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ABSTRACT 
 
In this contribution we introduce adaptive finite 
element methods for forward modeling in fluorescence 
optical tomography. Adaptive local mesh refinement 
increases the accuracy of the solutions of coupled 
photon diffusion equations in a computationally 
optimal manner and when implemented in the inverse 
problem, can impact the resolution of fluorescence 
enhanced tomography. An adaptive Galerkin finite 
element scheme is implemented and the simulation 
results are compared with experimental data obtained 
from a tissue phantom by an area illumination and area 
detection scheme. 
 

1.0 INTRODUCTION 
 
Fluorescence enhanced frequency domain optical 
tomography is an emerging  functional imaging 
modality which involves the administration of a 
fluorescent contrast agent as opposed to radio-isotope 
as is used in conventional nuclear imaging techniques. 
NIR fluorescence enhanced imaging may be sensitive 
to targets with nano-molar concentrations of 
fluorophore making it ideal for molecular imaging 
applications [1]. Fluorescence enhanced optical 
tomography can provide images of fluorescent yield 
and lifetime within the tissue domain by utilizing the 
boundary measurements of photon energy resulting 
from the tissue stimulation via infrared light sources at 
the boundary.  Tomography requires repeated solution 
of a system of coupled elliptic partial differential 
equations describing the time-dependent fluorescent 
light generation and transport within the tissue. 

The finite element solver for the system of 
equations constitutes the bulk of computational cost of 
tomographic imaging. Since near infrared light 
attenuates rapidly in tissue, the light energy distribution 
within the tissue has steep gradients. To accurately 
predict energy distributions, the finite element mesh 
needs to be suitably refined near the light sources and 
boundaries. Traditionally this task has been performed 
a priori with meshes optimally designed for given 
imaging geometries. In this contribution we propose the 
use of a posteriori error estimates for adaptive mesh 
refinement to optimally model the strongly graded light 
distribution within tissues. Specifically we demonstrate 

this novel forward modeling scheme for fluorescence 
frequency domain measurements performed by the 
innovative use of area illumination and area detection 
on the surface of a tissue phantom [2, 3] 
 

2.0 BACKGROUND 
 
In frequency-domain fluorescence optical tomography, 
the propagation of intensity modulated near infrared 
excitation light and the generation and propagation of 
emitted fluorescent light is described by the coupled 
diffusion equations: 
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Where ,x mΦ (photons/cm2s) is the complex photon 
fluence of the excitation (subscript x) or emission 
(subscript m); (cm) is the optical diffusion 
coefficient at the excitation or emission wavelength; 

is the velocity of light in the media; 

,x mD

c ,ax miµ (cm-1) is 
the absorption owing to the non fluorescing  
chromophores; ,ax mfµ (cm-1) is the absorption due to 
exogenous fluorophores; ω  is the angular modulation 
frequency (rad/s); φ  is the quantum efficiency of the 
fluorescent emission and τ is the lifetime(ns) of the 
fluorophores. Equations (1) and (2) are solved with the 
Robin boundary conditions: 

,
, ,

( , )
2 ( , )x m

x m x m xD S
n

( ) 0
ω

γ ω
∂Φ

+Φ +
∂

r
r r =      (3) 

Where  denotes the outward normal to the 
surface;

n
γ  is a constant accounting for the refractive 

index mismatch at the boundary;  term appears in ( )xS r



the boundary condition for equation (1) only and it 
accounts for the excitation source distribution. 

The forward imaging problem for fluorescence 
enhanced optical tomography constitutes the 
determination of boundary emission fluence for a given 
optical property distribution in the tissue domain. 
 

3.0 FINITE ELEMENT SOLUTION SCHEME 
 
We have employed the Galerkin finite element method 
for solving Equations (1) and (2). The weak or 
variational form of eqns (1) and (2) with boundary 
conditions provided by eqn (3) can be written as: 
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              Where are the bilinear forms 
associated with the coupled diffusion equations 
and

, ,( ,x m x ma Φ

,( ,x mf w  are the linear forms for the right hand 
side;  denotes the weighting functions. The solution 
of the variational problem [ ,  satisfies the 

system of equations (4) for all ; is the vector 
space of approximating functions. For the finite 
element method V is the space of piecewise 
polynomials. Although triangular and tetrahedral 
elements are popular in the optical tomography 
community, we have chosen eight node tri-linear 
hexahedral brick shaped elements since they allow 
efficient and computationally stable implementation of 
adaptive mesh refinement. 
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The excitation and emission fluences are approximated 
as: 
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functions for the finite element space V and
1 2 3{ , , ......... }nw w w w

,
n
x mΦ  

denotes the fluence values at the nth node. With these 
substitutions, the system of equations (4) is transformed 
into a linear system of equations for each element 
which are then assembled into a global linear system. 
The unknowns of the global linear system are the nodal 
values of excitation and emission fluences: 

1 2 3
, , , , ,[ , , ........ ]

xx x

m xm xm

N
x m x m x m x m x m

K b

K B

transpose

Φ =

Φ = Φ

Φ = Φ Φ Φ Φ

  (6) 

 

,x mK are the global stiffness matrices resulting from the 

L.H.S integrals in equations (4); is the source vector 

for the excitation equation; 
xb

xmB is the coupling matrix 
resulting from the R.H.S of the emission diffusion 
equation. The number of unknowns in this system is on 
the order of 104 for fluorescence tomography 
applications in large tissue mimicking phantoms. 
Clearly optimal mesh generation is essential for 
accurate solution at a reasonable computational cost. 
 
3.1 A posteriori error estimation and adaptive mesh 
generation 
The error in finite element solution scales with the 
element size. Hence the accuracy of the solution 
increases with mesh refinement. With only a-priori 
knowledge of the error in finite element solution, 
uniform global mesh refinement is the only possible 
means to improve the accuracy of the solution, 
However in fluorescence tomography applications 
where solutions have large gradients within only 
limited regions of the domain, global mesh refinement 
can result in millions of nodes, which makes the 
solution for the system of equations (6) 
computationally impractical. Local mesh refinement 
within the regions associated with large variation of the 
excitation or emission fluence increases the accuracy of 
the solutions while keeping the degrees of freedom of 
the system in check. In this work the solution process is 
started with a coarse mesh and successive meshes are 
generated according to an a-posteriori error estimator. 
We have used the error estimator developed by Kelly 
[4]. Kelly’s error estimator is a residual based energy 
norm estimator which refines the mesh, at locations 
where the gradient of the solution shows rapid spatial 
variation. After the solution on the coarse mesh, the 
error for each element is calculated by the following 
equation: 
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Where Kε is the error for Kth finite element; h is the 

element size measure;  is the jump of normal 
derivative of the finite element solution across the 
element boundary 
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K∂ . For our implementation we 
refine 70% of the elements with highest error values 
and coarsen 3% of the elements with lowest errors in 
each cycle. Some other elements are also refined to a 
lower degree to maintain numerical stability of the 
solution. 
  The entire scheme for the solution of coupled 
diffusion equations with adaptive mesh refinement was 
programmed in C++ utilizing Deal.II finite element 



libraries. Deal.II was developed by a team of 
developers led by Dr. Wolfgang Bangerth [5]. Deal.II 
provides advanced object oriented design techniques 
and support for complex data structures needed for 
adaptive finite element applications. 
 

4.0 FORWARD MODELING FOR AREA 
ILLUMINATION AND AREA DETECTION 

SCHEMES 
  
The adaptive forward solver was used to predict the 
fluorescent frequency domain photon migration 
measurements from a tissue phantom containing a 
fluorescent target, by means of area illumination and 
area detection on the same surface. The phantom was 
an 8x8x8 cm3 container filled with 1% Liposyn 
solution with a 1-ml “target” containing 1-micromolar 
concentration of Indocyanine Green in 1% Liposyn 
suspended within the phantom at a depth of 1 cm from 
the surface. The tissue phantom was illuminated with 
an expanded laser beam of 785 nm excitation light. The 
excitation light was intensity modulated at 100 MHz. 
Area detection of frequency-domain parameters of 
amplitude and phase shift accomplished using a gain 
modulated image intensified charge coupled device. 
The experimental setup employed is detailed in Figure-
1 [2]. The reader is referred to references [1] and [2] for 
the details of instrumentation and data acquisition 
scheme. 

The finite element simulation was started with 
a uniform coarse mesh with the discretization level of 
16 x 16 x 16 elements.  Three adaptive local mesh 
refinements were carried out to obtain a resolution of 
0.0625 x 0.0625 cm at the detection surface which 
matched the measurement resolution of the image 
captured by the CCD. The simulated values of 
amplitude and phase shift for fluorescence were 
referenced with respect to the point on surface with 
maximum fluorescent amplitude and the referenced 
simulated and experimental measurements were 
compared to analyze the model match. 
 

5.0 RESULTS AND DISCUSSIONS 
 
Figure-2 depicts the evolution of mesh with the three 
adaptive local refinements on a cut plane drawn at 

. The final mesh contained 147292 nodes. The 
total computer time taken for solution was 15 minutes 
on a dual processor Sun Sparc workstation. The mesh is 
refined in the regions with large gradients in the 
excitation and emission fields. Figures 3 and 4 show 
the fluorescent amplitude and phase on the detection 
area on the top surface for the experimentally 
measurements and the finite element simulation. The 

average error between the measurement and prediction 
using the adaptive finite element predictor is 12.25% 
for fluorescent amplitude and 1.47

4x =

◦ for fluorescent 
phase. The highest errors are observed at the edges of 
the detection area and are attributed to edge effects in 
the ICCD detection system.  
 
 

6.0 CONCLUSIONS 
 

We have demonstrated a novel approach for finite 
element based forward modeling in fluorescence 
enhanced optical tomography. With adaptive local 
refinement there is no need for suitable a priori 
designed finite element meshes for accurate solution of 
diffusion equations. The solutions from adaptive finite 
element solver match the experimentally observed 
fluorescent field within reasonable limits of 
experimental error. Currently work is under progress 
for the application of adaptive mesh refinement 
techniques for the inverse problem of estimating the 
fluorescent yield distribution in the tissue domain by 
using an adaptive discretization of the unknown 
fluorescent yield. 
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Figure-2: Evolution from initial coarse mesh to locally refined mesh in three steps 
                 Meshes at Cutting planes drawn at x = 4 are depicted 
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