

]
i
,

F2 =




−β r′(qk,χi)−
(

∂Dx(qk)
∂q ∇uk ·∇λ ex

k ,χi

)
−

(
∂kx(qk)

∂q ukλ ex
k ,χi

)
+

−
(

∂Dm(qk)
∂q ∇vk ·∇λ em

k ,χi

)
−

(
∂km(qk)

∂q vkλ em
k ,χi

)
+

(
∂βxm(qk)

∂q ukλ em
k ,χi

)




i

,

F3 =
[ −Dx(qk)∇ψi,∇uk)− (kx(qk)ψi,uk)− 1

2 (Sx,ψi)∂Ω − γ
2 (ψi,uk)∂Ω

−Dm(qk)∇ψi,∇vk)− (km(qk)ψi,vk)− γ
2(ψi,vk)∂Ω +(βxm(qk)ψi,uk)

]
i

.

(20)

For large domains and fine discretization, the linear system Eq. (17) can be as large as several
100,000 unknowns. Furthermore, the matrix is generally indefinite, restricting the choice of
available iterative linear solvers for determining the Gauss-Newton update directions. Thus,
instead of solving Eq. (17) directly, we use an efficient solver based on the Schur complement
developed in [19, 20]. By block elimination, Eq. (17) is reduced to the following sequence of
three equations:

{R+CT P−T MP−1C} δqk = F2 −CT P−T F1 +CT P−T MP−1 F3, (21)

P δ pk = F3 −C δqk, (22)

PT δdk = F1 −M δ pk. (23)

The matrix R +CT P−T MP−1C is the Schur complement matrix of the Gauss-Newton system.
Under practical conditions it is symmetric positive definite [19] and can thus be inverted ef-
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ficiently by iterative solvers such as the conjugate gradient method. Furthermore, the Schur
complement matrix is comparatively small (at most a few 1,000 to 10,000) with its size equiv-
alent to the number of discretized parameters, rather than the number of parameters, state, and
adjoint variables combined. Since the Newton method updates only approximates the direction
to the optimal solution, it is not necessary to solve Eq. (21) exactly for each Newton step. The
conjugate gradient iteration is thus stopped once the l 2 residual falls below a certain tolerance,
for example 10−3 times its initial value. Consequently, this method is a variant of truncated or
inexact Gauss-Newton methods [32].

2.3. Adaptive Mesh Refinement

The accuracy of finite element solutions of partial differential equations depends on the mesh
width. This is reflected in a priori error estimates comparing the exact solution u and the nu-
merically computed finite element solution uh. For the simple example of the Laplace equation,
an a priori error estimate would be [33]:

‖u−uh‖ ≤C(u) h2, (24)

where h is the maximum mesh size and C(u) is a constant that depends on the exact (and
unknown) solution, the domain, and element shapes, but not upon the mesh width. Thus, the
accuracy of the finite element solution can be increased by decreasing the maximum mesh size
h. Similar estimates may be derived for the system in Eq.s (1)–(2). The drawback of a priori
estimates is that the exact solution, and thus the numerical value of C(u), is unknown, so that
no quantitative bound on the error can be computed.

While Eq. (24) shows that it can be guaranteed that global mesh refinement reduces the
error in the solution, this does not represent an efficient strategy in general. A fine mesh is
only necessary where the solution varies greatly and where small cells are needed to accurately
capture this variation. Since it is in general unknown in advance where these locations are, a
posteriori error estimates have been derived in the mathematical community to provide criteria
for local mesh refinement. These estimates use the computed solution u h to not only provide
a bound on the error ‖u−uh‖ without requiring knowledge of the exact solution u, but also to
indicate on which cells the contribution to this error is largest. Thus, these estimates indicate
the cells for which mesh refinement will be most beneficial, and conversely for which cells,
mesh refinement will not yield a significant contribution to the reduction of the error. Using
this process, the mesh on which uh was computed can be appropriately refined, and the solution
is computed again on the refined mesh; this process is iterated until either the error estimate
indicates that the requested accuracy is obtained, or computational resources are exhausted.
The method in which only selected cells are repeatedly refined based upon an error indicator
is commonly referred to as adaptive mesh refinement. For nonlinear problems, an additional
advantage is realized by performing the initial Gauss-Newton updates on coarse meshes: finer
and thus computationally more expensive meshes are employed only near the solution which
reduces both the ill-posedness of the problem and the computational work in the initial steps.

A posteriori error estimates and adaptive mesh refinement have been extensively studied in
the last two decades. See [34, 35] and the references therein for an overview. However, most of
the previous work is tailored to model equations rather than parameter estimation problems with
the exception of Molinari et al. [36, 37] for adaptive mesh refinement in electrical impedance
tomography (EIT); see also [19, 20, 29, 38, 28, 39, 40, 41] for approaches in other fields.

In this work, we use two separate meshes that are adaptively refined. The first one is used for
the discretization of state and adjoint variables u,v and λ ex,λ em, while the second one is used
for the discretization of the parameter field q. The state/adjoint mesh is finer than the parameter
mesh in order to avoid stability problems with the saddle point problem Eq. (17). In addition,
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and in accordance with the regularity requirements of the equation, we discretize state and
adjoint variables using piecewise tri-linear finite elements, and the parameter with piecewise
constant functions. Whenever Gauss-Newton iterations on these meshes have reduced the error
function by a significant amount, both meshes are refined using a posteriori refinement criteria.
In this work, the state and adjoint mesh is refined using a variation of the refinement criterion
first derived by Kelly et al. [42]:

ηu
K =

h
24

‖[∂nuh]‖2
∂K , ηv

K =
h
24

‖[∂nvh]‖2
∂K , ηK = αηu

K +(1−α)ηv
K, (25)

where [∂nuh] is the jump of the normal derivative of the finite element solution u h across the
element boundary ∂K, and α is chosen so that the errors in the two variables are roughly
weighted equally. In our implementation, we refine those 35% of elements with highest error
indicator ηK and coarsen those 5% of elements with lowest errors in each cycle. Some other
elements are also refined to maintain numerical stability of the solution.

The mesh for q is refined by computing, for each cell, a discrete approximation to the gradient
of q weighted by the local mesh width [19]. Note that the choice of two separate meshes means
that the first mesh can be fine close to the source where the excitation fluence greatly varies,
while the second mesh will only be fine close to the fluorescent target and coarse everywhere
else. The detailed derivation of error estimates can be found elsewhere [19, 28, 35].

2.4. Software Implementation

A simplified block diagram of the tomography algorithm is shown in Fig. 1. At the beginning
of the algorithm, all variables are initialized on coarse meshes (mesh level m = 1): state/adjoint
variables are set to zero, while the parameter is set to the lower bound q 0 (the minimal back-
ground concentration). In each subsequent iteration, Gauss-Newton update directions are deter-
mined from Eq.s (21)–(23) and all variables are updated after computating the step length. The
program is terminated if the number of Gauss-Newton iterations exceeds the maximum number
of iterations kmax or if the model misfit 1

2‖v− z‖2
Σ is reduced below a prespecified threshold ε .

For the results reported in this paper we used kmax = 40 and ε = 10−15.
Mesh refinement is triggered if either (i) the Gauss-Newton step length α k is less than a

prespecified minimum step length αmin, or (ii) the nonlinear residual, rk = ‖Lx(xk)(·)‖, of the
optimality condition (9) has been sufficiently reduced on the current mesh m, i.e. r k ≤ εmeshrk0

m
,

where k0
m denotes the first iteration on mesh level m. In this work αmin = 0.15 and the error re-

duction threshold is εmesh = 10−4. Mesh refinement is followed by re-computation of synthetic
measurements z on the new, finer mesh.

This scheme for fluorescence tomography with adaptive mesh refinement was implemented
in C++ based on the deal.II finite element library [43]. Deal.II provides advanced object ori-
ented design techniques and support for the complex data structures needed for adaptive finite
element applications. While the current version of the software is used for an area excitation il-
lumination geometry as previously published [23], the implementation is also suitable for point
illumination geometries. Reconstructions were carried out on a dual processor (750MHz) Sun
Sparc workstation with 3GB of RAM.

3. Computational Experiments

Two computational experiments were performed to test the efficacy of the proposed algorithm:
image reconstruction of (i) a single fluorescent target, and (ii) of two closely spaced fluores-
cence targets of varying separation distance. The synthetic frequency-domain fluorescence data
was generated on a simulated 8× 8× 8 cm3 cube illuminated by a simulated expanded laser

(C) 2004 OSA 1 November 2004 / Vol. 12,  No. 22 / OPTICS EXPRESS  5411
#5220 - $15.00 US Received 7 September 2004; revised 18 October 2004; accepted 20 October 2004



Start

Stop

or

k = 0

Refine meshes
m = m + 1

pk+1 = pk + αkδpk

dk+1 = dk + αkδdk
qk+1 = qk + αkδqk

k = k + 1

false

true

false

falsetrue

1
2‖v − z‖2

Σ ≤ ε

Perform GN updates on
State/adjoint and parameter map

[Eq.(16) & Eqs. (21)–(23)]

true

Recompute synthetic data

k ≥ kmax

Generate synthetic data (z)
Initialize state and parameter

Set initial guess for parameter
meshes: m = 1

map: q = q0

rk ≤ εmeshrk0
m

αk ≤ αmin

z on refined meshes

Fig. 1. Adaptive tomography algorithm. GN stands for Gauss-Newton; see Section 2.4 for
a description of symbols.

beam with a Gaussian profile at the x = 0 plane, as shown in Fig. 2. This measurement geome-
try and phantom corresponds to experimental measurements previously reported [23]. Fluores-
cence phase and amplitude measurements were generated at the illumination surface in order
to mimic the actual experimental data collection. Random Gaussian noise of zero mean and
specified half width is then applied to these synthetic measurements.

3.1. Single Fluorescent Target

Data was generated for a 0.5cm diameter spherical target at a depth of 2.15cm from the il-
lumination surface at an off-center position (x = 2.15cm, y = 3.15cm, z = 3.15cm). The ab-
sorption and isotropic scattering properties of 1% Liposyn solution were chosen to mimic the
background of the phantom, corresponding to actual experimental measurements using a gain
modulated ICCD camera system [23]. For the simulated background absorption coefficient, we
chose µaxi = 0.023cm−1 and µami = 0.0289cm−1 [44]. The absorption coefficient due to fluo-
rophore at the excitation wavelength was set to µax f = 0.5cm−1 in the target and 0.005cm−1

in the background. The emission wavelength absorption coefficient was µ am f = 0.0506cm−1

in the target and 0.00506cm−1 in the background. The lifetime of the fluorophore was taken to
be τ = 0.56ns and the quantum efficiency was φ = 0.016 to match the corresponding proper-
ties of Indocyanine Green (ICG) dye used in experiments. The excitation wavelength for ICG
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Fig. 2. Area illumination and area detection geometry employed by Thompson et al. [23]

Fig. 3. Single target reconstruction: A black wire-frame depicts the actual target and colored
blocks represent the reconstruction. Top 10% of the contour levels of µax f are shown.

is 785nm and the emission data is collected at 830nm. The reduced scattering coefficient was
taken as µ ′

s = 9.84cm−1 in both the target and the background, and for this study was taken to
be the same at excitation and emission wavelengths. Two percent random Gaussian noise was
added to real and imaginary parts of the synthetic emission fluence solution at the measurement
surface at x = 0.

3.2. Two Fluorescent Targets

Tomographic reconstructions were performed from synthetic data generated from the solution
of Eq.s (1)–(3) for two closely spaced fluorescent targets to test the resolving ability of the
adaptive inverse algorithm. Two spherical targets with diameter 0.4cm were placed at an edge
to edge distance varying from 1cm to 0.1cm, the latter of which is the continuum limit of the
diffusion equation for the chosen optical properties. The depth of both targets was simulated
to be 1.2cm from the illumination and measurement plane at x = 0. The optical properties of
targets and background as well as the noise level remained the same as in the single target study.

4. Results

4.1. Single Fluorescent Target

Figure 3 illustrates the tomographic reconstruction for the single target case after 22 Gauss-
Newton update steps utilizing approximately 2hrs of CPU time. The location of the target is
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Fig. 4. Adaptive mesh evolution for state/adjoint (left) and parameter discretization (right).
Meshes are shown at 1st, 11th and 22nd Gauss-Newton iterations.

reconstructed accurately. However, the magnitude 0.0176cm−1 of reconstructed µax f is lower
than the actual value 0.5cm−1, which is an artifact of the L2 regularization used (r(q) = 1

2‖q‖2,
with a fixed value β = 10−3). Figure 4 shows the evolution of state/adjoint and parameter
meshes during the reconstruction process. The algorithm started with coarse initial meshes
with 64 hexahedral elements. Five automatic mesh refinements were carried out by the algo-
rithm. The final state/adjoint mesh consisted of 116,936 nodes and was refined predominantly
on the illumination plane to accurately resolve the Gaussian NIR excitation source. The final
parameter mesh had 1016 elements, mostly located around the reconstructed fluorescent tar-
get. A uniformly refined mesh with the same parameter mesh resolution as the adaptive mesh
surrounding the target would have 323 = 32,768 unknowns. The advantages of adaptive refine-
ment for the reduction of the total number of unknowns and the improvement of resolution are
obvious.
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d Iter. ‖q−qtrue‖2
1
2 ‖v− z‖2

Σ (x,y,z)true (x,y,z)recovered Nq

1.0142 27 0.125 2.58 ·10−9 (1.2,3.15,3.15) (1.2,3.13,3.20) 729
(1.2,4.15,4.15) (1.2,4.19,4.22)

0.6607 18 0.127 2.27 ·10−9 (1.2,3.625,3.625) (1.4,3.68,3.625) 1359
(1.2,4.375,4.375) (1.2,4.30,4.30)

0.3071 27 0.119 2.14 ·10−9 (1.2,4.23,4.23) (1.1,4.23,4.27) 1359
(1.2,4.73,4.73) (1.2,4.73,4.71)

0.1657 28 0.118 2.31 ·10−9 (1.2,3.8,3.8) (1.3,3.9,3.8) 638
(1.2,4.2,4.2) (1.3,4.1,3.8)

0.1 25 0.121 2.47 ·10−9 (1.2,3.82,3.82) (1.2,3.82,3.82) 1247
(1.2,4.18,4.18)

Table 1. Summary of results for dual fluorescent target reconstructions. d is the edge to
edge target separation in cm; Iter. is the Gauss-Newton iteration for which the other re-
sults are reported; ‖q− qtrue‖2 is the error in reconstructed parameter; 1

2 ‖v− z‖2
Σ is the

meausurement error; Nq is the number of elements (unknowns) in the parameter mesh.

4.2. Two Fluorescent Targets

Figure 5 shows the tomographic reconstructions for targets separated by 1.0142, 0.6607,
0.3071, and 0.1657cm. The reconstruction process was started with the same coarse state and
parameter meshes as used in the single target case. A heuristic criterion was used to assess the
reconstructions of the two targets: the top 10% contour levels of the µ ax f map were plotted
and if two distinct maximum were visible, then the two targets were considered to be identified
separately. The centroid of these two maxima was computed and treated as the reconstructed
centroids. The centroids of the two targets was reconstructed accurately for target separations
of 0.1657cm and greater, when the reconstructed targets begin to appear as one.

At a target spacing of 0.1cm, the reconstruction is biased towards one of the targets, and no
maximum associated with a second target is resolved at this distance (see Fig. 6). This is con-
sistent with the fact that this separation is approximately the mean isotropic scattering length,
below which the continuum assumption necessary for the validity of the diffusion approxima-
tion is violated. No image resolution below this threshold can be expected.

Table 1 summarizes the computational results for the dual target reconstructions, demon-
strating the efficacy of adaptive mesh refinement for determining the maximum achievable
resolution for a given experimental configuration in the presence of measurement noise. The
reconstructed targets appear slightly closer than the actual separation as the target spacing is re-
duced. This can be explained by the merging of the fluorescence emission fields with decreasing
distance when using only the reflectance data for image reconstruction as we have done here.

5. Conclusions

In this work, we have demonstrated an efficient adaptive finite element algorithm for fluores-
cence optical tomography. The algorithm is formulated in function spaces independent of any
a priori discretization in order to allow for meshes to change as nonlinear (Gauss-Newton)
iterations progress. Independent meshes have been used for the state/adjoint variables and the
parameter map, and physical information about upper and lower bounds on the unknown param-
eters have been incorporated to improve the stability of the algorithm. The choice of separately
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(a) (b)

(c) (d)

Fig. 5. Dual target reconstructions: A black wire-frame depicts the actual targets and col-
ored blocks represent the reconstruction. Top 10% of the contour levels of µax f are shown.
Edge to edge spacing: (a) 1.0142cm, (b) 0.6607cm, (c) 0.3071cm, and (d) 0.1657cm.
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Fig. 6. Dual target reconstruction for 0.1cm target separation.

adapted meshes (with the parameter mesh being coarser), different shape functions for the state
and parameter variables, as well as the inclusion of bounds on the parameter and a Tikhonov
regularization term yield an algorithm that is able to cope with the well known ill-posedness
of optical tomography for comparable high resolution imaging with acceptable numerical ef-
fort in the presence of noise. The discretization scheme can be contrasted with that recently
proposed by Huang et al. [45], in which prior information about the subdivision (discretiza-
tion) of the domain is obtained from ultrasound images. While their strategy requires that the
target is structurally dissimilar to the surrounding tissue to obtain meaningful information via
ultrasound or MRI, our algorithm is able to find high resolution discretizations automatically
by using the solutions on coarse grids to generate finer grids where necessary. To reiterate, the
final number of unknowns (between 729 and 1359) is 25 to 40 times less than that necessary
with the use of conventional finite element based optical tomography schemes for large tissue
volumes while still retaining the resolution in the regions of interest. In addition, the reduced
number of unknowns in our adaptive finite element scheme greatly reduces the ill-posedness
of the inverse problem and thus aids in the quality of the reconstruction. Jiang et al. [46] have
also proposed a dual and adaptive meshing scheme for diffuse optical tomography, However
their scheme doesn’t implement automatic mesh adaptation with a posteriori error estimates.

We have demonstrated image reconstruction from frequency-domain fluorescence re-
flectance data arising from area-illumination. In comparison to circumferential point illumina-
tion measurements, reflectance measurements possess reduced information content for image
reconstruction, but make the approach practical for patient imaging. This reflectance geometry
and the associated 3-D adaptive finite element reconstruction algorithm could be pertinent for
sentinel lymph node mapping as well as intraoperative localization of metastatic lesions (as
used to track the progress of breast cancer). Our results provide the first report of a practical
approach which may lead to high resolution molecular imaging in the clinic.
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