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SUMMARY

The main theme of this paper is the modelling error associated with the choice of constitutive equations
and associated parameter sensitivity. These key concepts are �rst discussed in a general way and
explored in detail subsequently for three �ow application problems which share certain similarities not
only in the �nite element formulation but also in the nature of the non-linear constitutive laws that
are investigated. The speci�c �ow problems involve: density driven �ow in porous media, the Powell–
Eyring model for generalized Newtonian �ows, and the related Glen’s �ow type of constitutive relations
for glacier modelling. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. MODEL SELECTION AND APPROXIMATION ERROR

Continuing advances in high-speed computing permit more complex non-linear problems to
be simulated. Non-linearities can arise in several common ways, perhaps the most important
being non-linear couplings such as the advective term in �ow and transport processes, through
various non-linear reaction terms and through non-linearities associated with the applicable
constitutive models. The focus of the present work is on mathematical and numerical issues
associated with the constitutive model assumptions and the resulting model errors. We also
study the sensitivity of models to model parameters.
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The increase in computer power implies also that higher resolution meshes will allow
�ne-scale phenomena to be captured by an approximation of a speci�c mathematical model.
Furthermore, the very presence of such non-linearities in the mathematical model implies that
there may be multiple solution states, that these states may have very di�erent structure and
that mesh resolution is important in constructing a reliable discrete non-linear approximation.
If the mesh is not adequate then the discrete model may not yield the right solution multi-
plicity, turning points, bifurcation paths, and so on for the chosen model. Ideally, a rigorous
a posteriori error analysis should form the foundation for an error indicator construction to
ensure reliability of the mesh and approximate solution. The result then is an approximation
ũ to the exact solution u for a given model such that the error e= u− ũ is small in a speci�ed
sense [1, 2].
We will be concerned here to a lesser extent with mesh resolution e�ects but our main focus

is on errors directly arising from the constitutive models. In this context, a single mathematical
problem is not speci�ed a priori but rather we have in mind a family of mathematical problems
corresponding to a choice of constitutive models.
The above point concerning the choice of constitutive model from a family of possible

models is very germane today. This is especially the case when we have a standard linear
model and an option to use a more complicated non-linear model. In particular, we need to
be able to assess the modelling improvement (or modelling error) resulting from the choice
of one constitutive model over another. If the associated error in the approximation, based
on a simple linear constitutive model, is essentially local to some subdomain, then it may
be fruitful to employ the linear model throughout most of the domain and the non-linear
model only in the subdomain. Such a strategy was applied to advantage for phase change
problems in melting and solidi�cation in Reference [3] where a non-linear capacitance model
was con�ned to the local melt=solidi�cation zone.
These ideas are far from new. Prandtl exploited similar concepts in developing boundary

layer theory a century ago [4]. Related ideas also have been applied numerically to couple
exterior inviscid linear potential �ows to non-linear laminar boundary layer �ows; similarly
elastic–plastic models in solid mechanics permit invoking the non-linear material model locally
based on a local yield assessment, etc.
Multiscale problems involving non-linearities have classically been treated by using sin-

gular perturbation expansion techniques that are able to identify, in a matched asymptotic
sense, those subregions where di�erent models apply. In e�ect, the scaling analysis permits
a simpler model in appropriate subregions such as the exterior inviscid potential �ow region
in the example mentioned above. The perturbation analysis is a rigorous and precise way to
replace a complex mathematical problem by a sequence of simpler problems that are accurate
approximations with decreasing model error speci�ed a priori in a matched asymptotic sense.
Another constructive technique for assessing the non-linear model has been to approach the

problem in a manner analogous to determining the discretization error. Namely, the goal is to
determine an analogous modelling error. This is not a di�cult concept and has been applied
in an informal manner for a long time in practice. For example, in Reference [5] a �ow
chart and algorithm are presented which assess both discretization and model error. Of course
this is still a simplistic and intuitive approach from the modelling standpoint since it implies
replacement of an inferior model by a better model and re-computation with the improved
model when the predictions fail an elementary model reliability test (e.g. turbulent velocity
regime encountered, yield stress exceeded, etc.). More generally, one may solve the problem
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with the simpler model (e.g. the linear constitutive model) until the model test is violated
and then, using this solution as a starting iterate, continue to solve the problem with the more
complex constitutive model. This idea of ‘model continuation’ has been used in semiconductor
device simulations, by progressing from a potential solution to a coupled drift-di�usion model
and �nally, perhaps, a hydrodynamic model [6]. In this case the model continuation procedure
also enhances the reliability and e�ciency of the solution. Moreover, the di�erence in the
solutions obtained with the respective models is also a reliable assessment of the modelling
error. This di�erence in model solutions is also in many respects analogous to the approach
for assessing discretization error in which the solution for a uniform re�nement of a grid is
computed to obtain a reliability check on a given coarser mesh solution (as advocated, for
instance, in the ASME �uids journal instructions concerning papers on computational �uid
dynamics [7, 8]).
In order to illustrate these concepts, let us assume for the moment that we adopt this direct

approach for model comparison. Let ũ0 and ũ1 denote the solution to the discretized problem
with the respective level 0 base model and with the level 1 improved model. For example, the
base (level 0) model might be a linear problem and the improved (level 1) model might be
a non-linear model corresponding to an improved constitutive relation. Further, let us assume
that the discretization error has been controlled using uniform or adaptive mesh re�nement
(AMR) in approximating the respective exact solutions u0 and u1. Note that the corresponding
grids will, in general, be di�erent in this scenario. The discretization errors associated with
the two respective models are e0d= u

0 − ũ0 and e1d= u1 − ũ1. The unknown ‘exact’ modelling
error eM = u1−u0 is approximately given by ẽM = ũ1− ũ0 =−(u1− ũ1)+(u1−u0)+(u0− ũ0)=
eM−e1d+e0d. Hence, provided the respective model discretization errors are controlled to a small
enough error tolerance then e1d and e

0
d are negligible and to �rst order ẽM = eM . That is, the

di�erence between the numerical simulations will be a reliable approximation of the modelling
error. However, it is also clear that care must be exercised in controlling the discretization
error in both simulations. We elaborate on this point in some of the later numerical studies.
It is also clear from the preceding remarks that, in many applications, one expects the

modelling error ẽM to be small in all or most of the domain so that the more re�ned model
may be needed only to improve local behaviour. This is especially the case in well behaved
elliptic boundary value problems. Hyperbolic problems and convection-dominated transport
processes may be more sensitive, as are problems exhibiting instabilities, with singularities,
or sensitive to ‘imperfections’ as seen later in the Elder–Voss–Souza (EVS) problem.
Theoretical consideration of modelling error: As an illustrative case, let us introduce the

balance equation

N (u)=−∇ · (k(∇u)∇u)=f (1)

where the scalar material property k in the constitutive relation depends on the solution gradi-
ent. For simplicity we assume homogeneous boundary conditions for u. The balance equation
may be considered as the ‘true’ model, i.e. one that is most physically and mathematically
accurate.
Next consider a sequence of approximate models with simpli�ed coe�cient function k‘:

N‘(u‘)=−∇ · (k‘(∇u‘)∇u‘)=f (2)

Here the index ‘ is used to indicate the level of model, with the balance equation (1) being
the limit of the sequence of models. The weak solutions u and u‘ are assumed to lie in the
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same Hilbert space V equipped with the inner product denoted by (·; ·). Let ‖∇w‖ denote a
norm equivalent to the H 1(�)-norm of w ∈ V and ‖ · ‖∗ the corresponding dual norm. We
now derive a condition that ensures that the ‘model discrepancy’ for the �ux

k(∇u)∇u− k‘(∇u)∇u (3)

remains small and examine a global bound for the modelling error.
If N‘ is a continuous, strongly monotone operator on V , then there exists a constant a¿0

such that

a‖∇u‘ − ∇u‖26 (k‘(∇u‘)∇u‘ − k‘(∇u)∇u;∇u‘ − ∇u)

= (k(∇u)∇u− k‘(∇u)∇u;∇u‘ − ∇u)

6 ‖k(∇u)∇u− k‘(∇u)∇u‖∗ ‖∇u‘ − ∇u‖ (4)

In other words, the modelling error bound is proportional to the norm of the model discrep-
ancy. Under the assumption that ∇u is pointwise bounded, we see that if

‖k(∇u)∇u− k‘(∇u)∇u‖∗¡�‘ (5)

where �‘ represents some acceptable tolerance, then the modelling error satis�es ‖∇e‖6�‘=a.
Bound (5) is achieved if the material property satis�es, for example,

sup
t¿0

|k(t)t − k‘(t)t|6�‘ (6)

If we have two solutions u0; u1 corresponding to two models k0 and k1, then

r1(u0)=−∇ · (k1(∇u0)∇u0)− f=−∇ · (k1(∇u0)∇u0) +∇ · (k1(∇u1)∇u1) (7)

We have from the mean value theorem that, for any v ∈ V vanishing on the boundary,

(r1(u0); v) = (k1(∇u0)∇u0 − k1(∇u1)∇u1;∇v)

=

(∫ 1

0
(k1(t)t)′|t=s|∇u0|+(1−s)|∇u1|(∇u1 − ∇u0) ds;∇v

)
(8)

Consequently, for (k1(t)t)′ bounded above and below by positive constants, the modelling
error is bounded globally above and below by the residual error

C1‖r1(u0)‖∗6‖∇u1 − ∇u0‖6C2‖r1(u0)‖∗ (9)

An analogous result involving ‖r0(u1)‖∗ may similarly be derived, and for a linear model
we usually have uniform bounds on (k0(t)t)′. For a higher level model with coe�cient such
that (k1(t)t)′ is not uniformly bounded, bounds (9) on the modelling error involving ‖r1(u0)‖∗

fail to hold but those involving ‖r0(u1)‖∗ remain valid. However, the latter is not a useful
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practical result because bounds involve u1. Computable indicators using r1(ũ0), where ũ0 is
the computed approximation with the level 0 model, are considered in more detail later.
Local model error indicators: The above observation implies that one may be able to assess

model adequacy by less expensive local model error indicator approaches. This appears more
di�cult than in the analogous idea for mesh improvement since the underlying governing
equations now are di�erent. The idea has merit since solution of the re�ned model may be
expensive if, in fact, it has been implemented. To initiate and motivate this line of reasoning,
let us draw on ideas used in the context of mesh re�nement indicators.
Let again N0(u0)−f=0 be the level 0 model equation and N1(u1)−f=0 be the level 1

model equation. One possibility here is to �rst use a simple residual-based indicator to guide
the mesh improvement for the base (level 0) model and compute a numerical approximation ũ0

on some given mesh. Introducing the approximation into the level 0 equation, the correspond-
ing computable residual is r0(ũ0)=N0(ũ0)−f. Next, substituting ũ0 in the governing equation
for model level 1 we get a new residual (on the same mesh) of r1(ũ0)=N1(ũ0)−f. This is
simply an inexpensive post-processing calculation and r1(ũ0) represents the amount by which
ũ0 fails to solve the more complex model. Since f=N1(u1) we have r1(ũ0)=N1(ũ0)−N1(u1).
Where ũ0 is close to u1, we expect r1(ũ0) to be small. Elsewhere the approximation is not ad-
equate and the model error may be large. Let us assume for illustrative purposes that N0 =L0
is a linear operator and N1 =L0 + n1; that is, N1 is the linear operator plus a new non-linear
term or terms n1. This decomposition is often encountered in practice. Then the residual for
the re�ned model becomes r1(ũ0)=N1(ũ0) − f=L0ũ0 + n1(ũ0) − f= r0(ũ0) + n1(ũ0). This
implies that evaluating the contribution of the additional terms n1 at the model 0 solution will
give a guideline to the local model error and determine if and where the model needs to be
re�ned to the level 1 model. The term r0(ũ0) is an indicator of the discretization error for
the model 0 approximation ũ0. Clearly, this model adaption can be automated as part of the
simulation together with adaptive mesh re�nement.
Of course, we are interested in how good an approximation our numerical solution ũ0 is for

the exact solution u1 of the better model described by the operator N1. For this, let �= u1− ũ0
be the error. To �rst order in the error �, we then have

0=N1(u1)− f=N1(ũ0 + �)− f≈N1(ũ0)− f + N ′
1(ũ

0)� (10)

or, equivalently, to �rst order

N ′
1(ũ

0)�=−r1(ũ0) (11)

There are several ways to exploit this equation, all of which are related to methods that are
also commonly used in the literature on residual-based a posteriori error estimates for AMR.
The �rst is to explore whether it is useful to continue the solution process with the more
complicated model at all: if we can show that the error � for a given model residual r1(ũ0)
is smaller than a given tolerance, then we can stop computations with the approximation ũ0

we have obtained using the simpler and presumably cheaper model. For this, assume that
N ′
1(ũ

0) satis�es a stability estimate of the form ‖N ′
1(ũ

0)−1‖6CS for an appropriate norm; then
‖�‖6CS‖r1(ũ0)‖. Such stability estimates are available, in particular for elliptic problems, and
are extensively used both in the analysis of partial di�erential equations and the a posteriori
estimation of �nite element errors [9].
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Next, let us assume that instead of the global error we are, for example, interested in
the solution in a certain part of the domain, the heat �ux across a boundary, or the drag
on a body immersed in a �uid. In this case, assume the quantity we are interested in is a
functional J (u), and we ask whether J (ũ0) is good enough, or whether we need to use the
more complicated model. To treat this, we use the framework presented in Reference [1].
Assuming for a moment that J is a linear and bounded functional, then it can be represented
by J (’)= (j; ’) with an inner product (·; ·); in view of the linearity, the question of reliability
of ũ0 is equivalent to asking whether J (�) is small enough. To answer this, de�ne z to be
the solution of the dual problem N ′

1(ũ
0)∗z= j. Then,

J (�)= (j; �)= (N ′
1(ũ

0)∗z; �)= (z; N ′
1(ũ

0)�)= − (z; r1(ũ0)) (12)

In practice, the solution z of the dual problem can also be approximated numerically. Again,
if J (�) is already small, then there is no need to do any further computations with the more
expensive model N1.
Both the formulas for ‖�‖ and J (�) can also be used to drive an adaptive procedure.

Since they can be split up into local contributions for each cell of a �nite element or �nite
di�erence discretization, we can use these indicators for either local mesh re�nement, or
for model re�nement. In particular, if the problem allows one to choose di�erent models in
di�erent parts of the domain, this can be used to select those cells where the more expensive
model is preferable.
Finally, (11) can also be used to reduce the error since it is of defect correction type.

It allows us to either do an approximate global solve for �, or, for example, solve local
problems in analogy to inexpensive methods for a posteriori error estimation in �nite element
methods. In both cases, a new approximation ũ is obtained; since in Equation (11) we have
not assumed anything about the origin of ũ0, we may then apply the above observations to ũ
again.
Subgrid models: The following porous media �ow problem indicates the relevant ideas. In

porous media �ows, the Darcy �ow law for a homogeneous medium is the standard consti-
tutive �ow model. However, in oil reservoir simulation and similar groundwater applications
involving wells, the �ow rate near wells may be large, and more complex non-linear constitu-
tive models such as Forchheimer’s �ow model have been proposed. Both models are actually
simpli�cations of Navier–Stokes formulations of viscous �ow problems.
Porous media �ows involve scales ranging from the macroscopic behaviour associated with

the Darcy �ow constitutive relation at the coarse scale to �ow through the �ne scale pore
structure of the medium. Recent homogenization and multiscale averaging approaches attempt
to bridge the scale e�ects either at the level of the mathematical model or by subgrid ap-
proaches in an associated numerical scheme. The usual approach is to assume the same �ow
model and constitutive relation apply at both scales. This homogenization to the macroscale
then is designed to treat the e�ect of variation in material properties. However, one may have
a coarse grid model based on Darcy �ow as the level 0 model and a multiscale model for
level 1 that attempts to encapsulate the key contributions arising from the �ne scale �ow
behaviour due to a di�erent model. The previous strategy can be modi�ed to assess model
reliability in this scheme as follows: assume a calculation at a given timestep is made with
the simpler model using the macroscopic Darcy �ow law (level 0) but the local behaviour at
this coarse cell block level has high �ow rates; then a local solution on a subdomain using the
subscale model (level 1) can be used to assess the adequacy of the Darcy model. Of course,
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one could also apply this approach to every coarse grid cell in level 0, but the computational
overhead is a factor that must be considered. It is well known, however, that in porous media
that contain fractures or �ne scale channels, simple homogenization with the usual Darcy
�ow law can under-predict �uid transit times by an order of magnitude or more. Hence, in
certain applications such as risk assessment of radionuclide transport to the water supply, an
improved capability to assess model error and invoke more reliable models is desirable.
Note that one can also extend the previous local residual argument to this multiscale subgrid

situation—the approximate level 0 solution ũ0 for the Darcy coarse grid model is substituted in
the subgrid model equations to construct a subgrid residual. This subgrid model would involve
a di�erent constitutive model, and the associated subgrid residual can also be projected against
the coarse grid �nite element basis to obtain a coarse grid indicator of model error e�ect from
the subgrid enhanced model.
Dial-an-operator capability: The ability to explore model error and the e�ect of di�erent

choices of constitutive models is facilitated in our subsequent studies by the use of a dial-
an-operator capability in the software framework that permits changing the structure of a
di�erential equation and also adding more equations. Hence we can make certain changes
to the constitutive models with relative ease. This facilitates comparison studies of di�erent
models and we have written additional post-processing software for detailed comparison of
results from di�erent models and graphical display of the model error. Graphical displays
describing the sensitivity of the solution to changes in key parameters are also developed. The
dial-an-operator implementation has not yet been extended to dynamically adapt the model
during a simulation. It is, however, a relatively straightforward matter for us to implement a
simple residual-type post-processing capability for local model reliability assessment.

2. PARAMETER ESTIMATION AND MODEL SELECTION

In the preceding discussion we have focused primarily on model error associated with dif-
ferent choices or forms of constitutive relations. However, given a speci�c constitutive law
such as the Darcy �ow relation, a density–concentration relation, the Powell–Eyring viscos-
ity relation for a generalized Newtonian �ow, or the Glen’s �ow law that are all considered
later, various parameters are needed to de�ne the speci�c problem. Typically, such parameters
are obtained from experimental studies. In groundwater and reservoir �ow cases they are a
result of averaging approaches for reservoir characterization using, for instance, seismic data
and a sparse set of drilling ‘core’ samples. Even in well-controlled industrial manufacturing
procedures there will be statistical variations in material parameters. If the model is ‘robust’
or, let us say, ‘well-conditioned’ with respect to parameter variation then the response of the
model will generally be insensitive to small changes in the material parameters. On the other
hand, if the model is not robust with respect to parameter changes or to other ‘imperfec-
tions’ then we refer to the model as ‘imperfection sensitive’ or an ‘ill-conditioned model’.
Indeed it may be the case that the underlying physical problem exhibits instabilities and is
also ‘imperfection sensitive’. Furthermore, adding dissipation to stabilize computations may
make the simulation more robust but obscure the solution structure and the real behaviour of
the underlying physical process.
There are several ways to assess sensitivity to parameter variation. For instance, one can

analyse the e�ect of varying the parameter in a constitutive model as seen for the Powell–
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Eyring viscosity model in Section 3.2 and in the sensitivity study for Glen’s �ow law in the
glacier application considered in Section 3.3. In a related way, one can explore the numerical
sensitivity to local variations in the parameter, the idea being that this may also generally be a
local problem that is important, say, near singularities or in regions of high solution gradients.
For example, the local variation of the residual due to a perturbation of the material parameter,
reaction rate, etc. is an indicator, and a more formal solution of a corresponding local boundary
value problem could be applied. Likewise, the parameters that enter the viscosity models in the
generalized Newtonian �ow models are often determined by curve �t to experimental data and
the sensitivity of the solution to these parameters is of interest. In viscoelastic �ow problems,
constitutive models such as the Oldroyd-B �uid, Giesekus, and PTT models are more complex
than the Powell–Eyring model considered here, but the same ideas are applicable.
Above, we have assumed that the ‘superior’ model N1 and a lower level model N0 are

known. In practice, this is often not the case, as we will show in the next section for certain
porous media and viscous �ow models. For example, in density-driven �ow, a number of
models for the relationship between salt concentration and �uid density have been proposed
and identi�cation of the superior model is in question. Correspondingly, the models relat-
ing stress and strain in non-Newtonian �ows may generate signi�cantly di�erent outcomes.
Moreover, such models usually contain parameters that are not always easy to determine in
a controlled laboratory experiment, such as the parameters in the glacier �ow example in
Section 3.3.
If no measurements for a given system are available, then model and parameter selection

must necessarily be driven by modelling assumptions and physical insight. However, if mea-
surements are available, then the best model can be chosen by a two-stage process from a
number of proposed models. The �rst step is to take each model and adapt the parameters in
it so that the resulting solution of the model best matches the experimental data. In practice,
this is most often done using a minimization procedure, where the variables are the parameters
in the model, and the quantity to be minimized is the mis�t between what we compute as
the result of the model for a set of given parameters on the one hand and the measured data
on the other hand (see, e.g. References [10, 11]). This optimization is usually performed as a
least squares problem. In order to formulate it in a mathematical framework, let us denote the
set of parameters of model k by qk , and the corresponding operator by Nk =Nk(qk). Note that
the cardinality of the sets qk may vary between models so that more complicated models may
have more parameters than simpler ones. The solution of this model is then uk =Nk(qk)−1f.
To this solution, we apply the operator M that extracts measurement data; for example M
might return the time-averaged heat �ux through the boundary of a convection cell, or it may
be the drag coe�cient of a body. On the other hand, we have measured this value in an
experiment, with the measurement being denoted by d. The mis�t between prediction and
measurement is then the residual

�k(qk)= 1
2 ‖Muk − d‖2 = 1

2 ‖MNk(qk)−1f − d‖2 (13)

The goal of parameter estimation is then to �nd those values of qk that minimize the mis�t
�k(qk), i.e. for which the prediction MNk(qk)−1f and measurement d match each other best.
We will denote these ‘best’ parameters for model k by q∗

k = argminqk �k(qk). The problem
of �nding q∗

k is in general not exactly solvable, due to the non-linearity of the parameter-to-
output map MNk(·)−1f. In addition, this problem requires signi�cant computational resources,
since the PDE model and its linearized adjoint have to be solved several times. However, this
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is still a relatively straightforward problem if the number of parameters in qk is small (for
example less than 5 or 10).
The result of this �rst step is that we have obtained an optimal instance q∗

k for each
parameter-dependent model. However, in general, none of the models will be able to reproduce
the measurements exactly, i.e. �k(q∗

k ) �= 0. For each model, there will always be a residual
between the best approximation and the target measurements. The second step in model
selection is then to compare these residuals {�k(q∗

k )}k and pick the model for which the
residual between measurements and prediction is the smallest, i.e. we want to know the number
k∗= argmink �k(q∗

k ) of the best model. Unfortunately, this determination of the ‘best’ model
is not often done in the literature, and certainly is done much less often than the proposal
of a new model. Proposing new models without this model reliability check exacerbates the
di�culty since it leads to a proliferation of models of which it is not known which are better
or worse than others. One of the reasons for this may also be that the result is not canonical:
it may be that one model describes one situation better than another model in a speci�c
application, but it is the other way round in a di�erent situation or application. This situation
is illustrated by the density models in Section 3.1. For a study comparing di�erent models in
di�erent situations, see Reference [12].
Both parameter estimation and model selection crucially depend on the fact that di�erent

values of parameters and di�erent models generate di�erent output. In other words, parameter
estimation depends on the fact that �k depends in a noticeable way on its argument qk , and
model selection on the fact that �k(q∗

k ) is signi�cantly di�erent from �j(q∗
j ) for two di�erent

models k and j. The �rst of these conditions is most conveniently expressed by the sensitivity
matrix: since q∗

k is a minimizer of �k , we can expand the mis�t in the form

�k(q∗
k + �qk)≈�k(q∗

k ) +
1
2 �q

T
k Hk�qk (14)

with the matrix

Hk = @2�k =@q2k (15)

Hk is called the sensitivity matrix since small eigenvalues indicate that even large changes
in parameters may induce only small changes in the output. Conversely, this also means
that small changes in the measurements may induce large changes in the optimal parameter,
making the problem ill-posed. In particular, the size of (Hk)ii is a measure for the sensitivity
of changes in (qk)i, and 1=

√
(Hk)ii for the variance of the resulting optimal value of it.

Likewise, the o�-diagonal elements are covariances. Note that the entries of Hk have physical
units, so terms such as ‘large’ and ‘small’ need to be understood in the context of typical
sizes of the respective parameters. These ideas are explored for the Laplace–Young equation in
Reference [13].
If the optimal values of �k(q∗

k ) do not di�er signi�cantly between models, then there is
no method that can distinguish the predictive quality of these models. Often, models will
be over-parameterized in these cases; i.e. they contain terms and parameters that are not
important for the prediction given by this model. The sensitivity matrix will then have very
small entries for the parameters that control the size of these terms, a fact that can be used to
simplify a model by removing terms that do not a�ect the output. Often, however, the output
is indeed sensitive to variations in parameters and models, and we will show below several
examples of the dramatic changes induced by varying a parameter or the model. In these

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1211–1236



1220 G. F. CAREY ET AL.

cases, there is a good potential for identifying optimal parameters and subsequently selecting
the best model.

3. APPLICATION STUDIES

We consider three related application classes in the model studies and numerical results de-
scribed in this section. Each considers model error associated with choice of constitutive
relation and=or parameter selection. The �rst application concerns density-driven porous me-
dia �ow that involves plume evolution from a surface boundary zone with high contaminant
concentration. Several popular constitutive models for the density=concentration constitutive
relation are considered using the dial-an-operator framework and the sensitivity of plume struc-
ture to these models is investigated. This problem is further complicated by the fact that it is
inherently an ‘imperfection-sensitive’ problem and there is also a singularity in the boundary
and initial data. The e�ect of variations in the porous media material properties is also brie�y
examined and we comment on sensitivity to distortion of elements in the computational mesh.
The dial-an-operator framework used for the �rst application is also exploited in the second

problem class that deals with the solution of Powell–Eyring-generalized Newtonian models for
dilute suspensions. This viscosity model exhibits shear thinning and such e�ects are naturally
more pronounced near walls due to the no-slip boundary condition that induces strong local
shearing. In addition to application simulations, and parametric sensitivity studies, we compare
the models with the simpler Newtonian �ow model and plot the associated model error using
simulations at high mesh resolution on a distributed parallel Beowulf cluster. The very high
resolution implies that the discretization error is negligible and thereby isolates the modelling
error. The ideas in Section 1 are utilized to demonstrate a simple error indicator for the �uid
models.
The third application is for a class of simpli�ed non-Newtonian �ow models corresponding

to Glen’s �ow law that are popular in modelling the movement of glaciers [14–16]. Here we
focus on the sensitivity of the solution to the parameters of Glen’s �ow law, but also consider
model errors associated with choice of boundary conditions.

3.1. Variable-density �ow and transport in porous media

The EVS problem: Flow and transport in porous media is of great practical interest in ground-
water pollution modelling. Often the concentration of solute is high enough that it signi�cantly
alters the �uid density: in such cases, the governing equations for �ow and transport become
non-linear, and a relation between density and solute concentration is required. This type of
�ow has been explored numerically using the EVS problem, which is a contaminant transport
problem adapted by Voss and Souza [17] from a heat-�ow study of Elder [18]. The EVS
problem has been investigated in many published studies, e.g. see Reference [19]. In the
present study, it is used as a test problem to investigate modelling approximation related to
the choice of constitutive equation for density as a function of concentration and to examine
sensitivity to variations in the porous media material properties and mesh perturbations.
The domain for the EVS problem is a two-dimensional rectangular vertical cross-section of

length 600 m and depth 150 m with no change assumed normal to the plane. Centred along
the top boundary is a 300 m long segment with a constant concentration boundary condition
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normalized to 1 unit, representing a source of solute such as that arising in a land�ll site or
salt lake. The bottom boundary is held at a constant concentration of zero, under the same
scaling. No-�ux boundary conditions apply on the vertical sides and on the remainder of the
surface. Initially, the concentration throughout the region is zero and the pressure �eld is
hydrostatic. The total time simulated in the computations is 20 years.
While various governing equations have been used to describe the physics of the EVS

problem, we consider here those adopted for salt water invading an aquifer in Reference [17]:

�
@�
@c
@c
@t
+∇ · (�v) = 0 (16)

��
@c
@t
+ �v · ∇c − ∇ · (��D∇c) = 0 (17)

where t is time, �=0:1 is porosity, � is �uid density and is a function of the concentration
c, D=3:565× 10−6 m2 s−1 is molecular di�usivity and v is the Darcy �ux. The Darcy �ux is
given by the relation

v=− k
�
(∇p− �g) (18)

where p is pressure, k=4:845× 10−13m2 is the permeability, �=10−3 kgm−1 s−1 is dynamic
viscosity, and g is the vector of gravitational acceleration. To complete this set of equations,
a constitutive relation describing the dependence of density on concentration is required.
Density as a function of concentration: Here we consider constitutive relations that have

been used to model sodium chloride solutions. This is important for numerical studies of
salt lakes, groundwater �ow near salt domes and regions of saline intrusion into coastal
aquifers. Laboratory studies have shown that the saturation concentration of sodium chloride
in water is 0:26 kg kg−1 at 20◦C and that such a solution has a density of 1197:2 kgm−3

while freshwater density is 998:23kgm−3. The change of density with concentration has been
modelled in various ways [20]. S�egol [21] uses a linear function �(c)=998:23+700c, where
� is density and c is mass fraction concentration. According to Holzbecher [20], Cussler [22]
also uses a linear function but with a di�erent ‘slope’ parameter, �(c)=998:23+756c. Intraval
[23] adopts an exponential model: �(c)=998:23 exp(0:6923c), while Stuyfzand [24] uses a
quadratic equation for density that depends on both temperature and concentration (of total
dissolved solids rather than sodium chloride alone). At 20◦C it reduces to �(c)=998:336
+ 759:24c − 314:6c2. Other similar models have been studied or proposed in References
[25–27]. The various constitutive equations agree fairly well for concentrations less than
seawater (c=0:035). However, at concentrations approaching saturation there is a variation
of almost 15% of the density di�erence between freshwater and saturated brine. (Note that
concentrations near saturation do occur in the �eld, e.g. near salt domes and in naturally saline
discharge zones [28].)
We now investigate model sensitivity to the choice of density relation for the EVS problem.

While the physical parameters given by Voss and Souza [17] do not explicitly mention a
sodium chloride solution, its density variation of 1000–1200 kg m−3 closely matches that
of brine (998.23–1197:23 kgm−3). Moreover, the EVS problem has been simulated in the
literature using various constitutive equations, including linear [17], exponential [19] and the
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(a) (b)

Figure 1. Concentration contours after 8 years for simulations employing the following equations for density
as a function of concentration: (a) Equation (19); and (b) Equation (20) (contour intervals 0.1).

fractional form of Lever and Jackson [25]. The EVS problem is usually discussed in terms of
scaled concentration c′= c=cs, where cs is the concentration at saturation, so that c′ ∈ [0; 1].
Applying this scaling we obtain (for References [21–24], respectively):

�(c′) = 998:23 + 184:87c′ (19)

�(c′) = 998:23 + 199:66c′ (20)

�(c′) = 998:23 exp(0:1828c′) (21)

�(c′) = 998:336 + 200:51c′ − 21:94c′2 (22)

Note that no other variables are scaled in the usual presentation of the EVS problem in the
literature.
The �nite element scheme used to solve the EVS problem is described in detail in

Reference [27]. Only the left half of the domain is simulated as the problem is taken to
be symmetric with respect to the line x=300. Twenty uniform timesteps are used for each
simulated year and the mesh consists of 32× 16 quadratic elements. Following the literature,
we refer to descending plumes as ‘downwelling’ into the intervening low density regions of
similar shape, and reversed orientation as ‘upwelling’.
Concentration contours of the results are given in Figure 1 for models (19)–(20). Even

though di�erences in the density are small, it can be seen that the choice of constitutive
equation can substantially alter the numerical results. Note that (19) yields concentration
contours in which a single main plume of higher salinity extends through the half-domain,
with an upwelling of less saline �uid at x=300 m, whereas (20) yields two plumes, one
of which represents a downwelling of �uid and solute at x=300 m. We remark that the
results for (21) and (22) are very similar to those shown for (20) and (19), respectively, and
therefore are not graphed here. Note that (19) and (22) both considerably underestimate �uid
density at high concentration values. The concentration contours generated by (20) and (21)
are visually indistinguishable.
Through this example, it can be seen that variable-density �ow and transport in a porous

medium can be sensitive to the choice of constitutive equation for density. This suggests that
model errors, as distinct from numerical errors, are important in explaining discrepancies in
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simulation results for the EVS problem. However, other modelling sensitivity issues such as
those associated with material properties are relevant and considered next.
Variations in porous media property: To test the sensitivity of EVS simulations to small

variations in the physical parameters, the permeability is locally perturbed so that small inho-
mogeneities are present in the matrix material. While in many �eld applications permeability
may vary by one or two orders of magnitude, here we consider only very slight changes,
k= �k ± � (at the Gauss points of each element) where �k is the mean permeability and � is
a random function of uniform distribution and maximum magnitude �k=200 or �k=2000. Con-
stitutive relation (20) for density was chosen for the numerical test. As before, a 32× 16
quadratic element mesh and 20 timesteps per year were used.
It was found that the random variation in the permeability of �k=2000 had little discernible

impact on concentration contours when compared to the appropriate uniform permeability
case. That is, simulations yielded a downwelling solution that was indistinguishable from
the uniform permeability results of Figure 1(b). However, a �k=200 variation in permeability
did have a signi�cant impact on results. In a series of 10 realizations in which each case
di�ered only in the seed value given to the random number generator, both downwelling and
upwelling results were observed, even though the uniform-permeability case for (20) yields a
downwelling solution (i.e. �uid movement for x=300 m is predominantly downwards). The
c′=0:2 contours are plotted for the eighth year in Figure 2 to give an impression of the
variation in results. In �eld applications, it is often important to consider outlier scenarios
in which contaminant plumes spread quickly, and in a similar plot of c′=0:6 contours there
is one realization in which one downwelling contour extends more than twice the depth of
the others near x=200, illustrating the importance of small variations in permeability to the
spread of solute.
The mean concentration averaged over all 10 realizations has plumes which are truncated

when compared to the uniform-permeability case plotted in Figure 1(b). This is not surprising,
as it averages over both downwelling and upwelling solutions. The standard deviation is
highest along the line x=300m, which is precisely where the largest discrepancies (upwelling
vs downwelling) in the series of simulations occur.
Similar behaviour was noted in a series of simulations using (22) as the constitutive relation

for density: a variability of �k=2000 in permeability again made no discernible di�erence when

(a) (b)

Figure 2. Concentration contours after 8 years for 10 di�erent realizations of
a ±0:5% variability in permeability using model Equation (20): (a) c′=0:2

for downwelling solutions; and (b) c′=0:2 for upwelling solutions.
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compared to the uniform-permeability case, whereas a �k=200 variability did lead to major dif-
ferences in results such that some realizations produce downwelling results and some produce
upwellings. It was found that the maximum standard deviation in nodal concentration values
after 8 years was higher at 0.3 for the model (22), as compared to 0.275 for the model (20).
Mesh e�ects: Local element distortion by moving each node by a random amount, up to

some percentage of the mean element width h has a similar e�ect to that observed above.
For example, a 1% h perturbation leads to signi�cant changes in plume development for
computations with (20) on a 32× 16 mesh. All results indicate that the EVS problem is
sensitive to element distortion for this choice of surface boundary segment having c′=1.
Small numerical oscillations emanating from the singularity at (150; 150) may also in�uence

model behaviour. Accordingly, parallel computations for uniformly and adaptively re�ned
meshes were carried out. Here we present a result from these simulations, which were run
with the libMesh [29] �nite element library. The error indicator chosen to guide the adaptive
re�nement process was based on the concentration �ux jump across element faces [30]:

�2k =
∑
i

hi
24

∫
	i

[
@c
@n

]2
d	 (23)

where [@c=@n] denotes the jump in the normal component of the concentration gradient across
element edge 	i of cell k and hi is the length of the edge. Only the concentration �eld was
considered in the error indicator.
Adaptive mesh re�nement provides the high resolution necessary to accurately model the

behaviour near the singularity. The adaptive algorithm was applied to an initial, uniform
mesh of 32× 16 bi-quadratic �nite elements. At the end of each timestep, indicator (23)
was employed to select the elements with the highest error for re�nement. The top 10% of
elements, sorted in order of increasing error, were re�ned and the time step was repeated.
To avoid over-re�nement of the singularity only four levels of re�nement over the initial
grid were allowed. Figure 3 depicts part of the mesh and the concentration �eld near the
singular point. The concentration �eld is virtually identical to that of Figure 1(b), which
implies that the discretization error associated with the uniform 32× 16 grid is su�ciently

Figure 3. Adaptively re�ned mesh and concentration contours after 8 years
for the subregion near the singular point.
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small to accurately predict the behaviour of the plume structures and allow for objective model
comparisons. It also shows that the under-resolved behaviour near the singular point does not
introduce substantial errors in the global plume structure.
Hence the EVS problem is to some degree physically sensitive to constitutive model material

imperfections, and mesh imperfections. This, in turn, implies that imperfections introduced
in numerical discretization and even through the choice of convergence tolerances in the
algorithms may also have signi�cant e�ects.
As shown in Reference [27], however, this plume sensitivity is related to the length of the

zone with c′=1 on the top boundary. The length chosen by Elder and Voss–Souza is close to
a critical value that separates downwelling and upwelling plume structures. As a consequence,
the problem is particularly sensitive to perturbations.

3.2. Incompressible non-Newtonian �uids

Many viscous �ow applications can be adequately modelled using a Newtonian constitutive
model assumption but in some applications, generalized Newtonian models are needed. The
increasing complexity of these models often implies a signi�cant increase in degree of di�-
culty of the associated computations. Here we consider the Powell–Eyring constitutive model
and investigate modelling error by comparison to the Newtonian assumption.
The equations of interest are the incompressible Navier–Stokes equations:

�
(
@u
@t
+ u · ∇u

)
=∇ · � (24)

∇ · u=0 (25)

for momentum and mass conservation, respectively, where u is the velocity vector, � the
stress tensor, and � the density. The constitutive law for the generalized Newtonian �uids
considered here is

�ij=−pIij + 2�(s(u))Dij(u) (26)

where Iij is the identity tensor, Dij(u) is the strain rate tensor given by

Dij(u)= 1
2(ui; j + uj; i) (27)

and �=�(s(u)) is the viscosity with

s(u)=
√
2Dij(u)Dij(u) (28)

The case �=constant in (26) corresponds to the familiar Newtonian �uid model.
Powell–Eyring constitutive relation: The three-parameter Powell–Eyring apparent viscosity

model for non-Newtonian �uid behaviour is an interesting model for suspensions of polymers
in solvents and polymer melts with low elasticity. However it has received relatively little
attention in the modelling and simulation areas despite its favourable performance [31] and
thermodynamic background. The Powell–Eyring model is based on Eyring reaction-rate theory
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giving it a strong thermodynamic underpinning [32]. The corresponding viscosity relation for
the model is given by

�(s(u))=�∞ + (�0 − �∞)
sinh−1(�s(u))

�s(u)
(29)

where the parameters �0 and �∞ are the limiting viscosities at zero and in�nite strain rates
and � is a characteristic relaxation time for the �uid.
For �∞¿0, it is easy to check that the viscosity function satis�es

m0 6 �(s)6M0 for all s¿0 (30)

m1 6
d
ds
(�(s)s)6M1 for all s¿0 (31)

for some positive �nite constants m0; m1; M0, and M1. Consequently, for the stationary problem
with homogeneous Dirichlet boundary conditions speci�ed for the velocity, the natural function
space V ×Q containing a weak solution (u; p) is

V =[H 1
0 (�)]

3; Q=
{
q ∈ L2(�);

∫
�
q dx=0

}
(32)

We shall denote, respectively, the norms over V and Q by ‖ · ‖V and ‖ · ‖Q and the dual spaces
by V ′ and Q′.
Finite element approximation: A mixed Galerkin �nite element method with a continuous

piecewise quadratic velocity basis and a continuous piecewise linear pressure basis is imple-
mented using a Newton–Raphson algorithm. The resulting linear Jacobian systems are solved
with a Krylov solver (in this case parallel ILU preconditioned element-by-element BiCGStab).
If (uh; ph) ∈ Vh ×Qh is the mixed �nite element approximate solution to the incompressible

stationary Stokes equations (i.e. (24)–(25) without the convective term), then it may be shown
by standard arguments that the non-linear operator is monotone and there exists a constant C
such that the �nite element approximation exhibits optimal order convergence

‖u − uh‖2V6 inf
(vh; qh)

C(‖u − vh‖2V + ‖p− qh‖Q(‖u − vh‖V + ‖u − uh‖V )) (33)

If, in addition, the discrete inf–sup condition for the Stokes problem holds, then

‖p− ph‖Q6 inf
qh∈Qh

C(‖u − uh‖V + ‖p− qh‖Q) (34)

Furthermore, a posteriori �nite element error estimates may also be obtained using the
techniques described in Reference [33]. Let ru(uh; ph) denote the residual of the momentum
equation, then

‖u − uh‖V6C‖ru(uh; ph)‖V ′6

(
C
∑
k∈Th

�2k

)1=2
(35)

with the local error indicator �k given by

�2k = h
2
k‖f‖2L2(k) +

∑
i
hi
∫
	i

[
�(s(uh))

@uh
@n

]2
d	 (36)
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Figure 4. Error as a function of the mesh width for Stokes �ow in a square channel.

where hk is the diameter of element k in the triangulation Th, hi is the length of the edge 	i
of k and [·] is the jump across an edge. A similar result holds for the pressure residual.
Figure 4 shows the results of a mesh re�nement study for two-dimensional Stokes �ow

in a channel of height H , for a Powell–Eyring �uid at viscosity ratios, �∞=�0, of 1 (the
Newtonian case), 0.1, 0.01, and 0.001, with dimensionless relaxation time, �∗= �U=H =100.
Also plotted is the expected O(h3) rate line for comparison (where h is the mesh width).
(To compute the error for this non-linear problem where an exact solution is not known, the
solution u�ne on a �ne grid is used.)
In order to investigate the modelling error made by treating a non-Newtonian �uid of

this class as Newtonian, we consider �ow in a 2-D channel of height H , with uniform
in�ow velocity U (smoothed by C1 piecewise quadratics near the wall), zero-stress boundary
condition and parallel �ow at the out�ow, at Reynolds number Re=�UH=�0 of 1, 10, and
100, for �uids with �∞=�0 chosen with �ve logarithmically spaced values in the interval
[Re=1000; 1] and �∗ chosen as 10 and 100. The smoothed inlet conditions were employed to
prevent reverse �ow and overshoot conditions at the in�ow associated with interpolation of
uniform in�ow onto the quadratic basis.
These cases were designed to correspond well with dilute solutions of long-chain polymers

dissolved at varying concentrations in a solvent (e.g. nitro-cellulose in butyl acetate, see
Reference [34]). The model error in approximating the �ow as Newtonian is of interest. The
global relative error in L2 norm, ‖uNewth − uh‖0=‖uh‖0, is graphed versus viscosity ratio in
Figure 5 for each of the cases speci�ed above. The error incurred ranges between 3 and 20%
in the cases simulated here and is exponential (or worse) in �∞=�0. Mid-channel velocity
pro�les for the various cases are plotted in Figure 6. Each group of pro�les represents an
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Figure 5. Modelling error when comparing the solution of the non-Newtonian model to the
solution of a Newtonian approximation.

Figure 6. Solution pro�les: from left to right, groups of (Re; �∗)= (1; 10), (1; 100), (10; 10),
(10; 100), (100; 10), and (100; 100).

(Re; �∗) pair as in Figure 5 and increasing bluntness of the pro�le corresponds to decreasing
�∞=�0. It is evident that decreasing Re and increasing �∗ also tend to �atten the pro�le.
From (26) and (29), we recall that the behaviour of this model is determined by the apparent

viscosity in a manner analogous to that discussed in Section 2 concerning the e�ect of the non-
linear material property k and associated ‘model discrepancy’. (Recall (3)–(5).) Following
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Figure 7. Local model discrepancy, �∞=�0 = 0:01 and �∗=10.

this idea, we investigate the modelling error associated with the apparent viscosity by plotting
in Figure 7 the contour map of the model discrepancy (residual for the horizontal velocity
component) for the case �∞=�0 = 0:01 and �∗=10 obtained by using the Newtonian velocity
in the Powell–Eyring viscosity model. For this channel �ow problem there are noteworthy
di�erences near the two no-slip walls, where the Newtonian viscous stress di�ers signi�cantly
from the stress for the Powell–Eyring �uid. This �gure also suggests that one may introduce
the non-Newtonian model locally in the boundary layer regions identi�ed by this simple
model error. There are also di�erences in the in�ow and out�ow regions where the boundary
conditions impose di�erent stresses on the di�erent �uid types.

3.3. Glacier �ow

The movement of a glacier can be approximated as a slow �owing non-Newtonian
�uid. Several variants of the (implicit) non-linear stress–strain relationship, or �ow law
Dij(u)=f(�)�ij, have been used, where Dij(u) and �ij are again the strain rate and stress
tensors, respectively, and �=√�ij�ij. Examples that have been described under the classi�-
cation of a ‘Glen’s �ow law class’ include:

Dij(u) = f1(�)�ij=A�n−1�ij (37)

Dij(u) = f2(�)�ij=
A
�n−1

sinh(��)n

��
�ij (38)

Dij(u) = f3(�)�ij=A(T 20 + �
2)(n−1)=2�ij (39)

Dij(u) = f4(�)�ij=A(Tn−10 + �n−1)�ij (40)

Relations (38), (39) are presented in Reference [35], while (40) is used in Reference [15]
and (41) in Reference [36]. These functions fi above are shown for a typical choice of their
parameters (A=1:0, n=3:2, �=1:0, T0 = 1:0) in Figure 8. For T0 = 0 all four laws are similar
for small �, with (37), (39), (40) being identical. For T0 �= 0, (39) and (40) are similar for
small �. For large �, (37), (39) and (40) have the same rate of growth. Also for the special
case n=3, (39) and (40) are the same.
As these equations are used to simulate real glaciers, it is important to understand the

di�erences that the choice of �ow law induces. Clearly, if the choice of �ow law is in question
and the associated model error may be signi�cant, then controlling the discretization error to
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Figure 8. Glacier �ow laws for n=3:2, T0 = 1:0, A=1:0, �=1:0.

the level of the model error would be appropriate. Secondly, the parameters in these �ow
laws are not known accurately and are known to depend on other complicating factors such
as temperature and the nature of the local ice crystal structure, which may vary throughout the
glacier [36]. Thus the degree to which the problem is robust with respect to these parameters
will determine the practical utility of any numerical simulations, indicating whether it is
sensible to draw quantitative or qualitative conclusions from the models.
A related issue is the sensitivity of the problem to modelling boundary conditions (e.g. see

Reference [37] for more on this issue). A slip region is introduced by Colinge and Rappaz [15]
to model base melting at part of a contact region. This transition from ‘slip’ to ‘stick’ can
be modelled in various ways. In Reference [15] the ‘point’ model of the adjacent stick–slip
zones introduces a discontinuity in the gradient of the solution. This implies that large local
gradients may be poorly approximated in the �ow model. The presence of the singularity also
degrades the rate of convergence [14]. Alternatively, a regularized transition zone model for
the boundary condition may be a more realistic approximation to the physics and also yield
a more tractable numerical problem. The model di�erences are clearly of interest.
A common model for glacier �ow treats the glacier as an idealized ice slab sliding down

an inclined plane. The axes are chosen so that x is in the direction of �ow, z is vertical, and
y is across the glacier. The ice slab is considered an incompressible viscous non-Newtonian
�uid. To simplify the problem, several assumptions are typically used: (i) steady �ow; (ii)
plane strain approximation: no y dependency; and (iii) perturbation expansion using a scaling
parameter: �=H=L� 1, with L;H the characteristic horizontal=vertical extent of the ice sheet.
Introducing these assumptions into the momentum balance, mass conservation and stress–strain
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Figure 9. Domains used for testing behaviour of Glacier �ow laws.

relations the model reduces to the simpli�ed 2-D glacier model of Colinge and Blatter [38]:

−∇ · (k(|∇u|)∇u)= 1
2 (41)

over �= (−L; L)× (0; 2), with k(|∇u|)=1=f(�)=1=f(�xx; �xz) and

f(�)�xx=
@u
@x
; f(�)�xz=

@u
@z

(42)

where u is the glacier velocity along the slab and f is the stress–strain rate relationship.
In the present study two di�erent rectangular domains were used—one to investigate the

e�ect of the �ow law and �ow law parameters on solution behaviour, and the second to
examine the e�ect of smoothing a stick–slip zone to locally regularize the problem. Both
domains are of the form [−L; L]× [0; 2] with ∇u · n=0 on the lines z=2 and x= ± L.
On z=0 the �rst domain has a slip zone located between two non-slip zones. In particular,
∇u · n=0 on z=0 for |x|¡D and u=0 outside this region. The second domain uses the
boundary condition �u+(1−�)∇u ·n=0 on z=0. Here �= �(x)=0 for x¡−D, �(x)=1 for
x¿0 and �(x) has smooth transition between 0 and 1 over the interval (−D; 0). The function
used here is the cubic �(x)=3=D2(x + D)2 − 2=D3(x + D)3, which has �(−D)=0, �(0)=1,
�′(−D)=0 and �′(0)=0. The two domains are shown in Figure 9. Unless stated otherwise
calculations were performed on uniformly re�ned grids. The �nest level of the mesh usually
had about 100 000 degrees of freedom.
Solution procedure: Linear convergence of successive approximation iteration has been

established theoretically under certain assumptions in Reference [14]. This scheme is demon-
strated to be robust in the present simulations whereas Newton iteration fails in some cases
because the initial iterate is outside the contraction region. Therefore, we �rst apply several
iterations of successive approximation and then revert to Newton iteration which converges
quadratically near the solution. These algorithms were implemented using the deal.II �nite
element library [39].
Dependence on �ow law: Comparisons between the solutions for the stated �ow laws were

carried out with the parameters A=1:0, n=3:2, �=1 and T 20 = 0:1 in a domain of length 60
(L=30) having a slip zone of length 4 (D=2). The contour map of u for a typical solution
is shown in Figure 10, where the solution ranges from u=0 on non-slip regions to u=3:09
in the centre of the slip region. Although the general behaviour of solutions for the four �ow
laws was similar, the values for the �ow law (38) were inconsistent with the others, di�ering
by approximately a factor of 3. One possible source of this discrepancy is the large di�erence
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Figure 10. Typical solution behaviour for the �rst test problem. This example was for �ow
law (39) with A=1:0, n=3:2, T 20 = 0:1.

Figure 11. The sensitivity of u to the parameters T0 and n shown as contours of @u=@T0
and @u=@n for Equation (39). Zero contours are shown darker. (Contour spacing for @u=@T0

is approximately 0:12 and for @u=@n it is approximately 0.03.)

in the �ow laws in regions of high velocity gradient, such as near the interface between the
stick–slip boundary conditions.
For the other three laws the solutions were only slightly di�erent. The relative di�erences

between solutions using laws (37) and (39) were around 15% (9% near the non-slip boundary,
11% in the slip region and 16% on the surface away from the slip region). The di�erences
between (39) and (40) were around 4% (2% near the non-slip boundary, 2.7% in the slip
region and 4% on the surface away from the slip region). Note that absolute errors were
largest in both cases at the surface of the slip region and zero on the non-slip boundary. In
both cases the modelling error due the choice of constitutive equation is considerable.
Dependence on model parameters: Let us consider �ow law (39). The problem then has

two parameters, T0 and n for which there are a wide range of acceptable values. For exam-
ple, values reported by Paterson [36] for n ranged between 2.8 and 5.2 while values for A
ranged from 0:57× 10−15 to 5:6× 10−15 s−1 kPa−3. No information about the variability of T0
was available. As these parameters are also temperature dependent, they vary throughout the
glacier. Thus it is important to determine how sensitive the solution is to variations in these
parameters. This is achieved here by comparing a variety of simulations.
Although there was no obvious qualitative sensitivity to the parameters, signi�cant quanti-

tative changes occurred throughout the domain. These can be seen in Figure 11. In particular
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small changes �T0 in T0 result in changes of order �T0 near the surface of the glacier, with
a peak of @u=@T0 ≈ 2:4 above the slip zone (where u≈ 3). The di�erence decreases smoothly
to zero on the non-slip boundary but is non-zero for the slip boundary. Small changes in
n introduce a small change throughout the domain of order �n, with larger changes in the
slip zone. Values for @u=@n range from −0:1 on the upper surface to 0:5 near the stick–slip
interface. Due to the high level of uncertainty in the model parameters, error due to parameter
selection will be comparable to the error due to choice of constitutive equation.
Boundary condition e�ects: The stick–slip boundary causes a discontinuity in the gradient

of the solution, which decreases the global convergence rate of the solution. Due to the large
changes in ∇u locally, this model of the boundary condition has signi�cant implications on
the behaviour of the respective �ow models (37)–(40). Errors in the computed local gradient
will exacerbate the constitutive model discrepancies. Adaptive mesh re�nement toward the
singular point can alleviate this problem [14]. At a su�cient distance away from the singular
point the interior estimates for the approximate solution will achieve the optimal rate even
in the non-adaptive case. However, for practical applications adaptive re�nement will clearly
reduce only the discretization error, but not the modelling error associated with either the
choice of constitutive model parameters or the model for the base slip boundary condition.
The use of a pure stick–slip model and the associated singularity can lead to other di�culties
concerning the validity of the non-linear model for rough data, convergence of the successive
approximation and Newton algorithms, and possibly oscillations due to the inadequacy of the
local mesh.
Locally smoothing the boundary data may introduce additional local modelling error but also

regularizes the local solution behaviour and improves the global approximation properties. In
particular, here we approximate the boundary conditions using a non-constant Robin boundary
condition of the form �∇u·n+(1−�)u=0 where �= �(x) varies from 0 to 1 in the smoothing
region. There is a conversion of local numerical error due to the singularity to local modelling
error due to the changed boundary conditions.
In a numerical test, the smoothing was applied over a distance of D=0:1 in a domain of

length 12 (L=6). The smooth problem has superior accuracy and rates of convergence. The
magnitude of the di�erence between the two solutions was observed to be O(D) in a region
of size O(D) around the stick–slip point, where D was the length of the smoothed region.
The change in the behaviour of the solution near the transition can be seen in Figure 12. In
particular, note that there is no longer an abrupt change in the angles of the contours near
the transition. The change in the solution away from this region was signi�cantly smaller.

Figure 12. Close-up views of contours near a sharp (left) or
smoothed (right) stick–slip transition.
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Even near the stick–slip region the error associated with the regularization was signi�cantly
smaller than that associated with the uncertainty in the parameters.
We conclude that if the interest is in the global behaviour, it is acceptable to smooth the

boundary conditions to provide a better rate of convergence. If the local behaviour near a
‘true’ singularity is of interest then smoothing the boundary will introduce a modelling error
which should be avoided if it is larger than the other sources of error. In this example these
e�ects were signi�cantly smaller than the errors associated with uncertainty in the choice
of �ow law and its parameters. Consequently smoothing the interface did not degrade the
accuracy of the solution further.

4. CONCLUSION

The main theme of the investigation is the assessment of modelling error, particularly with
reference to choice of constitutive models. We also consider the question of sensitivity of the
solution to the parameters that enter these constitutive models. The ideas we explore are, of
course, very general but we have elected to study them here within the context of �ow and
transport problems. The three related applications are the investigation of constitutive relations
for density driven �ow and transport in porous medium contaminant plumes, simulation of
Powell–Eyring-type generalized Newtonian �ow relations in viscous �ow, and Glen’s �ow
law in simulation of stresses in glaciers. Adaptive mesh re�nement is also applied in some
of the studies to control discretization error, particularly in the vicinity of a singularity. The
sensitivity to imperfections in material properties or even the mesh as well as those resulting
from the nature of the underlying physical problem are considered here but not in depth. This
is a subject of growing research interest. Likewise, in our sensitivity studies with respect to
parameters and material properties we have considered the e�ect of perturbations and espe-
cially local e�ects. The general issue of model error implications concerning uncertainty and
risk assessment are important. Finally, we remark that, in research and practice, attention has
focused on reliability of computations and the use of adaptive re�nement for error control of a
speci�ed model rather than other sources of error. However, it is well recognized that models
involve assumptions and approximations. This implies that model errors may in some cases
be quite signi�cant. Here we �rst discuss this issue and describe some approaches for simple
model error indicators analogous to those used in adaptive mesh re�nement. We illustrate
some of these issues and approaches in the applications and we emphasize that control of
discretization error in situations where model error is in question needs careful attention.
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